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Abstract
Microporous dibutyrylchitin (DBC) fibres formed by means of a dry-wet method were treat-
ed with aqueous solutions of potassium hydroxide. By applying various parameters of the 
alkaline treatment, fibres can be transformed into fibres from regenerated chitin or even into 
chitosan fibres. In the first stage, with the application of 5% KOH solutions and tempera-
tures ranging from 20 to 90 °C, fibres from regenerated chitin were obtained. The subse-
quent treatment stage with saturated KOH solutions and the temperature range 70 - 140 °C 
resulted in obtaining fibres from chitosan with different deacetylation degrees.Structural 
changes in the fibres occurring in the course of their chemical treatment were analysed us-
ing RAMAN spectroscopy. Raman spectra were next mathematically processed by means of 
GRAMS software within the range 1800 - 820 cm-1 in order to evaluate the changes quan-
titatively. A new method is described for the determination of butyrylation and deacetyla-
tion degrees of dibutyrylchitin, chitin and chitosan. Analysis of the fibres obtained carried 
out by means of RAMAN spectroscopy proves that in the process gradual degradation of 
the polymer chains takes place.

Key words: Raman spectra, dibutyrylchitin fibres, deesterification degree, chitin fibres, 
deacetylation degree.

Thermal stability, which can be analysed 
using  differential scanning calorimetry 
(DSC) and thermal gravimetric analysis 
(TGA) techniques, is a critical factor for 
determining the potential applications of 
chitin and its derivatives [5].

Therefore different physical and chemi-
cal modifications are carried out in order 
to obtain chitin derivatives with  consid-
erably better solubility, maintaining at 
the same time the biological activity of 
chitin [7]. The basic derivative of chitin 
is chitosan, generally produced by alka-
line deacetylation of chitin. It displays 
valuable specific properties such as bio-
degradability, bioactivity, biocompat-
ibility and nontoxicity  [8 - 10]. Chitosan 
is applied to many fields such as medi-
cine and medical dressings applied on 
wounds, scalds and as a solid support for 
medicine to control release, and it also 
acts as hydrogel [11, 12]. 

Etherification is one of the most impor-
tant modifications used to prepare water 
soluble chitin derivatives, containing 
carboxymethylchitin and hydroxypropyl-
chitin [13 - 18]. Dibutyrylchitin (DBC) is 
easily soluble in many solvents like di-
methyl sulfoxide (DMSO), ethyl alcohol 
and dimethylformamide (DMF), and has 
both film and fibre-forming properties 
[17 - 21]. The properties of DBC creates 
the possibility of manufacturing a wide 
assortment of DBC materials suitable 
for medical applications. Investigations 

n Introduction
Chitin (poly-(1-4)-2-acetamido-2-deok-
sy-D-glucopyranose) is a natural poly-
mer formed in a biosynthesis process. 
Like cellulose, chitin is a polysaccharide 
with a ring-structure polymer chain. Chi-
tin is present in the shells of sea crusta-
cea (shrimps, crabs, krill, lobsters). It 
can also be found in insects, as well as 
in some microorganisms and fungi [1, 2]. 
The interest in chitin and its derivatives 
mainly results from the fact that these 
materials possess specific properties, 
such as biocompatibility, bioactivity and 
biodegradability, which makes them use-
ful for biomedical purposes [3]. As a re-
newable material, chitin offers many po-
tential applications in a number of fields, 
ranging from wastewater treatment, cos-
metics, drug delivery, artificial skin, and 
many other novel applications [4].

Chitin is characterised by its molecu-
lar weight and  degree of crystallinity. 
The potential application of chitin is re-
lated to its crystalline structure and ther-
mal properties [3, 5]. Chitin is insoluble 
in water and most organic solvents. It is, 
however, soluble in a few compounds 
such as inorganic acids, highly concen-
trated formic acid and N,N-Dimethy-
lacetamide/lithium chloride (DMAc–
LiCl), hexafluoroacetone or hexafluoro-
2-propanol [6]. However its low solu-
bility makes it difficult to process, and 
thus significantly limits the application 
of chitin.
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of the biological properties of DBC ma-
terials, carried out in vitro and in vivo 
accordingly, showed good biocompat-
ibility. The excellent biomedical proper-
ties of  DBC are confirmed by different 
experimental results which prove that 
it is a biocompatible and biodegradable 
polymer [22 - 31]. 

