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Abstract
A literature review relating to problems connected with the evaluation of the fatigue  
strength of materials was carried out concerning appropriate probabilistic models. It was 
found out that fatigue strength could be described by the following distributions: exponen-
tial, Weibull’s, normal, Gumbel’s, Ferecht’s, Reyleight’s, Gamma and log-normal. However, 
for modeling the problems of fatigue strength durability of textile materials, probabilistic 
models based on  Weibull’s theory and those based on the log-normal distribution seem to 
be most useful. The considerations presented also proved that many factors, mainly the kind 
of  material used, the length of fibers in the assembly, the evenness of the thickness of the 
yarn and the system of spinning, influenced the fatigue strength of linear textile articles. 
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density is more complex for any time 
sequence and multidimensional random 
variable X(T1), X(T2), ..., X(Tn)  charac-
terised by n-dimensional density fn(x1, 
T1; x2, T2; ...; xn, Tn) consideration is 
necessary for any time sequence T1, T2, 
..., Tn. An orderly set of one-dimensional 
stochastic processes is called a multidi-
mensional stochastic process. The value 
of a stochastic process expected X(T) can 
be defined by time function:

  (1)

The variance of a stochastic process is 
expressed in Equation 2:

  (2)

The expression (3) is called the self-cor-
relation function of a stochastic process  
X(T) (Equation 3 see page 62):

The self-correlation normalised function 
of a stochastic process X(T) can be ex-
pressed as follows:

because according to formulas (3) & (4):

KX(T, T) = var X(T) = )T(T)(var)TT,( 2
Xδ== XK X        (5)

A self-correlation normalised function 
value is contained in compartment [0,1]. 
The relationship between the two stochas-
tic processes X(T) and Y(T) can be de-
scribed by a mutual correlation function 
presented in Equation 6 (see page 62):

The following expression is called a 
normalised mutual correlation function 
(Equation 7 see page 62).

fatigue strength evaluation of material 
outside the field of textiles. The major-
ity of the distributions mentioned require 
the use of advanced numeral techniques 
and the conduction of examinations on a 
sample of large quantity. Therefore when 
evaluating the fatigue strength of a mate-
rial, in the beginning it must be assumed 
that a used probabilistic model is capable 
of giving information enabling the char-
acterisation of changes occurring during 
the conduction of durability tests. 

The aim of the article is to present proba-
bilistic models for assessment of the fa-
tigue strength of textile materials.

	 Stochastic approximation  
of textile objects

Events which can be classified as sto-
chastic processes X(T, e), [4, 21] sets of 
random variables XT(e) dependent on 
parameter T, belonging to a set of real 
numbers T ∈ (Ta, Tb) take place during 
textile product manufacturing. Stochas-
tic processes also include phenomena 
happening in the course of linear textile 
product destruction in cycle conditions. 
A stochastic process X(T, e) can be de-
scribed as a set of random time functions 
assigned to elementary events e, where 
parameter T usually has a sense of time 
and in the case of fatigue strength evalu-
ation is strictly related to the tension 
cycle (period) T as well as the frequen-
cy f. The probability density f1(x1, T1)  
for process value x1 at the moment T1 is 
one of the stochastic process properties. 
A stochastic process is a random variable 
X(T0, e) for a fixed parameter T = T0. 
In the case of a fixed elementary event  
e = e0 a stochastic process X(T, e0) is a 
time function x(T) determined for T ∈ 
(Ta, Tb) (called stochastic process realisa-
tion). The realisation x(T) of a stochastic 
process X(T, e0) is an analogue of the x 
value, which is taken by the X(e) random 
value for a fixed e = e0. The probability 

n	 Introduction
Resistance examinations are a large group 
of examinations used for the assessment 
of linear textile products. This group of 
examinations includes: static breaking 
assessment, rub resistance assessment as 
well as consideration of rub forces at rub 
barriers. Evaluation of linear textile prod-
ucts’ quality in the aspect of their static 
breaking is insufficient, and in some 
cases a material qualified as technologi-
cally useless in static breaking can fulfill 
technological criteria in changeable load 
conditions. Exclusive use of indicators 
defining only static resistance reflects the 
correctness of the yarn production pro-
cess but do not predict its future useful-
ness in modification processes. The issue 
of resistance and fatigue strength as well 
as the use of statistic and probabilistic 
models is a supplement to examinations 
dealing with static resistance.

