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Abstract
The heat transfer of different fabrics was investigated numerically in the cabin of an aircraft. 
The discrete ordinate (DO) radiation model was adopted to describe the solar radiation 
through the cabin window and the fabric’s reflection. The conjugate heat transfer between 
the air flow and the seat fabric was included to study the influence of the textile type and 
fabric thickness. Some important parameters such as the temperature, radiative heat flux, 
and heat transfer coefficient on the fabric surface were evaluated. The results showed that 
both altering of the textile type and thickness will bring about the variation of temperature on 
the cushion surface. The carbon fibre yarn seat and thinner padding fabric provide a much 
more enjoyable environment than others. The air circulation in the cabin can improves the 
thermal environment to some degree.
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the environment and generate a reasona-
ble thermal microenvironment in the air-
craft cabin. 

Many numerical and experimental stud-
ies have been carried out on the heat and 
mass transfer involved in the internal 
fluid flow in aircraft cabins. Hatch [3] 
argued that fabric structural features, not 
component fibres, are the most important 
controllers of thermal dissipation. Bhat-
tacharjee [4] studied the heat transfer 
coefficient of fabric under natural and 
force heat convection numerically, and 
found that the values from numerical 
simulation had good agreement with the 
experimental data. Günther et al. [5] in-
vestigated the airflow in an aircraft cabin 
using a combination of numerical sim-
ulation and experimentation by particle 
image velocimetry (PIV). Kühn et al. [6] 
discussed the forced and mixed convec-
tion as well as the received temperature 
field in the cabin mock-up of a passen-
ger aircraft using PIV. Hu [7] studied 
the heat transfer in an aircraft cabin in 
various inlet conditions. But he consid-
ered the thermal radiation along the solid 
walls in the cabin as negligible. Maier 
[8] analysed the thermal comfort of ceil-
ing-based cabin displacement ventilation 
and argued that more homogeneous cab-
in air flow was found in the mixture of 
the cabin displacement ventilation and 
ceiling-based cabin displacement venti-
lation methods. Khalil [9] considered the 
airflow and airborne pathogen transport 
in aircraft cabins. 

As noted above, the exchange of heat 
in an aircraft cabin follows a distinct 

Nomenclature
Q	 heat flux on vehicle surface
P	 static pressure
Ma	 Mach number
T	 temperature
Twall	temperature on wall surface
T∞	 inflow temperature
Nu	 Nusselt numbers
ϑ	 thermal capacitance 
K	 thermal conductivity
L	 reference length 
H	 fabric thickness 
v∞	 inflow velocity
ρ	 bulk density
Cp	 specific heat at constant pressure
St	 dimensionless heat flux coefficient 
Ip	 equivalent emission of the particles
κp	 equivalent absorption coefficient
γp	 equivalent scattering coefficient
Ni	 number density
εpi	 emissivity
di	 particle diameter
Tpi	 particle temperature
Api	 projected area
αpi	 particle scattering factor

	 Introduction
The development of science and technol-
ogy has brought about higher demands in 
flight comfort. One of the important parts 
of flight comfort is the individual seat 
climate, which may informally be called 
“thermal comfort”. The thermal comfort 
of passengers in the cabin is related to 
relevant boundary conditions, such as the 
inlet flow, solar radiation and heat dissi-
pation capacity of the cabin seat [1, 2]. 
As such, the material and thickness of the 
seat fabric need to be sensitive enough to 

phenomenon of simultaneous conduc-
tion, convection, and radiation. The so-
lar radiation and conjugate heat transfer 
through the fabric is difficult to model 
as the mechanism is very complex and 
there is limited research work in this area 
[10, 11]. With the purpose of investigat-
ing the natural and forced convection as 
well as solar radiation in a cabin, and 
studying the influence of textile type 
and fabric thickness, the computational 
fluid dynamics (CFD) method coupled 
with the discrete ordinate (DO) radiation 
model is used to predict the heat transfer 
and temperature distribution in an air-
craft cabin. The main objectives of the 
present study are (1) the heat transfer and 
temperature distribution property and its 
mechanism, (2) visualisation of the cabin 
air flow because of forced air circulation 
and natural convection due to buoyancy 
effects, and (3) the influence of the seat 
fabric and thickness.