For example the main technique of anal-
ysis of changes in the chemical structure 
of polymers  uses Fourier Transform In-
fra Red (FTIR). Chitin and chitosan have 
also been studied extensively by Infrared 
(IR) spectroscopy [32 - 37]. 

Characterisation of the chemical struc-
ture of dibutyrylchitin is done by using 
the FTIR technique, reviewed in litera-
ture [18, 26, 38 - 40, 42]. The specific 
chemistry and orientation of the struc-
tures known from Raman spectroscopy.  
Chitin and other derivatives have also 
been studied by Raman  spectroscopy 
[33, 41 - 43, 45 - 48]. The application 
of infrared and  Raman spectroscopy 
for evaluation of structural changes in 
dibutyrylchitin has also been studied [39, 
41]. Solid-state structural changes in the 
resulting chitin fibres were character-
ised by Raman spectroscopy. Changes in 
the deesterification degree  and deacety-
lation degree (DA) were also measured  
[20, 39, 41].

These well-established spectroscopic 
techniques were used within the present 
work in order to comprehensively char-
acterise the structural changes by alkali 
treatment of dibutyrylchitin, chitin  and 
chitosan. This work presents chemical 
changes in fibres occurring in the course 
of their chemical treatment, analysed us-
ing Raman spectroscopy.

n	 Experimental 
Materials 
Materials
Krill chitin – (C8H13O5N)n (Euphau-
sia superba) according to technology 
developed at the Sea Fisheries Insti-
tute in Gdynia, Poland [49]. Chitosan – 
(C6H11O4N)n a commercial product of  
Vanson supplied by Vanson Halo Source, 
USA, deacetylation degree 90% and 
viscometric average molecular weight  
Mν = 346.0 kDa. Dibutyrylchitin (DBC) 
(C14H27O7N)n - (synthesised at the De-
partment of Physical Chemistry of Poly-
mers, Lodz  University of Technology,   
Mw = 160 kDa. DBC, obtained by the es-

Figure 1. Reaction scheme of the hydrolysis of DBC by chitin and for the process deacety-
lation process of regenerated chitin to the chitosan. 
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Figure 2. Set of FT Raman spectra for a) dibutyrylchitin (DBC), b) krill chitin and c) chi-
tosan (DD – 90%) within the range 1800 – 820 cm-1 with the marked characteristic oscil-
lation bands [43 - 46, 48, 50, 51]. 
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terification process with krill chitin using 
butyric anhydride ((CH3CH2CH2CO)2O) 
(Aldrich, USA), and as the catalyst of the 
reaction perchloric acid (70% HClO4) 
(Merck, USA), ethyl alcohol (C2H5OH) 
(POCH, Poland), potassium hydroxide 
(KOH) – (POCH, Poland).

Preparation of fibres
In this study, dibutyrylchitin prepared as 
above was next dissolved in anhydrous 
ethyl alcohol, and a concentrated solu-
tion was prepared. DBC fibres were spun 
using a wet–dry method. The fibres, part-
ly solidified, were then introduced into 
a  water bath and taken up on a bobbin 
device, stretched twice and next dried in 
air [19, 20].

Alkaline treatment of DBC fibres
In the next stage of the investigation, 
DBC fibres were subjected to  alkaline 
treatment with a 5% KOH solution at  
temperatures of 20, 50, 70 and 90 °C, 
which caused their gradual transition to  
regenerated chitin fibres. 

