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Abstract
Both physical and mathematical models of  lockstitch tightening are determined. The basic 
dynamical equation is a second-order differential correlation with respect to time; the forces 
applied are analysed and defined. The supplemented correlations are formulated by means of  
basic physical phenomena. The total angle of contact on the mobile barriers of the disc is intro-
duced by  physical analysis of the take-up mechanism. Both mechanical and thermal elonga-
tion are determined within the thread and introduced into the basic dynamical equation. The 
set of equations can be solved by means of any processing software (for example Mathematica) 
and the  results obtained visualised for  different parameters. 
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n	 Introduction
The main goal of the present paper is to 
analyse lockstitch tightening with respect 
to mechanical and thermal loads. Both 
physical and mathematical models are 
formulated. In the first phase the needle 
thread is elongated without feeding the 
next portion because the thread is bro-
ken by the flat spring. The mass of the 
thread analysed is discretised at one point 
within the stitch formation zone. The ba-
sic correlation is a second-order differ-
ential equation with respect to time, with 
the forces defined in advance. The sup-
plemented correlations of the problem 
are formulated by means of basic physi-
cal phenomena, i.e. the friction, angle of 
contact, thread elongation and structural 
geometry. The set of equations is solved 
by means of approximation methods. 
The results obtained can be visualised for 
different values of the parameters. The 
second phase of stitch tightening is the 
introduction of a new part of the needle 
thread.

The take-up mechanism of the sewing 
machine applied creates a lockstitch 
by means of a needle and bobbin hook. 
The optimal number and configuration 
of frictional barriers have already been 
discussed, for example, by Wiezlak and 
Elmrych-Bochenska [11, 12], Krasowska 
et al. [6], Korycki and Krasowska [8]. 

The main difficulty is to introduce the 
mass of the thread as well as the fric-
tion forces on the frictional barriers into 
the physical and mathematical model. 
A simulation of forces within the yarns 
transported through the drawing zone 
using different friction parameters was 
analysed by Wlodarczyk and Kowal-
ski [13]. The basic random variables 
are the length of the yarn segment and 
the yarn’s drawing rigidity. Wlodarczyk 
and Kowalski [14] analysed the differ-
ent factors of the friction force, i.e. the 
random visco-elastic rheological prop-
erties displaced through a model of the 
drawing zone. The variability of tensions 
in the displaced threads is determined 
by technological conditions and the 
non-uniformity of mechanical proper-
ties. Lomov [9] proposed the computa-
tion of the maximum needle penetration 
force and introduces a direct dependence 
between the penetration force on fabric 
structural parameters and the warp and 
the weft geometrical mechanical prop-
erties. Alagha, Amirbayat and Porat [1] 
compare the effect of sewing variables 
and fabric parameters on the shrinkage 
of a chainstitch by means of a positive 
feed. Ferreira, Harlock and Grosberg [3] 
studied thread interactions within a lock-
stitch sewing machine as a system con-
necting the needle and bobbin thread. A 
knowledge-based and integrated process 
of planning and control is presented by 
Carvalho et al [2], defined by the basic 
mechanical parameters during the sewing 
process.

There are only a few papers concerning 
the heat transfer problems during stitch 
formation. Liu, Liasi, Zou, Du [15, 16] 
simulated the sliding contact between the 
needle and material package. The param-
eters assumed (i.e. the needle geometry, 
sewing conditions, fabrics characteris-
tics) allow to model the increase in tem-
perature, from the initial to the final value 
corresponding to the steady conditions of 
sewing. The results obtained are verified 
by means of infrared radiometry. Authors 
have discussed some methods of reduc-
ing needle heating. 

	 Physical and mathematical 
model of the stitch tightening 
process

It is necessary to introduce some assump-
tions in order to simplify and solve the 
problem. Certain assumptions are for-
mulated according to Wiezlak, Elmrych-
Bochenska [11], while the rest are intro-
duced below.
1.	 Stitch tightening is a 3D geometrical 

and dynamical problem within the 
thread. Practically speaking, the proc-
ess can be simplified to a 2D plane 
problem if we neglect the unimportant 
guide elements.