	 Physical model and numerical 
method

Heat transfer phenomenon in aircraft 
cabin
In real conditions, the cabin–fabric–en-
vironment system under heat convec-
tion and radiation is very complicated. 
The typical solar radiation and heat 
transfer mechanism in an air cabin is de-
scribed in Figure 1 approximately. When 
an aircraft cruises at high attitude, solar 
radiation becomes a fierce problem that 
needs to be considered. When solar rays 
pass through the cabin glass porthole 
at an inclined angle, the solar radiation 
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reaches the cabin seat, and radiative 
heat transfer occurs between the airflow 
and  seat fabric. In the process of light-
ray propagation, a part of the light radiat-
ing to the seat is absorbed by the fabric, 
and another part is reflected to the air. 
At the same time, conductive heat trans-
fer occurs between the heated seat and 
cooling air, and forced convective heat 
transfer occurs due to the air conditioner 
as well.

Physical modelling and grid 
generation
A steady numerical investigation was 
carried out on a three dimensional model 
of an aircraft cabin section. The transver-
sal section of the aircraft geometric mod-
el is shown in Figure 2.a. It was extruded 
by 2150 mm along the longitudinal axis 
and 1775 mm along the horizontal axis. 
ANSYS ICEM-CFD was used to obtain 
a three-dimensional tetrahedral mesh. To 

solve the near-wall heat flux correctly, 
the viscous effects at the wall must be 
considered. The normal grid spacing near 
the surface is particularly small to cap-
ture the detailed boundary layer. A grid 
independence analysis was performed 
and, for this purpose, different grids of 
0.9 million (coarse), 1.5 million (moder-
ate) and 2.0 million (refined) were tested 
[12]. The first grid spacing from the wall 
was chosen as 1×10-5 m to satisfy the y+ 
criteria [13]. The y+ over the entire wall 
surface is kept in the range of 0.8 to 1.2 
on the cabin and fabric surface. Under 
this situation, the mesh that introduces 
acceptable errors, with respect to the re-
fined grid tested, was selected to ensure 
accuracy of the computational results.

Governing equations and numerical 
procedure
The flow inside an aircraft cabin can be 
characterised as turbulent, weakly com-

pressible flow containing both forced 
convection due to the air conditioning 
system, natural convection due to buoy-
ancy and heat radiation due to solar ra-
diation. This flow is modelled by the 
compressible Reynolds-averaged Na-
vier-Stokes (RANS) equations, which 
are closed by the Realizable k-ɛ model 
[14, 15]. The conjugate heat transfer be-
tween the solid seat wall and the air flow 
is considered. The aluminum and air gas 
are identified as solid and fluid groups, 
respectively. In this situation, one equa-
tion set defines the equations of the fluid 
motion and another will define the equa-
tion for the thermal conduction in the 
solid [16]:

2.2 Physical modelling and grid generation 
A steady numerical investigation was carried out on a three dimensional model of an aircraft 

cabin section. The transversal section of the aircraft geometric model is shown in Figure 2 (a). It 
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ANSYS ICEM-CFD was used to obtain a three-dimensional tetrahedral mesh. To solve the 
near-wall heat flux correctly, the viscous effects at the wall must be considered. The normal grid 
spacing near the surface is particularly small to capture the detailed boundary layer. A grid 
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kept in the range of 0.8 to 1.2 on the cabin and fabric surface. Under this situation, the mesh that 
introduces acceptable errors, with respect to the refined grid tested, was selected to ensure 
accuracy of the computational results. 

(a) Geometry model and boundary conditions        (b) Fluid zone mesh 

Figure 2. Geometry model, boundary conditions and tetrahedral mesh 

2.3 Governing equations and numerical procedure
The flow inside an aircraft cabin can be characterised as turbulent, weakly compressible flow 