The duration of chitin regeneration from 
DBC at 20, 50, 70 and 90 °C (series A, B, 
C and D, respectively) by means of 5% 
KOH solutions depends on the tempera-
ture of the alkaline treatment. The pro-
cess carried out at  room temperature is 
almost complete after 120 min, while the 
same process at  90 °C takes only 10 min. 
Deacetylation was applied for the fibres 
made of  regenerated chitin and for the 
DBC fibres. Deacetylation reactions were 
carried out in solutions of potassium hy-
droxide saturated at definite tempera-
tures, i.e. at 70 °C – series N C (chitin fi-
bres), at 70 °C – series N D (DBC fibres), 
at 100 °C – series N F (chitin fibres), at 
120 °C – series N G (chitin fibres), and at 
140 °C – series N H (chitin fibres). When 
each reaction was completed, the fibres 
were rinsed several times with ethyl alco-
hol [39, 40].  A possible reaction scheme 
of the hydrolysis of dibutyrylchitin and 
for the process deacetylation of regener-
ated chitin to  chitosan are illustrated in 
Figure 1, showing the dibutyrylchitin 
(DBC) chemical structure after debu-
tyrylation (regenerated chitin) and dea-
cetylation (chitosan).

Analytic methods
Measurements in the range of medium 
FT Raman
All  measurements were carried out us-
ing an FTIR spectrometer of the MAG-

Table 1. Wavenumbers of the bands observed in the FT-Raman spectra of dibutyrylchitin, 
chitin and chitosan bands [43-46, 48, 50, 51]. Samples shown in Figure 2.

Sample Wavenumber from Raman shift, cm-1 Oscillation bands

dibutyrylchitin

1740
1688
1670
1453
1420
1374
1302
1266
1108
1042
1018
935
  896
  867

C-O (esters)
C-O (Amide I)
N-H (Amide I)

C-H (def. asym.)
C-H (def. sym.)
C-N (stretch.)

C-H (def. in plane)
C-H (def. in plane)

C-O-C (ether.)
C-O-C (ring)

C-O (stretch.)
C-H (def. out plane)
C-H (def. out plane)

C-O-C (esters)

krill chitin

1657
1622
1450
1415
1376
1327
1266
1149
1109
1059
1042
  954
  896

C-O (Amide I)
N-H (Amide I)

C-H (def. asym.)
C-H (def. sym.)
C-N (stretch.)

C-H (def. in plane)
C-H (def. in plane)

C-O (stretch.)
C-O-C (ether.)
C-O-C (ring)

C-O (stretch.)
C-H (def. out plane)
C-H (def. out plane)

chitosan

1656
1598
1460
1413
1377
1325
1262
1148
1115
1092
1040
  931
  897

C-O (Amide I)
N-H (Amide I)

C-H (def. asym.)
C-H (def. sym.)
C-N (stretch.)

C-H (def. in plane)
C-H (def. in plane)

C-O (stretch.)
C-O-C (ether.)
C-O-C (ring)

C-O (stretch.)
C-H (def. out plane)
C-H (def. out plane)

NA 860 type, equipped with a FT Raman 
module, a product of NICOLET, USA. 

The following measuring parameters 
were applied: range  –  4000 - 100 cm-1,  
resolution  – 8 cm-1, number of scans  
– 500, source of radiation – NdYag 
1064 nm, energy source –   0.6 W, detec-
tor  – InGaAs, beamsplitter – CaF2 [41].

n	 Results and discussion
In the Raman technique the most inten-
sive bands come from the symmetric 
non-polar oscillators such as  C-C, C=C, 
S-S, C-S [43 - 46, 48, 50, 51]. 

For all the fibre samples under investiga-
tion FT Raman spectra were prepared. To 
analyse the spectra characteristic oscil-
lation bands of the groups for dibutyryl-
chitin, krill chitin and Vanson chitosan 
were determined and next described in 
the spectrum range 1800 - 820 cm-1, pre-
sented in Figure 2.a - 2.c and Table 1. 

In order to carry out a quantitave analysis 
of both the alkaline treatment of DBC fi-
bres transformed into  regenerated chitin 

fibres as well as of the successive stage of 
the treatment leading to chitosan fibres,  
FT Raman spectra distributions were 
made in the range 1800 - 820 cm-1 using   
“GRAMS” software,  by Thermo Scien-
tific. To start  mathematical  processing 
of the spectra, the optimum function de-
scribing Raman bands was selected by 
preparing a distribution of the spectrum 
pattern of sulphur as a Raman standard 
for bands which do not overlap each 
other.

Figure 3 demonstrates the band distribu-
tion at 472cm-1 for a symmetric band, 
whereas Figure 4 shows the band dis-
tribution at 153 cm-1 for an asymmetric 
band.