2.	 Stitch tightening and stitch link for-
mation is a complex process: the 
needle thread introduces the bobbin 
thread into the needle channel. We as-
sume that both sections of the thread 
have the same physical and mechani-
cal properties.

3.	 Each stitch link is analysed as an in-
dependent dynamic system, thus dy-
namic interactions are not introduced 
between the links.

4.	 We assume linear mechanical strains 
of the needle thread, neglecting them 
for the bobbin thread because its ac-
tive length is short. The resultant ther-
mal strains are determined by the ther-
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mal shrinkage and thermal elongation 
of the yarn.

5.	 The bobbin thread is located within the 
bobbin hook. Feeding the thread por-
tion is a continuous process realised 
during the stitch tightening. Thread 
is permanently braked by means of a 
flat spring of constant resisting force. 
Thus, feeding the portion is realised if 
the dynamic reaction within the thread 
is greater than the resisting force of 
the spring.

6.	 The resisting forces caused by the in-
troduction of thread into the interlace-
ment are as follows: 
n	 the friction of the flat spring acting 

on the thread;
n	 the friction within the interlace-

ment as a reaction of feeding the 
thread portion; 

n	 the friction forces of the needle 
thread on the mobile barriers of the 
take-up disc. 

	 The friction on the curvilinear sur-
face is described by Euler’s formula, 
whereas the coefficient of friction is 
calculated according to Wiezlak and 
Elmrych-Bochenska [11]. The angle 
of contact on the frictional barriers of 
the take-up disc are determined ac-
cording to a cyclogram and are time 
independent.

7	The total mass of thread is concen-
trated at one point within the inter-
lacement. Thus, we can formulate a 
dynamic equation for the concentrated 
mass during stitch formation which 
simplifies the description consider-
ably. 

Introducing the assumptions above, we 
simplify the 3D space model of the stitch 
tightening to a 2D plane one. The prob-
lem is illustrated in Figure 1.

The model of the interlacement location 
within the needle channel introduces two 
phases of the thread dynamics: First the 
needle thread is introduced into the inter-
lacement by simple elongation, blocked 
by the spring. The mobile barriers of the 
take-up disc as well as the blocking proc-
ess cause the thread elongation. The nee-
dle thread is subjected to: 
n	 an elastic strain proportional to the 

geometrical imperfection u(t); 
n	 thermal strains caused by the thermal 

shrinkage and thermal elongation of 
the textile material. 

A new section of the needle thread is 
introduced during the second phase be-
cause the force within the thread is great-
er than the spring resistance. Feeding the 

thread portion is realised by the tension 
device, and we now assume the negligi-
ble elongation of the needle thread by the 
geometrical impulse. 

	 Dynamical model of lockstitch 
formation. Elongation of the 
needle thread blocked by the 
tension device

A basic dynamic equation for the needle 
thread within the interlacement is for-

mulated for the mass discretised at one 
point, as follows:

( ) Tssss
dt

txd M 43212

2

-++--=     (1)

where M in kg is the discretised mass of the 
thread within the interlacement, x = x(t)  
in m - the coordinate of the location of 
the mass, s1, s2, s3, s4 in N - the reactions 
within the thread sections, and T in N is 
the friction force discretised within the 
needle channel, determined according to 
Wiezlak and Elmrych-Bochenska [11]. 

Figure 1. 2D plane physical model of the interlacement location within the needle channel.

dt 
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The bobbin thread is subjected to friction 
forces s1, s2, determined on the curviline-
ar surface by Euler’s formula in the form

 s1 = s2 emp                     (2)

where s1 in N is the reaction within the 
interlacement, s2 in N - the reaction of 
the bobbin thread, e - the Napierian base;  
m - denotes the dynamic coefficient of 
friction within the interlacement, and  
π in rad is the angle of contact.