containing both forced convection due to the air conditioning system, natural convection due to 
buoyancy and heat radiation due to solar radiation. This flow is modelled by the compressible 
Reynolds-averaged Navier-Stokes (RANS) equations, which are closed by the Realizable k-ɛ
model [14, 15]. The conjugate heat transfer between the solid seat wall and the air flow is 
considered. The aluminum and air gas are identified as solid and fluid groups, respectively. In this 
situation, one equation set defines the equations of the fluid motion and another will define the 
equation for the thermal conduction in the solid [16]: 
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Where,  represents the thermal capacitance and K - the thermal conductivity of the solid 
medium. They are 2427621kg/(ms2K) and 237.42W/(mK) at a temperature of 293K for pure 
aluminum. The heat exchange through radiation inside an aircraft cabin is governed by the 
radiative heat transfer equation. The radiative transfer equation (RTE) is integrated into each 
special finite volume element and finite solid angle element [17, 18]. The DO radiation model is 
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Where, f is the forward scattering fraction, δ the Dirac delta function, and Φ* is the base phase 
function, which can be a constant or a linear phase function, as described in Eq. 5.
The first order differential term in RTE requires one boundary condition at the surface from which 
the radiation emanates. For a diffusely emitting and reflecting opaque enclosure, the intensity at  
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For opaque surfaces, the reflectance =1-  . In this paper, the emissivity and reflectance of the 

wall are 1.0 and 0. For the conjugate heat transfer of seats, an emissivity of 0.9 and a reflectance 
of 0.1 are used.   

A system of governing equations, subject to their appropriate boundary conditions, was 
successfully solved by using the finite volume method. The equations are discretised in space by a 
second-order, cell-centered, finite-volume scheme for the basic flow equations. Computational 
analysis was performed by employing the commercial software CFD++ ver.14.1. The Courant 
number is set to less than 1 in order to ensure stability. Next, it can be increased to reduce the 
calculation time. The coupled-solver variable under-relaxation factor is set to 0.25. The 
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Figure 1. Schematic of heat conduction, convection and radiation phenomenon.

Figure 2. Geometry model, boundary conditions and tetrahedral mesh: a) geometry model 
and boundary conditions, b) fluid zone mesh.

numerical simulation and experimentation by particle image velocimetry (PIV). Kühn et al. [6] 
discussed the forced and mixed convection as well as the received temperature field in the cabin 
mock-up of a passenger aircraft using PIV. Hu [7] studied the heat transfer in an aircraft cabin in 
various inlet conditions. But he considered the thermal radiation along the solid walls in the cabin 
as negligible. Maier [8] analysed the thermal comfort of  ceiling-based cabin displacement 
ventilation and argued that more homogeneous cabin air flow was found in the mixture of the 
cabin displacement ventilation and ceiling-based cabin displacement ventilation methods. Khalil 
[9] considered the airflow and airborne pathogen transport in aircraft cabins.  

As noted above, the exchange of heat in an aircraft cabin follows a distinct phenomenon of 
simultaneous conduction, convection, and radiation. The solar radiation and conjugate heat 
transfer through the fabric is difficult to model as the mechanism is very complex and there is 
limited research work in this area [10, 11]. With the purpose of investigating the natural and forced 
convection as well as solar radiation in a cabin, and studying the influence of textile type and 
fabric thickness, the computational fluid dynamics (CFD) method coupled with the discrete 
ordinate (DO) radiation model is used to predict the heat transfer and temperature distribution in 
an aircraft cabin. The main objectives of the present study are (1) the heat transfer and temperature 
distribution property and its mechanism, (2) visualisation of the cabin air flow because of forced 
air circulation and natural convection due to buoyancy effects, and (3) the influence of the seat 
fabric and thickness. 
2. Physical model and numerical method 

2.1 Heat transfer phenomenon in aircraft cabin 
In real conditions, the cabin–fabric–environment system under heat convection and radiation is 

very complicated. The typical solar radiation and heat transfer mechanism in an air cabin is 
described in Figure 1 approximately. When an aircraft cruises at  high attitude,  solar 
radiation becomes a fierce problem that needs to be considered. When  solar rays pass through 
the cabin glass porthole at an inclined angle, the solar radiation reaches the cabin seat, and  
radiative heat transfer occurs between the airflow and  seat fabric. In the process of 
light-ray propagation, a part of the light radiating to the seat is absorbed by the fabric, and 
another part is reflected to the air. At the same time,  conductive heat transfer occurs between the 
heated seat and cooling air, and  forced convective heat transfer occurs due to the air conditioner 
as well. 
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Figure 2. Geometry model, boundary conditions and tetrahedral mesh 
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buoyancy and heat radiation due to solar radiation. This flow is modelled by the compressible 
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Where,  represents the thermal capacitance and K - the thermal conductivity of the solid 
medium. They are 2427621kg/(ms2K) and 237.42W/(mK) at a temperature of 293K for pure 
aluminum. The heat exchange through radiation inside an aircraft cabin is governed by the 
radiative heat transfer equation. The radiative transfer equation (RTE) is integrated into each 
special finite volume element and finite solid angle element [17, 18]. The DO radiation model is 
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employed here, which can include the effects of the particles on radiation. This particular model, 
which is often referred to as the finite volume radiation transfer method, is a variation of the 
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Where, f is the forward scattering fraction, δ the Dirac delta function, and Φ* is the base phase 
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For opaque surfaces, the reflectance =1-  . In this paper, the emissivity and reflectance of the 

wall are 1.0 and 0. For the conjugate heat transfer of seats, an emissivity of 0.9 and a reflectance 
of 0.1 are used.   