In the light of the literature review analy-
sis it can be stated that evaluation of the 
fatigue strength issue is not completely 
recognised. The issue of fatigue strength 
evaluation and preparing adequate proba-
bilistic models is worth a detailed analysis.

A highly statistical character is a charac-
teristic feature of phenomena arising dur-
ing textile product destruction in cyclic 
conditions.

In the classic approach fatigue strength is 
mainly assessed with statistical methods, 
as probabilistic models are rarely used 
due to their extensive mathematical ap-
paratus. Despite this, in subject literature 
devoted to the estimation of statistical 
and fatigue strength outside the field of 
textiles, probabilistic models based on 
the following types of distribution can be 
found: exponential, Weibull’s, normal, 
Gumbel’s, Ferecht’s, Reyleight’s, Gam-
ma, and log-normal. The distributions 
presented are often used for static and 

         
(4)
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As in the case of dependence (4), a nor-
malised mutual correlation function val-
ue is contained in a compartment [0,1].

The dependence or independence of sta-
tistical properties of a stochastic process 
on time is its characteristic feature. Con-
sequently stationary and non-stationary 
stochastic processes can be distinguished. 
In the case of the issue presented, related 
to textile material durability, a stationary 
stochastic process occurs during techno-
logical processes. Thus it can be assumed 
that all multidimensional probability 
densities depend exclusively on the dis-
tance of moments T1, T2, ..., Tn  from 
each other, but do not depend on the mo-
ments’ values. It can also be assumed that 
the statistical properties of a stochastic 
process do not change while moving all 
points T1, T2, ..., Tn along the time axis 
by the same value of T0, meaning that:

fn(x1, T1; x2, T2; ...; xn, Tn) =    
(8)

= fn(x1, T1+T0; x2, T2+T0; ...; xn, Tn+T0)

Analogous to formula (8), a multidimen-
sional stationary process is defined, as-
suming that components of the multidi-
mensional stationary process are related 
to each other in a stationary way. The 
formula above also implies that one-di-
mensional stationary process density can 
be expressed by the following formula:

 f1(x1, T1) = f1(x1, T1 + T0)        (9)

In this case the stationary process density 
does not depend on time at all:

  f1(x1, T1) = f1(x1)           (10)

Two-dimensional stationary process den-
sity is obtained from the following for-
mula:

f2(x1, T1; x2, T2) = 
= fn(x1, T1+T0; x2, T2+T0)   (11)

tionary processes. These assumptions, as 
well as adhering to technological require-
ments, have direct reflection in the quali-
ty of yarn manufactured. On examination 
of spinning processes, the simplified as-
sumption that a class of processes called 
ergodic processes can be found among 
stationary stochastic processes is often 
made, which is mainly sensible in physi-
cal parameter estimation of yarns. A sto-
chastic process X(T) is called an ergodic 
process if the value expected EX(T) of 
the process calculated as the average of 
the set is equal to the average obtained 
after the time:

 dT),T(1lim
2/
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T
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T

T
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for nearly every implementation, thus 
with the probability equal to one, as pre-
sented in Equation 17
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The necessary and sufficient principle of 
ergodicity of a stochastic process is the 
equation:
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Ergodicity occurs if condition KX(t) → 0, 
where |t | → ∞, is fulfilled. The self-cor-
relation function of a stationary process 
X(T) can be calculated on the basis of one 
implementation of the process X(T). In 
this case the self-correlation function of 
a stationary process is an expected value 
of a stochastic process:

Z(T) = [X(T) - mx(T)][X(T + t0) +

- mx(T)] = X0(T)X0(T + t0)     
(20)

where: X0(T) indicates process deviation 
from the standard value (central pro-
cess), and t0 is a constant parameter, out 
of which:

 X0(T) = X(T) - mx(T)         (21)

Process Z(T) is stationary because X(T) 
is stationary. To make the process Z(T) 
ergodic, its self-correlation function 
KZ(t ) should fulfill condition (18).

in this case the stationary process den-
sity f2 depends only on the difference  
T2 - T1 = t, hence

f2(x1, T1; x2, T2) = fn(x1, x2, t)     (12)

Examination of the multidimensional 
densities of stochastic processes is diffi-
cult and arduous to conduct. As a result, 
expected values, variances and correla-
tion functions are often used in practice. 
During the proceedings of putting formu-
las (10) and (11) into formulas (1), (2) 
and (3), the expected value, variance and 
correlation function (13), (14) & (15) are 
obtained:

 (13)

  
(14)

                   

(15)

The expected value and variance of a sto-
chastic process are constant, whereas a 
self-correlation function depends on the 
difference T2 - T1 = t. The relations pre-
sented: (13), (14) & (15) are necessary 
conditions of a stochastic process, but 
are not sufficient. They can be fulfilled 
when beginning with a certain number n 
equation (8) does not occur. Then it can 
be recognised that a process is not a non-
stationary stochastic one.

With stable machinery operation and 
proper resource choice, spinning pro-
cesses can be classified as random sta-

Equations 3, 6 and 7.

(3)

(6)

(7)
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In the case of X(T) with normal devia-
tion, the necessary and sufficient condi-
tion of the process Z(T) ergodicity fulfils 
the equation:
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The sufficient condition of the stationary 
process ergodicity is the equation:
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as well as the condition KX(t ) → 0, where  
|t | → ∞.

Fulfilling the principle of ergodicity Z(T) 
enables the calculation of the self-corre-
lation function KX(t ) of process X(T) ac-
cording to one realisation x(T, e) of pro-
cess X(T). The self-correlation function 
of process X(T) equals:

 
(24)

for two processes it equals:

(25)

x0(T, e) and y0(T + t, e) indicates the re-
alisation of central processes x0(T) and 
y0(T).

	 Review of probabilistic models 
selected for potential use in 
the textile industry

In the case of fatigue strength, the choice 
of appropriate statistical and probabilis-
tic models is not unequivocal . The issues 
presented above can only be reflected in 
technological processes; however, they 
do not fully show phenomena taking 
place during material destruction. A great 
deal of textile products realise their func-
tion in changeable tension conditions, 
which result in disturbances of techno-
logical processes [3, 13, 24, 27], causing 
economic losses. To avoid such events, a 
lot of research on textile material durabil-
ity has also been conducted relating to fi-
bres and yarns [4, 8, 9, 11, 15], as well as 
to physical phenomena occurring in the 
technological process [18, 33]. The exist-
ence of non-homogenous tension fields 
in textile products complicate a lot the 
calculation process of fatigue strength 
determination. The complex structure of 

textile products, their production tech-
nology and the way of loading them 
have an essential impact on the origin of 
non-homologous tension value areas and 
hence on the origin of non-homologous 
fatigue strength degree areas.

Analysing subject literature on fatigue 
strength [14, 15, 17, 32], two main 
groups of methods, taking into account 
the influence of tension non-homoge-
neity on fatigue strength, applicable to 
textile products, with special considera-
tion of yarns, can be distinguished. The 
first group, more common in technical 
sciences, include deterministic methods 
in which fatigue strength is defined by 
values, without determination of devia-
tions. This kind of simplification, which 
means the assumption of the existence 
of deterministic conditions, can be very 
helpful and correct in some conditions. 
Excluding random factors and related 
formalism, it enables the explanation of 
experiment performance planning in the 
simplest way [25].