Let us formulate a rotation equilibrium 
equation for a bobbin hook subjected to 
the feeding of a thread portion. The bob-
bin hook has a cylindrical shape at the 
moment of interia along the principal, 
central axis equal to,

( ) 2z02 dt
dJRss cj

=- , 2
cz Rm

2
1J =    (3)

where s0 in N is the breaking force of 
the flat spring acting on the bobbin 
thread, mc in kg - the complete mass of 
the bobbin hook, R in m - the radius of 
the bobbin hook with the bobbin thread, 
and jc(t) in rad denotes the angle of ro-
tation of the bobbin hook determined by 
the length balance of the bobbin thread, 
which is subjected to geometrical and 
thermal loads.

The location of the bobbin thread within 
the interlacement is denoted as coordi-
nate x = x(t). The elongation is negligible 
because the section of bobbin thread is 
short

( )
2

2

2 dt
txd2R

dt
d   ;x   2R == c

c
jj    (4)

Introducing equation (4) into equation 
(3), and after simple transformations we 
obtain

( )
2

2

c02 dt
txdmss =-          (5)

The first phase of stitch formation is 
the elastic tension of the needle thread 
blocked by the tension device. According 
to Figure 1, dynamic reactions within the 
thread and Euler’s formula are equal to

s4 = s3emp; s5 = s4emz        (6)

where z in rad is the total angle of con-
tact on the mobile barriers of the take-up 
disc, which can be determined by means 
of different methods, cf. for example Ko-
rycki, Krasowska [8]. The first phase of 
stitch tightening is described by the rota-
tion angle of the motion element, equal 
to (40–115)p/180 in rad with two active 
mobile barriers L1 and P2. From [8] we 

conclude that the changes in both angles 
are time-dependent but nearly constant 
(see Figure 2). 

The difference is equal to about 5p/180 
in rad for barrier P2 and 3p/180 in rad 
for barrier L1. Thus, the differences can 
be neglected, and the angle of contact 
can be finally assumed to be equal to 
z = zL1 + zP2 = 225p/180 in rad. 

The needle thread during the first phase of 
stitch tightening is subjected to mechani-
cal and thermal strains. The mechanical 
strains are described by Hooke’s Law. 
The thread lengths and strains within 
the thread for the i-th segment are deter-
mined, respectively, by the correlations

3,4,5ifor     eAEs     ;ell     ;lll ipniiiMiMiMiM
'
iM ===DD+=

3,4,5ifor     eAEs     ;ell     ;lll ipniiiMiMiMiM
'
iM ===DD+= ;   for i = 3, 4, 5  

(7)

where liM  in m is the length of the thread 
under tension, liM in m - the initial length, 
ei in m the unit elongation of the thread; 
En in N/m2 denotes the dynamic modulus 
of elasticity, and Ap in m is the area of the 
thread cross-section.

The thermal strains are caused by two 
phenomena: The first is the thermal 
shrinkage of the material microstruc-
ture, described by Urbanczyk [17] as 
thread shortening ΔlT. The second is the 
thermal elongation of the yarn, which is 
typical for textile structures subjected to 
a positive temperature difference. The 
coefficient of thermal expansion α can 
be additionally expressed, according to 
Urbanczyk [17], by means of directional 
coefficients of expansion. The length of 

the i-th thread segment is determined by 
the following correlations

;
B
Texp All  ;llll
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"
iT
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"
iT =+=D=D ⊥aDT; a = aII + 2a⊥;    (8) 

for i = 3, 4, 5

where AT BT are constants i.e. functions 
of the material and measurement condi-
tions; T in K is the temperature, ΔT in K 
- the temperature difference, α in 1/K - 
the coefficient of thermal expansion, aII, 
2a⊥ in 1/K are, respectively, coefficients 
of the thermal expansion along the lon-
gitudinal axis and that orthogonal to the 
main axis of the yarn. The total length of 
the i-th thread segment is also the simple 
expression

3,4,5.ifor       ;   lllll "
iT

'
iTiMi

'
i =D+D+D+= ; 

for i = 3, 4, 5                (9)

Let us formulate the length balance of the 
needle thread during stitch formation by 
means of the geometry of the system (cf. 
Figure 1) 
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Introducing equations (6) – equations 
(9), we can transform the relationship of 
strains into one of elongations and tem-
peratures as equations (11).