A system of governing equations, subject to their appropriate boundary conditions, was 
successfully solved by using the finite volume method. The equations are discretised in space by a 
second-order, cell-centered, finite-volume scheme for the basic flow equations. Computational 
analysis was performed by employing the commercial software CFD++ ver.14.1. The Courant 
number is set to less than 1 in order to ensure stability. Next, it can be increased to reduce the 
calculation time. The coupled-solver variable under-relaxation factor is set to 0.25. The 
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tion, δ the Dirac delta function, and Φ* 
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For opaque surfaces, the reflectance 
χ = 1 – ε. In this paper, the emissivity 
and reflectance of the wall are 1.0 and 0. 
For the conjugate heat transfer of seats, 
an emissivity of 0.9 and a reflectance of 
0.1 are used. 

A system of governing equations, subject 
to their appropriate boundary conditions, 
was successfully solved by using the fi-
nite volume method. The equations are 
discretised in space by a second-order, 
cell-centered, finite-volume scheme for 
the basic flow equations. Computational 
analysis was performed by employing the 
commercial software CFD++ ver.14.1. 
The Courant number is set to less than 1 
in order to ensure stability. Next, it can be 
increased to reduce the calculation time. 
The coupled-solver variable under-relax-
ation factor is set to 0.25. The conver-
gence criterion is that the residual varia-
tions of the mass, momentum, and energy 
conservation equations become less than 
10-4 [19]. The solution was obtained on 
an intel CORE i7 with eight 64 bit pro-
cessors of 2.60 GHz each and 16 GB of 
RAM.

Boundary and initial conditions 
The air inlet is based on boundary con-
ditions, which assume an air inlet speed 
of 0.5 m/s, and the inlet temperature is 

293 K. Set the base pressure level to 
7.9×104 Pa, which corresponds to air-
craft cabin pressure at cruise conditions. 
The gravitational acceleration vector is 
-9.81 m/s2 for the gravity source, includ-
ing the buoyancy effects. The bulk densi-
ty is set to 0.9388 kg/(m3). The solar rays 
enter into the cabin through the window 
positioned next to the passenger’s shoul-
der, inclined at 45° to the vertical and 
horizontal. Hence, the window is set to 
be the radiative wall with constant prop-
erties and solar. The solar heat flux is 
500 kg/s3 and the solar direction (-0.707, 
-0.707, -0.707).

All boundaries except for the window 
are treated as a radiative wall with con-
stant properties of the boundary condi-
tion. The solid walls of the floor, ceiling, 
and side wall in the aircraft cabin are all 
set to an isothermal-constant tempera-
ture of 297 K under non-slip conditions. 
The seat fabrics are treated as interfaces 
between the solid and fluid, and are set 
to be a conjugate heat transfer-fluid/solid 
with a wall function. The thermal con-
ductivity and thickness of the seat are 
variable for different fabric. 

Validation of numerical methods
The heat transfer of a two dimension 
model of natural convection and radi-
ation in a square enclosure is used to 
validate the numerical method [20, 21]. 

Figure. 3 Natural convection and radiation 
in a square enclosure.

Table 1. Boundary conditions.

Gravitational constant g 9.81 m/s2

Inflow velocity v∞ 0.5 m/s
Inflow temperature T∞ 293 K
Static pressure p 79000  Pa
Bulk density ρ 0.9388 kg/(m3)
Specific heat at constant pressure Cp 1005 J/(kg.K)
Solar heat flux Qsolar 500 kg/s3

Table 2. Dimensionless average heat fluxes.

Method
Yucel [19] CFD

Total Radiation Total Radiation
Nonradiating 13.76 0.00 13.69 0.00

DO radiation model 39.45 31.77 38.86 30.97

Table 3. Calculation conditions with different fabric materials and thicknesses.