The band distributions were performed 
using various mathematical functions 
(Pearson VII, Gauss, Lorentz, Log-
Normal, Gauss-Lorentz) included in the 
“GRAMS” software, by Thermo Sci-
entific. As a result of the mathematical 
processing, the band areas calculated 
and the area of the basic band were com-
pared, and the differences  evaluated. In 
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the case of the symmetric bands a sat-
isfactory correlation (4.86%) was ob-
tained using the Log–Normal function, 
whereas the application of the Pearson 
VII function gave the worst correlation 
of 29.21%. For the asymemmetric bands  
a better correlation resulted from the ap-
plication of the Gauss and Gauss-Lorentz 
functions (2.40%) and the worst cor-

relation was noted for the Pearson VII 
(17.72%) and Lorentz (19.25%) func-
tions.

Such an initial mathematical processing 
of the symmetric and asymmetric bands 
for the standard spectrum made it possi-
ble to select mathematical functions ad-
equate to the FT Raman spectra distribu-
tions obtained.

Analysis of the first stage of the alkaline 
treatment of DBC fibres transformed into  
regenerated chitin fibres using Raman 
spectroscopy revealed its efficiency and  
influence on  changes in the conforma-
tion of the polymer chains obtained.

The Raman spectrum of the DBC fibres 
is characterised by an intensive band 
coming from the oscillator C=O of the 
ester group at 1798 cm-1. The band is a 
basic parameter to determine the esterifi-
cation degree of chitin.

In all the samples examined, the amide I 
band can be found with a strongly polar-
ised oscillator C=O as the main constitu-
ent. The band can be considered as being 
without hydrogen interactions, whereas 
in the hydrogen bond it can be treated 
as an oscillator with a big symmetry  
(>C=O···H-O-). The band proportions 
should thus be shifted towards the lower 
energies.

In order to activate Raman emission, it 
is necessary to make the molecular os-
cillator vibrate. Very often  it results in  
temperature growth, which in extreme 
cases can lead to the burning of the sam-
ple. If the temperature of the sample is 
too high, hydrogen bonds can be broken, 
and the maximum emission of the Amide 
I band can be shifted towards higher en-
ergies, characteristic for the free C=O 
groups.

The proportions of all the bands remain 
unchanged, except for  krill chitin, char-
acterised by a high molecular weight and  
high level of ordering. The proportions 
of the bands prove that the deesterifica-
tion reaction in 5% KOH causes no poly-
mer degradation in the range of the tem-
perature and time applied.

Figure 5 shows some examples of 
the Raman spectra distributions made for  
DBC fibres and for  fibres after alkaline 
treatment  at 20 °C in 5% KOH samples 
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Figure 3. Distribution of the Raman band of the Raman shift of sulphur at 472 cm-1 per-
formed. The areas resulting from the band distribution are compared with thathe area of 
the basic band.
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Figure 4. Distribution of the Raman band of the Raman shift of sulphur at 153 cm-1 per-
formed. The areas resulting from the band distribution are compared with thathe area of 
the basic band.

Table 2. Degree of butyrylation values for DBC fibres and  regenerated chitin fibres (series A - obtained from alkaline treatment of DBC 
fibres  at 20 °C, treatment time: A1 – 10 min, A2 – 20 min, A3 – 30 min, A4 – 60 min) obtained by Raman spectra. 