Experiments that can be carried out in 
random conditions can also be included 
in the plan of experiment in determinis-
tic conditions. They give the possibility 
of model parameter estimation mistake 
assessment for determined random vari-
able variance – measurement conditions, 
if the number of measurements is higher 
than the number of parameters. Since the 
variance is nearly unknown, in the course 
of the experiment a minimum amount of 
measurements is desired. Model param-
eter estimation mistake assessment is 
difficult and usually impossible to con-
duct. The second group is probabilistic 
methods assuming that the material has 
defects of different kinds. The material 
destruction has its origin in the most vul-
nerable to destruction “defect”, whose 
morphology and tension level around the 
“defect” are most likely to develop a rup-
ture (burst). Considering the assumptions 
made, it can be stated that the size of the 
area vulnerable to changeable tensions 
influences the probability of rupture oc-
currence.

	 Conception of the method  
of the weakest link

Probabilistic methods of fatigue strength 
evaluation are based on the idea of “the 
weakest link”. They are useful for de-
scription of phenomena taking place in 
non-homologous materials and materi-
als with changeable tension distribution 

over time. These materials include textile 
products. Fatigue mechanisms which oc-
cur e.g. in yarns depend largely on the re-
source type they have been made of, the 
manufacturing technology and final op-
erations. The construction and structure 
of yarns have a non-homogenous charac-
ter. Yarns which have similar properties 
and are subjected to the same changeable 
loads exhibit fatigue strength distribution 
around the average value. This phenome-
non can be explained by the weakest link 
theory that was originally used to explain 
the so-called scale effect and material 
statistical durability distribution [1, 4, 7].

Assumption of the probability distribu-
tion of the feature examined based on 
experimental data e.g. the amount of 
fatigue cycles preceding destruction at 
a fixed load is a starting point for de-
termining parameters describing fatigue 
strength N. Statistic inference methods of 
fatigue strength estimation can be based 
on knowledge of the distribution form 
of the feature distribution examined and 
are called parametric methods. Graphic 
methods realised by function nets and 
analytic methods are distinguished [2]. 
Parametric methods are more efficient 
than nonparametric ones because they 
need a random sample of a smaller 
amount in order to obtain information on 
the fatigue strength of a material. Choos-
ing the most adequate mathematical 
model for determining fatigue strength 
experimental data, physical aspects of 
the random events examined e.g. dam-
age to the product examined (in this case 
the textile product) should be considered. 
Then, choosing a distribution function of 
rupture (damage) probability during the 
fatigue test, information about the kind of 
damage to which the product is subjected, 
is necessary. The practical usefulness of 
the mathematical models chosen for cer-
tain durability evaluation is different and 
dependant on the recognition degree of 
different aspects [8, 19]. However, [31] 
did not take into account the so-called 
scale effect [1, 7] in their considerations. 
In subject literature devoted to fatigue 
strength estimation, use of the following 
distributions is proposed [5, 17]:
n	 Exponential, used to model sudden 

damage, load problems and fatigue 
strength,

n	 Weibull’s, used to model gradual dam-
age, durability problems, especially 
fatigue strength, as well as serial and 
parallel reliability structures,

n	 Normal, used to model static loads, 
solve problems of durability model-

)[
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ling and model serial reliability struc-
tures,

n	 Gumbel’s, used to model catastrophic 
damage, fatigue strength, load and du-
rability problems, serial and parallel 
reliability structures,

n	Ferecht’s, useful for modelling of cat-
astrophic damage and corrosive wear,

	 Reyleight’s, used to model load prob-
lems,

n	 Gamma, useful for modelling durabil-
ity problems,

n	 Log-normal, used to model fatigue 
strength.

In conclusion, it can be noticed that 
mechanisms taking place in yarn largely 
depend on its structure, which is not ho-
mogenous at a microscopic scale. The 
non-homogeneity of the material has a 
random character and, to some extent, 
implicates the random character of fa-
tigue strength. Samples having the same 
parameters in the quality scale and sub-
jected to the same changeable loads ex-
hibit fatigue strength distribution around 
the average value [13]. The phenomenon 
of random character can be explained by 
“the theory of the weakest link”, which 
was originally used to explain the so 
called effect of scale and statistical dura-
bility distribution of the material durabil-
ity border [1, 7].