Solving the above set by the elimination 
of l3, l4, l5, and after some simple calcu-
lations, we obtain elongation e5 as the 

Figure 2. Angle of rotations for frictional barriers L1 and P2, active during stitch 
tightening.
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following function (equation 12) of the 
temperature T.

Thus we have to introduce processing 
software and formulate three roots of the 
equation, for example Mathematica v. 
5.0.0 or Calculation Center v. 1.0.0. Each 
root contains about 400 components and 
is too complicated to solve the basic dy-
namical equation. Thus we simplify the 
problem. The coefficient of friction, ac-
cording to Wiezlak, Elmrych-Bochenska 
[11], is equal to m = 0.4. Both angles 
of contact are equal to Π; 225/180 p 
in rad, cf. [8], and consequently 
A,B∈(0,1). The product of parameters A 
& B is therefore negligible (i.e. A.B→0) 
in relation to parameters A and B when 
determined separately. 

The thermal shrinkage of yarns made 
from polyamide or polyester is equal 
to (4 – 6)% for a temperature of about 
100 °C, cf. [17]. The coefficient of ther-
mal expansion α is (3 – 5)·10-4 [17]; the 
temperature difference depends on the 
operating conditions, but it is not greater 
than 100 K. The sum of both components 
is also no larger than a few percent. The 
second power and different products of 
component C are negligible in relation to 
the other parameters. Under the above as-
sumptions, the equation of elongation e5 
has the form (equation 13)

L(2A + B) - 2uB + 2x(A + B) - aB+
- b(2A - B)]e52 + [L(1 + A + 3C) +
- 2u(1 + A + 2B + C) + 2x(2 + A +    (13)
+ B + 2C) - a(1 - A + C) - b(1 + A +
- 2B + C)]e5 + 2[2(x - u) + LC] = 0

We solve this correlation by using Math-
ematica v. 5.0.0 and obtain a positive root
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C1 = a(1 - A + C) + b(1 + A - 2B + 
+ C) - (1 + A + 3C)L + 2(1 + A +      (14)
+ 2B + C)u - 2(2 + A + B + 2C)x;
C2 = -b(2A - B) - aB + (2A + B)L +
- 2Bu + 2(A + B) x.

Elongations of the other thread sections 
are determined by Equation (11) as fol-
lows (Equation 15)
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Reactions within the thread sections can 
be formulated according to Equation. (2, 
5, 6, 7) in the form
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and the basic dynamic equation can be 
expressed as follows (Equation 17)

(11)

This is a second-order differential equa-
tion for coordinate x with respect to 
time. The parameter is the geometrical 
displacement caused by the take-up disc 
uw, which is the function of coordinate x. 
Physically speaking, uw is the time-de-
pendent distance of the mass discretised 
at one point during the stitch tightening. 
The most general description of the dis-
placement uw is the second-order func-
tion of time in the form [11] 

u(t) = z1t2 + z2t + z0
z1 = psr = 1/2p0 max in m/s2      (18)

z2 = wsr in m/s, z0 = 0,   

where u in m is the geometrical displace-
ment of the discretised mass, z0 in m - the 
initial distance for the time t = 0: z0 = 0, 
z1 in m/s2 - the mean acceleration of the 
mobile frictional barriers of the take-up 
disc during the stitch tightening, and z2 
in m/s is the mean velocity of the mo-
bile frictional barriers of the take-up disc 
vśr. The first phase of stitch tightening is 
characterised by a deceleration changing 
from the initial maximal value to the final 
value, which is equal to zero. Approxi-
mating typical deceleration as a linear 
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Equations: 11, 12, 17 and 19.
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function of time, we obtain a mean value 
equal to half of the maximal value pmax. 
The mean velocity is time-independent. 
Introducing Equation (18) into Equation 
(17), we obtain a basic dynamic correla-
tion (Equation 19)