Sample
Alkaline 

treatment, 
min

Raman intensity Spectral 
coefficient -F  

>C=O/-C-N
Degree of 

butyrylation, %
Area of peak
>C=O at 1798 

cm-1

Area of peak
 -C-N at  

1375 cm-1

Spectral 
coefficient -F  

>C=O/-C-N
Degree of 

butyrylation, %>C=O at 
1798 cm-1

-C-N at 
1375 cm-1

DBC - 0.074 0.081 0.9136 100.00 2.64 3.17 0.8320 100.00
A1 10 0.055 0.073 0.7534 82.20 1.90 2.61 0.7280   87.50
A2 20 0.074 0.110 0.6727 73.50 2.47 4.14 0.5980   71.90
A3 30 0.039 0.114 0.3421 37.40 1.25 5.50 0.2271   27.30
A4 60 0.000 0.096 0.000 0.00 0.00 3.19 0.0000     0.00
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Figure 5.a. Sets of FT Raman spectra distributions within the range 1800 – 780 cm-1 of the Raman shift for untreated DBC fibres and for 
the fibres after alkaline treatment at 20 °C in 5% KOH samples: A1 – after 10 min, A2 – after 20 min, A3 – after 30 min, A4 – after 60 min, 
(GRAMS software, by Thermo Scientific). Figure 5.b see page 32.
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Figure 5.b. Sets of FT Raman spectra distributions within the range 1800 – 780 cm-1 of the Raman shift for the fibres after alkaline treat-
ment at 20 °C in 5% KOH samples:  A5 – after 120 min, A6 – after 240 min, A7 – after 480 min, A8 - after 960 min and for krill chitin 
(GRAMS software, by Thermo Scientific).
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using  “GRAMS” software, by Thermo 
Scientific.

Based on the proportions of the band 
areas calculated for the particular oscil-
lators, the course of the deesterification 
process and  changes in the polymer 
conformation were analysed, making it 
possible to calculate the degree of bu-
tyrylation of the DBC fibres subjected to  
alkaline treatment. The results are given 
in Table 2. 

Spectral coefficients for the particu-
lar spectra were determined both from 
the  absorbance and from the area of 
the  –C=O band at 1798 cm-1 in relation 
to the area of the unchanged band -C-N- 
at 1375 cm-1.

The values obtained for the DBC fibres 
were regarded as the standard, with a de-
butyrylation degree equal to 100%. It is 
worth mentioning that the debutyrylation 
degree values calculated from the absorb-
ance and from the band areas are close to 
those values for samples from the initial 

stage of the alkaline treatment. Slight dif-
ferences can be observed after 30 min. of 
the treatment.  After 60 min. of the pro-
cess, both methods of calculations con-
firm the total deesterification of the DBC 
fibres. Band proportions for the -C-O-
C- oscillators in the heterocyclic ring 
and oxygen bridges remain unchanged 
during the alkaline treatment, leading to 
regenerated chitin, which proves that no 
polymer degradation takes place in this 
process. 

In order to increase the accuracy of the 
spectral coefficient determination, it was 
assumed that the sum of the band areas 
and their heights for the -C-N and -C-
O-C- oscillators remains stable. Propor-
tional changes for the -C-H bands were 
calculated in relation to the sum above.

Changes occurring in the remaining 
bands were related to the constant val-
ues above (Equation 1, 2) where, WSi 
- proportionality coefficient of the area 
of the definite band (Si) in relation to the 
sum of areas of C-N (SC-N(~1375  cm-1)),  
C-O-C ether (SC-O-C ether. (~1115 cm-1))  
& C-O-C heterocyclic ring (SC-O-C ring. 
(~1092 cm-1)); Whi - proportionality coef-
ficient of the height of the definite band 
(hi) in relation to the sum of heights of 
C-N (hC-N(~1375 cm-1)), C-O-C ether  
(hC-O-C ether. (~1115 cm-1)), & C-O-C het-
erocyclic ring (hC-O-C ring. (~1092 cm-1)) 
oscillators.

A set of height proportions of   the C-H 
bands vibrating in the ring plane and out-
side it in relation to the sum of the heights 
of the C-H and C-O-C bands is shown in 
Figures 6 and 7.

WSi = Si/(SC-N (~1375 cm-1) + SC-O-C ether. (~1115 cm-1) + SC-O-C ring. (~1092 cm-1))  (1)

Whi = hi/(hC-N(~1375 cm-1) + hC-O-C ether. (~1115 cm-1) + hC-O-C ring. (~1092 cm-1))    (2)

Equation 1 & 2.

Figure 6. Set of proportions of C-H bands heights to the 
sum of C-N and C-O-C bands heights. Vibrations in the ring 
plane.
	
Figure 7. Set of proportions of C-H bands heights to the 
sum of C-N and C-O-C bands heights. Vibrations outside the 
plane.