The weakest link theory was created in 
the 1920 s by Tippet [26] and Peirce [23]. 
Weibull [28, 29] developed it, presenting 
a distribution of an exponential type, and 
in 1951, the same author [30] showed re-
search results of the tear durability of Bo-
fors’ steel and Indian cotton fibres. This 
publication contributed to popularization 
of the distribution so much, that the name 
Weibull’s distribution was introduced. 
Basic assumptions of the weakest link 
theory in a general approach are shown 
below [1]:
n	 An element, e.g. a constructive ele-

ment, contains different types of sta-
tistically distributed defects,

n	 Fatigue rupture initiation occurrences 
in different links of the element are in-
dependent from each other,

n	 A rupture initiation takes place in a 
certain elementary area (link) of the 
element, which contains the most dan-
gerous defect.

Delahay and Palin-Lic [5] claim that the 
process of material degradation is accel-
erated by the non-homogenous structure 
of the object. Different types of inclu-
sions, contaminations, thin places, thick 

places, dislocations and preferentially 
oriented bands of material structure can 
be classified as defects. Each of the ob-
jects mentioned can constitute the weak-
est place of the material, from which the 
process of destruction begins. Consider-
ing the assumptions made it can be stated 
that a material subjected to a static load 
or an fatigue one is regarded as a serial 
connection of links, in which damage to 
one link can cause the destruction of the 
whole material. During the cyclic load-
ing of a material with the same material 
and load, the most dangerous defect has 
different features resulting in rupture 
(splits) initiation. The probability of a 
rupture arising in the whole element in 
the compartment [0, N] means that rup-
ture initiation will occur in an elementary 
subarea. In fatigue strength calculations 
a material is divided into subareas (i), 
and individual survival probability P(i) is 
calculated for each subarea. The destruc-
tion probability of the whole element is 
determined according to the event inde-
pendence rule:

 ∏
=

−=
pk

i

i
trz PP

1

)(1                (26)

where: kp - amount of all subareas.

Thus the subarea containing the most 
dangerous defect is the weakest link of 
the material. If the element area increases 
the probability of occurrence of a defect 
with rising destruction potential increas-
es. This effect is shown in equation (26), 
where an increase in the subarea amount 

k decreases the product ∏
=
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i

i
trP
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)(  value,

increasing the probability Pz  of destruc-
tion of the material subjected to a load. 
Regarding the material as a continuous 
medium, the subarea size → 0 and their 
amount k → ∞ Delahay, Palin-Lic [5]. 
The assumption of the exponential distri-
bution form leads to the replacing of the 
product in the equation by the summation 
or integration operations (in the case of 
continuous medium) of exponent e,
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Such a form of probability distribution 
of a random variable was proposed by 
Weibull [28], making the distribution 
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level s(i). The probability distribution of 
a material (element) destruction takes the 
form [28]:
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where:
V0 - volume or reference surface of the 
element characterised by the distribution 
described by dependence (27), [28],

g(s) - destruction risk function, whose 
form depends on the material properties 
(x) = 0 for x ≤ 0 and (x) = x for x > 0. 

Weibull proposed a two- and three-pa-
rameter function form g(s), in which su, 
s0, m are, respectively, parameters of the 
shift (often called threshold) as well as 
scale and shape of the distribution (27). 
The author (as above [28]) analysed his 
considerations separately for the destruc-
tion probability distribution of a material 
on its surface (W = A) and for its volume 
(W = V ), in relation to different proper-
ties of the material. Consideration of ma-
terial properties both on its surface and 
in its volume result from an additional 
mechanical preparation of its surface and 
the fact that the surface is influenced by 
different external factors, such as the cli-
mate of the environment, including tem-
perature, pressure, moisture, etc. (which 
do not fully affect the material interior). 
If degradation, rupture and, in conse-
quence, the destruction of the material 
arise on its surface (W = A) as well as in 
its volume (W = V ), the probability Pz of 
destruction can be described by the func-
tion of two probabilities Ptr(A) and Ptr(V) 
product [22]:

  
(28)

where gA(s), gV(s) are, respectively, 
functions describing probability distribu-
tion for the material volume Ptr(V) and 
its surface Ptr(A) separately.