Materials Thermal conductivity,
W·m–1·K–1

Thickness, 
m

Specifc heat,
J·kg–1·K–1

Density,
kg·m–3

Case 1 Polar fleece 0.028 0.001 1340 159.17
Case 2 Cotton and foaming 0.10 0.001 1220 364.42
Case 3 Carbon fibre yarn 0.528 0.001 1318 1789.9
Case 4 Cotton and foaming 0.10 0.007 1220 364.42
Case 5 Cotton and foaming 0.10 0.015 1220 364.42

The height and width of the enclosure is 
1000 mm. The top and bottom walls are 
adiabatic. The left and right walls are 
kept at a constant temperature of 200 K 
and 400 K, respectively, as displayed in 
Figure 3. 

The wall heat fluxes are demonstrated 
in terms of a nondimensionalised coef-
ficient (Nusselt number) [21], defined as number) [21], defined as  

 = / ( )wallNu Q L k T T                               (4) 

The Nusselt numbers on the right boundary were calculated for all cases and are compared with 
the reference file. As shown in Table 2, the numerical method used here can describe the 
convective and radiative heat flux accurately. Thus, it is satisfactory to carry out the following 
investigations.  

Table 2. Dimensionless average heat fluxes

Method
Yucel [19] CFD

Total Radiation Total Radiation

Nonradiating 13.76 0.00 13.69 0.00

DO radiation model 39.45 31.77 38.86 30.97

3. Results and discussions
In order to simulate different conditions of the cabin–fabric–environment, five kinds of 

simulation were carried out. The seat padding was simulated with three kinds of textiles [11, 22] 
of different thickness, as in Table 3. 

Table 3. Calculation conditions with different fabric materials and thicknesses

Materials
Thermal conductivity

(W·m–1·K–1)
Thickness

(m)
Specifc heat
(J·kg–1·K–1)

Density
(kg·m–3)

Case 1 Polar fleece 0.028 0.001 1340 159.17

Case 2 Cotton and foaming 0.10 0.001 1220 364.42

Case 3 Carbon fibre yarn 0.528 0.001 1318 1789.9

Case 4 Cotton and foaming 0.10 0.007 1220 364.42

Case 5 Cotton and foaming 0.10 0.015 1220 364.42

3.1 Temperature and heat transfer distribution 
To clarify the characteristic features of the thermal seat climate, the flow parameter 

distribution results will be explained in detail in the following paragraphs. Table 4 gives the peak 
value of the temperature and heat flux on the surface of cabin seats. When considering cases 1, 2 
and 3, we can observe that the peak temperature and heat flux vary with the changing of seat 
materials. The maximum temperature on the seat is 304.45K and the peak value of radiative heat 
flux is 214.52W/m2 when the fabric is polar fleece. The peak of the temperature decreases by 
about 1.5% and the heat flux increases by 6.9% when changing to cotton and foaming. These peak 
values continue to change by about -1.9% and 9.6% when changing to carbon fibre yarn. 

Table 4. Peak value of temperature and heat flux
Temperature on seats

(K)
Radiative heat flux on seats

(W/m2)

Case 1 304.45 214.52

Case 2 299.98 229. 31

Case 3 298.58 235.19

Case 4 312.05 197.54

  (8)

The Nusselt numbers on the right bound-
ary were calculated for all cases and are 
compared with the reference file. As 
shown in Table 2, the numerical method 
used here can describe the convective 
and radiative heat flux accurately. Thus, 
it is satisfactory to carry out the follow-
ing investigations. 
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Table 1. Boundary conditions

Gravitational constant g 9.81 m/s2

Inflow velocity v∞ 0.5 m/s

Inflow temperature T∞ 293 K

Static pressure p 79000 Pa

Bulk density ρ 0.9388 kg/(m3)

Specific heat at constant pressure Cp 1005 J/(kg.K)

Solar heat flux Qsolar 500 kg/s3

2.5 Validation of numerical methods 
The heat transfer of a two dimension model of natural convection and radiation in a square 

enclosure is used to validate the numerical method [20, 21]. The height and width of the enclosure 
is 1000 mm. The top and bottom walls are adiabatic. The left and right walls are kept at a constant 
temperature of 200K and 400K, respectively, as displayed in Figure 3.  