Figure 8. Time dependence of C-O-C band proportion be-
tween the rings on C-O-C in the ring for N C (deacetylation 
of chitin at 70 °C) and selected samples of the N H series 
(deacetylation of chitin at 140 °C), calculated from the rela-
tions of heights and areas of the bands.
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Figure 9.a. Sets of Raman spectra distributions within the range 1800 – 780 cm-1 of the Raman shift for regenerated chitin fibres (sample 
A8) and for the fibres after deacetylation in saturated KOH at 70 °C, samples: N C2 – after 10 min, N C4 – after 30 min, N C7 – after  
60 min.
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Figure 9.b. Sets of Raman spectra distributions within the range 1800 – 780 cm-1 of the Raman shift for the fibres after deacetylation in 
saturated KOH at 70 °C, samples: N C9 – after 120 min, N C11 – after 180 min, N C13 – after 240 min, and for chitosan (DD - 90%).

It was observed that as a result of the al-
kaline treatment of the DBC fibres 
with 5% KOH at the temperatures ap-
plied, a change in the C-H band propor-
tions    takes place both in the ring plane 
and outside it. The higher the tempera-
tures, the more intense. The proportion 
are changes which finally stabilise.

Under mild conditions of the alkaline 
treatment, the average distance between 

the macromolecules becomes smaller, 
and thus the formation of hydrogen bonds 
between the amide and hydroxyl groups 
is possible. Therefore after the treatment  
stabilization of the supermolecular struc-
ture with a different conformation of 
the polymer chains takes place. 

As mentioned before, the deesterifica-
tion reaction at  temperatures from 20 to 

90 °C with a 5% KOH solution causes no 
degradation of the polymer chains. 

However, polymer degradation occurs in 
the case of chitin deacetylation carried 
out in  saturated KOH solutions at ele-
vated temperatures (at 70, 100, 120 and 
140  °C). The process of chitin deacety-
lation requires more severe conditions, 
which, on the other hand, cause gradual 
degradation of the macromolecules. 
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Figure 10. Sets of Raman spectra distributions within the range 1740 – 820 cm-1 of the Raman shift for regenerated chitin fibres (sample 
A8) and for the fibres after deacetylation in saturated KOH at 140 °C, samples: N H4 – after 60 min, N H7 – after 240 min and for chitosan 
(DD – 90%).

was carried out. A set of the Raman spec-
tra distributions is shown in Figures 9 
(see page 34 & 35 ) and 10.
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proportions is presented in Figure 8 (see 
page 33).
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sented in Table 3. Spectral coefficients 
for the particular spectra were determined. 
As the standard, Vanson chitosan with 
the  determined (by potentiometric titra-
tion) deacetylation degree  was applied. 
The values of the spectral coefficient were 
calculated both from the absorbance and 
from the -C=O band area at 1659  cm-1 
in relation to the - NH band area at  
1626 cm-1. However, the deacetylation de-
grees of the fibres calculated by means of 
the two methods above differ significantly 
from each other, which is probably caused 
by the method of the mathematical treat-
ment of the  Raman spectra applied. Thus 
Raman  spectroscopy creates no possibil-
ity to evaluate the deacetylation degree 
with the accuracy of NIR spectroscopy 
within the range of the wave number from  
10,600 to 5,600 cm-1 [51].

n	 Conclusions
It was found out that in the course of 
the  partial deesterification (debutyryla-
tion) of dibutyrylchitin fibres to the re-
generated chitin fibres no changes in 
the  band proportions of the symmetric 
oscillators for amide and ether groups 
take place either in the ring plane or out-
side it the plane. If the process is carried 
out under mild conditions, no degrada-
tion of the polymer chains is observed.

Transformations of the C-H oscillators 
vibrating both in the ring plane and out-
side itthe plane confirm the changes in 
the polymer chain conformation taking 
place during the deesterification of dibu-
tyrylchitin fibres.

The a analysis of the further deesterifi-
cation and deacetylation of the obtained 
fibres obtained carried out by means of 
RAMAN spectroscopy proves that in 
the  process probably gradual degrada-
tion of the polymer chains probably takes 
place. 

Raman spectroscopy haswas also been 
used to establish differences in the struc-
ture and the degree of substitution of chi-
tin, chitosan and dibutyrylchitin.
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