In the case of the fatigue strength prob-
ability distribution of material destruc-
tion is the binomial function Pz = f(sa, N) 
of tension amplitude sa, which indicates 
the number of cycles N preceding the ele-
ment destruction. This form was present-
ed by Weibull [30] and the idea devel-
oped by Delahay and Palin-Lic [5], but 
their research considered Pz = f(sa, N) 
function type, approximately equal to 
the fatigue border level, determination, 

tr

tr

tr

tr tr tr

tr
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which means they were based on the is-
sue of whether the element subjected to 
a load would be destroyed or not with-
out a number of load cycle analyses. 
The distributions of rupture presented 
and the destruction initiation probability 
are based on a two- and three-parameter 
Weibull distribution, which was general-
ly used for fatigue strength assessment in 
the aspect of the material durability of a 
temporary border. The weakest link the-
ory presented by Weibull involved brittle 
materials characterised by a lack of plas-
tic deformation occurrence. Weibull [30] 
analysed the quasi-statistical durability 
of materials, in which the destruction of 
an element was defined as the total split 
of the material, and the arising of one 
rupture was followed by the destruction 
of the whole material. In this case the hy-
pothesis of the independence of ruptures 
causing the simultaneous destruction of 
the material in consecutive links (ele-
mentary areas of the material) is fulfilled. 
However, in the case of changeable loads 
in the range of any number of cycles, the 
hypothesis of the independence of rup-
tures in elementary links presented, any 
of which can lead to material destruction, 
has some restrictions. Material destruc-
tion occurs when a rupture of defined 
length appears. The destruction mecha-
nism of yarn made by binding randomly 
located fibres together was described in 
the publication [8], where the destruction 
process is dependent on friction forces 
and cohesion. During yarn stretching in 
any section, fibre segments draw out and 
are held by the smallest friction force.

Under stretching elongation increases. 
Fibres located in the smallest transverse 
section break. Following these assump-
tions, it can be stated that total material 
destruction should be understood as the 
total split of its elements. This phenom-
enon was dealt with by Liu, Choi and Li 
[20], who made an analysis based on the 
fibres discrete modelling rule, in which 
yarn is considered as a stream of a great 
deal of discrete bounds of chains. Fibre 
movement during deformation and their 
final locations are dependent on the length 
of chains of the fibre stream. The calcu-
lation method used by Liu, Choi and Li 
[20] considered non-linear fibre behavior 
at a large tension. The theoretical models 
prepared enabled accurate prediction of 
yarn behavior during the deformation. 
In order to determine if the material ex-
amined was destroyed, it is sufficient to 
observe the sample surface, e.g. with a 
microscope, or detect a decrease in the 

material rigidity (e.g. for bending), as 
shown by Karolczuk and Macha [14-
15]. Analysing the assumptions of the 
weakest link theory mentioned, it can 
be stated that the theory can be used in 
the range of any amount of cycles if the 
rupture length defining material destruc-
tion is achieved in the period dominated 
by the initiation mechanism, in which 
there is no clear interpretation between 
the micro-ruptures. Plastic deformations 
cause a slowdown in micro-rupture and 
fatigue tear development. In this case a 
too long rupture would be achieved in the 
period of tear propagation. A propagating 
fissure extends on consecutive links, de-
stroying the possibility of rupture origin 
at these points and hence mitigating the 
links independence theory of Karolczuk 
and Macha [14, 15]. In conclusion, the 
weakest link theory can be used in any 
range of cycle amount if the rupture 
length defining the destruction of a mate-
rial is achieved in the dominating rupture 
initiation mechanism. In the weakest link 
theory, use of another distribution, e.g. 
normal distribution, causes big problems 
in the aspect of calculation, namely the 
destruction probability Pz of an element 
having homogenous tension distribution  
seq based on normal distribution:

    (29)

where su and sg are parameters of nor-
mal distribution.

