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Abstract
The interfacial structure and binding forces of polytrimethylene terephthalate/polyethylene 
terephthalate filament were investigated through the methods of Carbon-13 nuclear magnetic 
resonance (13C-NMR), differential scanning calorimeter (DSC), scanning electron microscopy 
(SEM) and optical microscopy. When two molten polymers met during the spinning process, 
an interface layer between the PTT and PET components formed and played an important 
role in binding the two components together. When the blending time was sufficient, an 
ester-interchange reaction took place with the generation of the copolymer. The PET recry-
stallisation was observed in the DSC curve under the influence of entangled PTT molecular 
chains. The morphology of the cross-section and side view proved that the linear boundary 
line was short and weaker in binding without a chemical bond and molecular diffusion. 
Side-by-side bi-component fiber and split-type fiber was able to be controllably spun by 
adjusting the spinning parameters.
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melting points. Some researchers studied 
the sequential structure of copolymer 
[20], as well as the crystallisation behav-
ior of the blend system [21]. However, 
due to structural similarity and transes-
terification between PTT and PET, there 
was no interface in PTT/PET blends [16]. 

Existing researches mostly focus on PTT/
PET solution blends and melt blends, 
with studies on the PTT/PET interface 
layer being rarely. For PTT/PET filament, 
its interfacial structure is distinct from 
that of PTT/PET blends. Multicomponent 
coextrusion provides the possibility to 
combine PTT and PET components with 
diverging properties into a composite 
extrudate, which shows a new set of at-
tributes that have not been obtained previ-
ously [23]. Kikutani [24] proved that the 
structure development of one component 
is strongly influenced by the viscosity 
and solidification temperature of anoth-
er during the melt spinning of bicompo-
nent fiber. The formation of an interfacial 
adhesion layer will be influenced by the 
temperature, molecular weight, chain 
orientation, polydispersity and molecular 
structure of polymers [25, 26]. Also, the 
polymer-polymer compatibility system 
has a direct relation to the interfacial af-

finity [27]. Southern tried to enhance the 
interfacial interactions between compo-
nents in melt-spun materials through the 
formation of mechanical interlocking 
[28]. Ide and Hasegawa enhanced the 
compatibility of polymer blends through 
the grafted polymer [29]. Various authors 
have analysed the interface of fiber-ma-
trix, which provide better references [30].
 
This work focusses on the interfacial 
structure between PTT and PET compo-
nents in PTT/PET side-by-side filament. 
The interfacial interaction in bi-compo-
nent coextrusion filament, including the 
chemical bond, physical interlocking and 
crystallisation behavior, were analysed 
through nuclear magnetic resonance, 
thermal and morphological analysis. 

	 Materials and experiments
Materials
The PTT/PET filaments selected in this 
work are the most familiar and most 
used, the basic parameters of which are 
listed in Table 1. Filament C is the one 
with which PTT and PET components 
were separated in a previous study [4, 5]. 
Table 2 shows the molecular structure of 
PTT/PET copolymer. 

	 Introduction
Polytrimethylene terephthalate/polyethyl-
ene terephthalate (PTT/PET) side-by-side 
bi-component filament is produced via 
melt spinning by means of a twin-screw 
extruder [1, 2]. Interfaces between the 
PTT and PET component play a key role 
in combining the two components togeth-
er and keeping a side-by-side structure. 
Gaining insight into the interfacial struc-
ture will enhance our ability to design 
a materials system with controlled adhe-
sion, split, and elasticity characteristics 
[3]. Recent experimental evidence indi-
cates that PTT/PET interactions can dras-
tically influence the quality of products 
obtained by melt processing operations, 
such as extrusion and cooling [4-6].

PTT has been used as environmentally 
friendly material because 1,3-propandiol, 
which is the raw material of PTT, can be 
made by biological fermentation [7-8].  
PTT/PET filament and the PTT/PET 
blend have received great scientific and 
industrial interest. These studies have in-
cluded spinning technology [9, 10], elas-
ticity [9, 11], crimp structure [12, 13], 
textile use [9, 11-13] etc. In other stud-
ies, the PTT/PET blend was proved to be 
a thermodynamically compatible system 
[14-18]. Xiao [14] and Liang [15] found 
that PTT/PET blends are miscible in 
amorphous areas and partially so in crys-
talline regions. Son [16], Shyr [17] and 
many other scholars [18-22] found that 
in the PTT/PET blend system an ester 
exchange reaction took place, and a co-
polymer was produced near or above the 

Table 1. Specifications of samples. Note: *FDY, full draw yarn; DTY, draw texturing yarn; 
*DPF, denier per filament; *D, denier, unit of fineness.

Filament Structure Fineness, D* DPF*, D Cross-Section shape Volume ratio
A FDY*

150
2.60 Pear-shaped 50/50

B FDY 3.47 Dog-bone-shaped 50/50
C DTY 2.31 Dog-bone-shaped 50/50
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Experiments
Differential scanning calorimeter test
A differential scanning calorimeter 
(DSC, Pyris 1, Perkin-Elmer Cetus Cor-
poration, USA) was used to study the 
crystallisation behavior of PTT/PET fila-
ment along with standard aluminum pans 
under a nitrogen atmosphere. Approx. 
5 mg samples were heated at a rate of 
10 °C/min from ambient temperature to 
300 °C.