Figure. 3 Natural convection and radiation in a square enclosure 

The wall heat fluxes are demonstrated in terms of a nondimensionalised coefficient (Nusselt 
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	 Results and discussions
In order to simulate different conditions 
of the cabin–fabric–environment, five 
kinds of simulation were carried out. 
The seat padding was simulated with 
three kinds of textiles [11, 22] of differ-
ent thickness, as in Table 3.

Temperature and heat transfer 
distribution
To clarify the characteristic features of 
the thermal seat climate, the flow param-
eter distribution results will be explained 
in detail in the following paragraphs. Ta-
ble 4 gives the peak value of the temper-
ature and heat flux on the surface of cabin 
seats. When considering cases 1, 2 and 3, 
we can observe that the peak temperature 
and heat flux vary with the changing of 
seat materials. The maximum tempera-
ture on the seat is 304.45 K and the peak 
value of radiative heat flux is 214.52 W/m2  
when the fabric is polar fleece. The peak 
of the temperature decreases by about 
1.5% and the heat flux increases by 6.9% 
when changing to cotton and foaming. 

Table 4. Peak value of temperature and heat flux.

Temperature on seats, K Radiative heat flux on seats, W/m2

Case 1 304.45 214.52
Case 2 299.98 229. 31
Case 3 298.58 235.19
Case 4 312.05 197.54
Case 5 318.91 171.66
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These peak values continue to change by 
about -1.9% and 9.6% when changing to 
carbon fibre yarn.

Temperature and heat transfer  
of different fabrics
Various types of fabric of different ther-
mal conductivity and constant thickness 
H = 0.001 m are considered, namely cas-
es 1, 2 and 3. The thermal conductivities 
of these materials are 0.028, 0.10 and 
0.528. In order to compare the flow pa-
rameters for different cases, a fixed con-
tour line of the cabin section is selected at 
the location of x = 1.2 m, z = 0.025 m, as 
shown in Figure 4. 

The cabin seat surface heat transfer is 
demonstrated in terms of the dimension-
less coefficient known as the Stanton 
number [10], defined as 

Case 5 318.91 171.66

3.1.1 Temperature and heat transfer of different fabrics
Various types of fabric of different thermal conductivity and  constant thickness H=0.001m 

are considered, namely cases 1, 2 and 3. The thermal conductivities of these materials are 0.028, 
0.10 and 0.528. In order to compare the flow parameters for different cases, a fixed contour line of 
the cabin section is selected at the location of x=1.2m, z=0.025m, as shown in Figure 4.  

Figure 4. Cutting plane of x=1.2m and contour line of z=0.25m

The cabin seat surface heat transfer is demonstrated in terms of the dimensionless coefficient 
known as the Stanton number [10],  defined as  

= / ( )p wallSt Q v C T T                       (5) 
A comparison of the temperature, heat transfer and Ma number distributions on the line of x=1.2m, 
z=0.025m is shown in Figure 5 As can be seen in Figure 5 (a), the temperature remains at the low 
level of lower than 296K, near the area of air inflow and outflow. However, it increases to a high 
level on the surface of cabin seats,  with even  a peak appearing at the juncture of the horizontal 
and back cushion. Figures 5 (b) & (c) show that carbon fibre yarn yields the highest radiative heat 
flux on the seat surface, and brings about the greatest value of the dimensionless heat transfer 
coefficient - the Stanton number. It can be seen from the comprehensive Figures 5 (a), (b) & (c) 
that the lower the thermal conductivity of the fabric, the higher the temperature on the surface. 
Polar fleece leads to a higher temperature gradient. The carbon fibre yarn seat has a more 
comfortable environment than the others. Figure 5 (d) compares the Mach number distributions in 
the line,  showing that  polar fleece leads to a bigger air velocity than the other two. The reason 
is that the large temperature gradient brings natural convection, then increases the air velocity 
nearby. 