For elements of non-homogenous ten-
sion distribution seq, they should be di-
vided into links. For every i-th link, the 
survival probability Ptr(i), from which the 

total probability ∏
=

pk

i

i
trP

1

)(  can be obtained, 

should be determined. As men-
tioned above, each link is charac-
terised by a certain feature - W(i)  

(A(i) = W(i) or A(i) = W(i)), which impacts 
the probability – Ptr(i) - scale effect [1, 
7], and the total probability must consid-
er the sum of these properties. Because 
of this, the probability must take an ex-
ponential form, where the exponent is 
replaced by the sum after multiplication 
of individual probabilities. In order to 
maintain this form, equation (29) should 
be changed in the following way:

              (30)

subsequently, y is determined:

, (31)

finally, the equation below is obtained:

  (32)

Such a form can be used to determine the 
individual probability Ptr(i) , considering 
the scale effect:

    (33)

If a continuous tension distribution seq is 
assumed, the total probability of element 
destruction can be determined: 

 (34)

The equation presented regards the de-
struction probability of the element of 
non-homogenous equivalent tension field 
seq, with the use of normal distribution. 
The use of dependence (34) in fatigue 
strength calculation would require the 
conduction of the numeral integration 
process for each link (i) after equiva-
lent tensions and subsequent repeated 
integration on the surface (W = A) or in 
the volume (W = V) of the element. For 
these reasons, normal distribution is not 
often used in fatigue strength calculation 
with probabilistic methods. Normal dis-
tribution is particularly important in the 
theories of communication, estimation 
and control. Thus it is a reasonable ap-
proximation of probabilistic properties 
observed for many physical systems.

As has been already mentioned, exami-
nation of a sum of many small, random 
factors – consideration of a phenomenon 
being the effect of the multiplicative 
mechanism impact on many such factors 
– was the genesis of normal distribution 
[7]. Assuming that quantity Yn after the 
n-th event is equal the product of the Yn-1 
- quantity before the event and random 
factor - Wn, and generalising, the follow-
ing result is obtained, as given by Benja-
min and Cornell [2]:

Yn = Yn-1Wn = Yn-2Wn-1Wn = ... =
= Y0W1W2...Wn               

(35)
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Many physical systems can be charac-
terised with use of similar mechanisms, 
causing that an increase in the impulse 
response of the Yn - Yn-1 system subject-
ed to a random impulse at the Zn entrance 
is proportional to the current value of the 
response Yn-1. Finally a description of 
the phenomenon considered can be ex-
pressed in the following way:

 Yn - Yn-1 - ZnYn-1            

 (36)Yn = Yn-1(1 + Zn) = 
= Yn-2(1 + Zn-1) (1 + Zn) = 

= Y0(1 + Z1) (1 + Z2) ... (1 + Zn)

Substituting the expression Wi = 1 + Zi 
into formula (36), it can be stated that the 
random variable Yn has the same multi-
plicative form as the variable discussed 
above. This model can be used to charac-
terise the mechanisms of material exist-
ence origin [6]. The internal tension after 
n-cycles is equal to:

 Yn = g(Yn-1)Wn                   (37)

In this expression, Wn indicates the inter-
nal tension of the n-th load, undergoing 
changes due to internal differences in 
the material at the macroscopic level. If  
cn-1(Yn) is considered as the first approxi-
mation of g(Yn-1), the following equation 
is obtained:

 Yn = W1W2...Wn              (38)

In the cases presented above, random 
variable Y is a product of a large amount 
of other variables, of which each one is 
difficult to exam and describe if consid-
ered separately. However, the distribu-
tion of variable Y can be recognised. To 
achieve it, both sides of equation (38) are 
logarithmed, giving:

lnYn = lnY0 + lnW1 + lnW2 ...+

 + lnWn                   
(39)

Since quantities Wi are random variables, 
their functions lnWi are also random 
variables. Considering the central border 
theorem, a hypothesis can be made that 
the sum of a certain number of these vari-
ables has approximately normal distribu-
tion. Thus it is assumed that lnY under-
goes normal distribution:

 X = lnY                      (40)

Assuming that X has normal distribution, 
the Y distribution variable is determined 
in the following way.