Nuclear magnetic resonance test
A carbon-13 nuclear magnetic resonance 
(13C-NMR) test was conducted by means 
of a NMR spectrometer (Bruker Avance 
400, BRUKER, Swiss) at 100.6 MHz. 
Approx. 100 mg samples were dissolved 
in 0.6 ml deuterated trifluoroaectic acid. 
The production of copolyester was meas-
ured from the area of the signal peaks.

Scanning electron microscope test
Scanning electron microscope (SEM 
TM3000, Hitachi, Japan) micrographs 
were used to study the cross-section 
morphology of three different samples. 
The cross-sections were prepared by 
means of Hardy’s cross-sectional device 
(Y172) and sputter coated with a thin 
layer of gold, prior to SEM investigation.

Optical Microscope test
The optical microscope images 
(LABOMED, Labo America, Inc. USA) 
were used to study the cross-section and 
longitudinal morphology.

	 Results and discussion
Generation of Interface Layer
Dried PTT and PET chips were spun us-
ing the same spinneret plate after heating 
in a twin-screw extruder (in Figure 1.a). 
As Shown in Figure 1.b, there is an in-
terface between the two polymers in the 
cross-section view. Actually, it is not 
only an interface line but an interface 
layer which is generated after being co-
extruded. The formation occurs after the 
meeting of two polymer melts and the 
consequent diffusion of PTT and PET 
molecular chains [31]. The interface lay-
er of the PTT/PET filament is composed 
of a boundary line and two side diffu-
sive parts. Therefore, the interface layer 
works as a micro blending system. In this 
micro-system, PTT and PET molecular 
chains diffuse and entangle together.

A model of the interface layer is shown 
in Figure 2 (d is the thickness of inter-

Figure 3. 13C-NMR spectrogram of PTT/PET Filament A.
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face layer). The thickness of the interface 
layer is closely connected with the com-
patibility of the two polymers. Due to the 
interdiffusion of molecular chains, d be-
tween two immiscible polymers is very 
thin [32]. When the compatibility of the 
two polymers increases, their adhesion 
increases, and there is no clear interface. 

Interaction forces of interface layer
As a micro-system, the interface layer 
plays an important role in the combina-
tion of two components. There are two 
bonding patterns between molecules 
in the interface layer. The first one is 
a chemical bond, which is mostly a co-
valent bond. A physical bond, involving 
molecule diffusion, recrystallisation and 
Van der Waal’s force, is the second bond-
ing pattern.

Chemical bond
Many studies have reported that an es-
ter-interchange reaction occurs in PTT/
PET blends [16-18]. The 13C-NMR 
spectrograms are shown in Figure 3 
and Figure 4. The smaller characteristic 
peaks near 136.2 and 136.6 ppm (ET and 
TE) indicate the existence of copolymer, 
which provides strong binding between 
PTT and PET components. It also proves 
that a reversible ester-ester interchange 
reaction occurred in the interface lay-
er due to the residual catalyst present 
in commercial PET and PTT during the 
melting process [33, 34].

The absorption peak areas could give an 
explanation of the covalent bond quan-

Figure 4. 13C-NMR spectrogram of copolymer: a) Filament A, b) Filament B, c) Filament C.

Table 3. Melting points and melting enthalpy.

Samples
Melting points, oC Melting enthalpy, J·g-1

PTT PET Copolymer PTT PET Copolymer
Filament A 221.93 246.83 252.73 19.75 20.43 0.88
Filament B 221.92 247.15 252.39 25. 08 26.16 1.30
Filament C 221.62 250.12 – 21.43 30.98 –
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titatively [35]. Figure 4 shows that the 
peaks of three PTT/PET filaments are 
different and that filament C has very 
little copolymer. More copolymer in Fil-
aments A and B means stronger chemical 
bonding than that of filament C. It was 
reported that the resonance intensity of 
the peak increases with the increasing of 
the blending time [22]. The little produc-
tion of copolymer in filament C is attrib-
uted to the less blending time. 
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crystallisation behaviour of PTT/PET 
filaments. In Figure 5, the small endo-
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interface layer is clearly different from those of the PTT and PET single component.32 For 

instance, the interface layer has distinct transparency. In Figure 6, a clear interface line can be 

observed in filaments A and B. filament C has no boundary line, revealing that the interface 

layer of filament C is much thinner and that some cross-sections have almost no interlayers. 

In Figure 6, the interface lines of filaments A and B  curve, while the boundary in filament C is 

almost straight. This is caused by the viscosity difference between PTT and PET.11,38 When the 

two components meet earlier or the spinning temperature is higher, the viscosity difference is 

larger and a crescent boundary takes shape. The crescent-shape bows over the component with 

smaller intrinsic viscosity ( Figure 6 (d) and (e)). In this case, there is enough time for PTT and 

PET to blend. The diffused and tangled molecular chains stimulate the generation of copolymer 

and recrystallisation. Therefore, the interface layer thickness and interfacial bonding are larger. 