   (9)

A comparison of the temperature, heat 
transfer and Ma number distributions 
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shown in Figure 5. As can be seen in 
Figure 5.a, the temperature remains at 
the low level of lower than 296 K, near 
the area of air inflow and outflow. How-
ever, it increases to a high level on the 
surface of cabin seats, with even a peak 
appearing at the juncture of the horizon-
tal and back cushion. Figures 5.b and 
5.c show that carbon fibre yarn yields 
the highest radiative heat flux on the seat 
surface, and brings about the greatest 
value of the dimensionless heat transfer 
coefficient – the Stanton number. It can 
be seen from the comprehensive Fig-
ures 5.a, 5.b and 5.c that the lower the 
thermal conductivity of the fabric, the 
higher the temperature on the surface. 
Polar fleece leads to a higher temperature 
gradient. The carbon fibre yarn seat has 
a more comfortable environment than the 
others. Figure 5.d compares the Mach 
number distributions in the line, showing 
that polar fleece leads to a bigger air ve-
locity than the other two. The reason is 
that the large temperature gradient brings 

Figure 6. Contour distributions on x = 1.2 m, z = 0.025 m with different cushion thicknesses: a) temperature distribution, b) radiative heat 
flux distribution, c) Stanton number distribution, d) Mach number distribution.
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natural convection, then increases the air 
velocity nearby.

Temperature and heat transfer 
of different thicknesses
In order to investigate the influence of 
fabric thickness, cabin seat padding 
made of cotton and foaming with a con-
stant thermal conductivity of 0.01 was 
analysed. The thickness varies from 
0.001 m, 0.007 m to 0.015 m. The tem-
perature, heat transfer and Ma number 
distributions in the line of x = 1.2 m, 
z = 0.025 m are shown in Figure 6. As 
shown in Figure 6.a, the temperature on 
the seat surface increased with the fabric 
thickness, with the case of H = 0.15 m 
having a higher temperature level than 
the others. Figures 6.b and 6.c depict that 
the radiative heat flux and transfer heat 
flux in the case of H = 0.015 m are lower 
than the others. Thus, it can be conclud-
ed that the thicker the cushion fabric, the 
higher the temperature on the seat sur-
face. This phenomenon can be explained 
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by the fabric becoming thicker and the 
heat transfer ability becoming weaker. 
As can see in Figure 6.d, the Mach num-
ber behaves very similarly with different 
thicknesses, with only a little difference 
in the inflow and outflow area.

Flow contours and mechanism 
analysis
In order to examine the flow mechanism, 
the flow contours of the cabin were ana-
lyzed. Figure 7 shows the typical flow 
field of case 4. Figure 7.a shows that 
there appears a large temperature gradi-
ent on the surface of the first seat near the 
window because of the solar radiation. 
Meanwhile, the temperature gradient is 
bigger near the wall because of the out-
ward heat loss of the wall. Figure 7.b 
depicts that the cabin seat reflects parts 
of the solar radiative heat flux from the 
radiative wall. Other walls emit heat flux 
without reflection. Figure 7.c shows that 
the air velocity is much bigger near the 
inflow area, and tends to be uniform in 
other areas. The velocity vectors on the 
xoy plane can be seen in Figure 7.d, 
showing that the cooling air flows from 
the inflow entrance to the outflow exit 
and forms a double circular pattern in the 

cabin. This phenomenon agrees well with 
the Mach number contours. The circula-
tion of air can improve the thermal envi-
ronment partly. 

	 Concluding remarks 
The primary goal of the present paper 
was to investigate several important 
thermal issues in a section of an aircraft 
with the three-dimensional finite volume 
method. Special attention was given to 
understanding the solar radiation and 
conjugate heat transfer on the seat textile. 
The effect of the fabric type and textile 
thickness was obtained. Some conclu-
sions can be drawn based on the results:

(1)	 The comparison of the temperature 
for three different textiles shows that 
different types of fabric yield differ-
ent temperature distributions on the 
seat and that polar fleece brings the 
highest peak temperature. Carbon 
fibre yarn yields the highest radia-
tive heat flux on the seat surface and 
brings about the greatest value of 
heat transfer. 

(2)	 The comparison of temperature for 
different textile thicknesses vary-

ing from 0.001 m to 0.007 m and 
0.015 m shows that the thickest pad 
brings a lower radiative heat flux 
and transfer heat flux than the oth-
ers. As a result, this type of padding 
obtains the highest the temperature 
on the seat surface.

(3)	 The velocity vectors and Mach num-
ber distribution in the flowfeild show 
that proper selection of materials, 
thicknesses and air flow circulations 
ensure the thermal comfort of the 
passenger.

However, more work is needed to be 
done in order to investigate the effect of 
the air flow velocity, the angle between 
the air flow and the fabric and the insula-
tion method for solar radiation.
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