Random variable Y, whose logarithm 
undergoes normal distribution, can be 
regarded as a variable of logarithmic-

normal or logarithmic distribution. In the 
case of mutually unequivocal transfor-
mation, the dependent variable density 
function has the following form:

   (42)

in which

Y = g(X) = ex, X = g-1(Y) = lnY, 

,

where X has normal distribution with the 
density function:
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 -∞ ≤ x ≤ ∞                 (43)

Hence:

  y ≥ 0                       (44)

The random variable Y has log-normal 
distribution if its logarithm X under-
goes normal distribution. Compartment  
(0; +∝) is a set of Y values, whereas  
X ∈ (-∝; +∝). If Y = 1 and X = 0 but if  
Y > 1, quantity X acquires positive val-
ues.

In compartment 0 ≤ Y ≤ 1, variable X ac-
quire values (-∝; 0), because a logarithm 
contained between zero and one, whose 
basis exceeds one, is negative. Variable 
Y cannot gain negative values, as a loga-
rithm of negative values is not defined 
[17]. Numeric calculations aimed at de-
termining the form of this distribution 
are not complicated and can be used to 
show material fatigue strength statistics. 
Applying this type of distribution does 
not require many measurements, which 
is important in exhaustion examina-
tions. The distributions described above 
are largely applied for static and fatigue 
strength assessment of materials outside 
of textiles. A part of these distributions 
describing the phenomena requires the 
application of advanced numeral tech-
niques and conduction of examinations 
on samples of large quantity. Hence dur-
ing material fatigue strength evaluation, 
in the beginning the assumption should 
be made that the probabilistic model ap-
plied is able to give information on char-
acteristics of changes occurring during 

durability tests. Fatigue strength is the 
product durability determined in specific 
load and deformation conditions. Many 
factors impact this durability; however, 
it must be noted that knowledge of phe-
nomena taking place during the action of 
forces at static stretch should be the basis 
of theoretical considerations.

n	 Summary
The considerations presented prove that 
a lot of factors, mainly the kind of re-
source, fibre length in the stream, uni-
formity of yarn thickness and the spin-
ning system, impact the fatigue strength 
of linear products. It is also influenced by 
the curve number [5]. When this number 
increases, the fatigue strength rises si-
multaneously (of course, only to a certain 
moment) [12]. These authors presented 
models describing the fatigue strength 
of polyester texture yarns and obtained 
fatigue curves consistent with theoreti-
cal ones. Probabilistic models can be also 
applied to fatigue strength estimation of 
cotton smooth yarns and flame-like fancy 
yarns [5].

n	 Conclusions
On the basis of the literature review con-
ducted and the author’s own considera-
tions it can be stated that:
1.	 Making use of indexes defining only 

strength proprieties can only apply to 
characterising the correctness of the 
technological process. However, it 
does not provide a full prognosis of 
usefulness in real conditions of use.

2.	 The lack of applying tools helping to 
design and predict the behavior of a 
given material in conditions of use can 
cause the generation of inevitable mis-
takes at the stage of their application.

3.	 Applying probabilistic methods based 
on the conception of “the weakest 
link” is a valuable supplement to de-
signing textile materials.

4.	 The probabilistic models presented, 
with special regard to Gamma distri-
butions and Weibull’s distributions, 
are suitable for the description of phe-
nomena occuring in materials with 
heterogeneous and changeable in time 
distributions of stresses, which in-
clude textile articles. 
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