Reversely, when the two components meet late or the temperature is lower, a linear boundary 

forms (Figure 6 (g)).  

   

(a) A (b) B (c) C 

 
 
 
 
 

 
 

(d) A   (e) B (g) C 

Figure 6 Optical microscopy images and diagrams of PTT/PET filaments’ cross-section 

The cross-sectional dimensions in Table 4 show that the average width of filament C is only 

12.12 μm. while the width of filaments A and B are 16.14μm and 17.11μm, respectively. Due to 

the linear boundary line, the width of Filament C is approximately equal to the length of the 

boundary line. Because of the arc-shaped boundary, the boundary length of filaments A and B is 

longer than the width. The shortest and linear boundary line of filament C also demonstrates the 

weaker component bonding of filament C. 
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lisation temperature, followed by PTT. 
The entanglement of PTT and PET 
chains in the interface layer retards the 
crystallisation of PET near and in the in-
terface layer. Therefore, PET far from the 
interface crystallises firstly and works as 
a crystal nucleus. PET near the interface 
layer crystallises on the PET nucleus, and 
recrystallisation is generated due to the 
influence of PTT chains [19]. The crys-
tallisation of PET is slower because 
of its rigid molecular chain. Due to the 
“Z” macromolecule chain, the crystalli-
zation of PTT is a magnitude faster [37] 
and appears unaffected. The production 
of recrystallisation gives expression to 
molecular diffusion and entanglement. 
Meanwhile, the entangled PTT and PET 
molecular chains are interlocked by 
recrystallisation, like transcrystallization 
in composite material. Therefore, recrys-
tallisation can strengthen the binding be-
tween PTT and PET.

The production of recrystallisation of 
filaments A and B is more than that of 
filament C (in Figure 5), bringing more 
physical bonding. With a less covalent 
bond and recrystallisation, the PTT and 
PET components in filament C are com-
bined mainly by the Van der Waals force. 
Consequently, they separated easily by 
the external force in an alkali environ-
ment [4-5].

Morphology 
Morphology of cross-section
Made up of entangled molecules, the 
supermolecular structure and polymer 
density of the interface layer is clearly 
different from those of the PTT and PET 
single component [32]. For instance, the 
interface layer has distinct transparency. 
In Figure 6, a clear interface line can be 
observed in filaments A and B. filament 
C has no boundary line, revealing that 
the interface layer of filament C is much 
thinner and that some cross-sections have 
almost no interlayers.

In Figure 6, the interface lines of fila-
ments A and B curve, while the boundary 
in filament C is almost straight. This is 
caused by the viscosity difference be-
tween PTT and PET [11, 38]. When the 
two components meet earlier or the spin-
ning temperature is higher, the viscosity 
difference is larger and a crescent bound-
ary takes shape. The crescent-shape bows 
over the component with smaller intrin-
sic viscosity (Figure 6.d and 6.e). In this 
case, there is enough time for PTT and 
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PET to blend. The diffused and tangled 
molecular chains stimulate the genera-
tion of copolymer and recrystallisation. 
Therefore, the interface layer thickness 
and interfacial bonding are larger. Re-
versely, when the two components meet 
late or the temperature is lower, a linear 
boundary forms (Figure 6.g). 

The cross-sectional dimensions in Ta-
ble 4 show that the average width of fila-
ment C is only 12.12 μm. while the width 
of filaments A and B are 16.14 μm and 
17.11 μm, respectively. Due to the linear 
boundary line, the width of Filament C is 
approximately equal to the length of the 
boundary line. Because of the arc-shaped 
boundary, the boundary length of fila-
ments A and B is longer than the width. 
The shortest and linear boundary line of 
filament C also demonstrates the weaker 
component bonding of filament C.

Morphology of side view 
Figure 7 shows the cross-sections and 
side views of three PTT/PET filaments. 
The longitudinal grooves of filaments 
A and B are wide and in a circular arc 
form, while that of filament C is in a nar-
row and slit form. These grooves are side 
views of the interface layer. It also proves 
that the interface layer of filament C is 
very thin, which will result in component 
separation under an external force and al-
kali treatment.

	 Conclusions
An interface layer between PTT and PET 
components forms during coextrusion, 
working as a micro blend system. An es-
ter-interchange reaction occurs with the 
generation of copolymer in the interface 
layer. Without sufficient blending, the 
production of copolymer of filament C 
is little but still exists, which provides 
a less chemical bond for the binding of 
components.

The crystallisation of PET in the inter-
face layer is retarded by the entangled 
PTT molecular chains, which causes the 
generation of recrystallisation. The en-
tangled PTT and PET chains are inter-
locked together by recrystallisation. Fil-
ament C has very little recrystallisation 
and less physical interlocking.

Blending time has a great influence on 
the interfacial structure. An arc-shaped 
boundary line forms through coextrusion 
and the interface layer provides a suffi-
cient combination. Conversely, without 

sufficient mixing, component separation 
occurs under the external force and alkali 
treatment, which would be a new method 
for making ultrafine fibers for compati-
ble polymers. 
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