The equation obtained can be solved 
by means of approximate methods or 
processing software, cf. Mathematica v. 
5.0.0. We introduce the module NDSolve 
to solve the second-order differential 
equation, supplemented by a prescribed 
set of initial conditions within the time 
interval t defined. The needle thread is 
introduced into the needle channel in a 
time with initial and final values of t0 = 0; 
tk = 0.0026 s. The initial conditions are 
the location of the discretised mass x and 
its initial velocity x’ = dx/dt, equal to 

x(t = 0) = 0;    x’(t = 0) = 0    (20)

The important factor is introducing 
the thermal deformations. The thermal 
shrinkage of yarn made of Polyamide is 
presented by Urbańczyk [16]. For typi-
cal working conditions of the take-up 
disc we assume the thermal shrinkage to 
be equal to (4 – 6)%. According to [16], 
the coefficients of thermal expansion 
are equal to (3 – 5)·10-4. The structure 
of yarn is complicated, and the thermal 
deformation of material is not representa-
tive for the twisted yarn. Thus, we deter-
mine the variable thermal parameter C 
from the range (0 – 0.028). All other pa-
rameters introduced are listed in Table 1. 

The calculations obtained are visualised 
by means of Mathematica software (com-
mand: Plot/Evaluate, time range: t0 = 0; 
tk = 0.0026 s). Equation (19) is compli-
cated and should be solved numerically. 
It is also impossible to determine the an-
alytical form of the objective functional 
and analyse the sensitivity by means of 
classical methods. The numerical sensi-
tivity of coordinate x = x(t) for parameter 
C is shown in Table 2 and Figure 3. 

The diagram obtained for C=0 is close 
to the model determined by Wiezlak and 
Elmrych-Bochenska [11]. Both curves 
contain a part corresponding to the coor-
dinate of the interlacement location close 
to zero x = x(t) → 0. Thus the geometri-
cal displacement u = u(t) does not cause 
the motion of the discretised mass still 
located under the material surface. The 
time boundary value is Dt ~ 0,0005  s, 
which produces a positive value of the 
interlacement location x = x(t) and the 

introduction of the needle thread into 
the needle channel within the material 
package. The second part of the curve 
grows more rapidly in the model results, 
as presented in Figure 3 for C = 0. Let 
us compare the coordinates for time  
t = 0.0026  s according to the model curve 
[11] (x = 0.347.10-3 m) and Figure 3 
(x = 0.493.10-3 m). The decrease obtained 
is equal to about 30%. The difference is 
caused by the bigger value of reaction 
force s4, because the angle of contact z 
grows from the value Π rad, according to 
[11], to that of 225p/180 in  rad, now as-
sumed. The cause is the mobile frictional 
barriers within the take-up disc. Conse-
quently, the thread is located higher than 
previously within the material package in 
relation to the lower edge of the material.

The results obtained for variable param-
eter C indicate that every curve has the 
same nonlinear shape. According to Ta-

ble 2 and Figure 3, we can conclude that 
coordinate x is very sensitive to changes 
in parameter C. At the same time the dif-
ferences in x obtained are comparable to 
the different parameters C. The changes 
in coordinate x = x(t) are always minimal 
for the minimal time, and considerably 
greater for the second part of the curve.

The length of the needle thread for the 
take-up disc is considerably greater than 
for the reference model and the classical 
mechanism of stitch tightening [11], the 
reason for which being the multibarrier 
frictional structure. Our next goal is to 
determine the value of coordinate x = 
x(t) for the same thermal parameter C = 
0.024 and different lengths L of the nee-
dle thread from the interval <0.3;0,65> 
m. The coordinates x = x(t) obtained for 
different lengths L during stitch tighten-
ing are listed in Table 3 and depicted in 
Figure 4.

Table 1. Geometric parameters of the stitch tightening model [11].

Geometric parameter Symbol Unit Value
Total length of the needle thread within the stitch tightening zone L M 0.3
Distance between the lower surface of the material package and the 
blocking point of the thread tension device a M 0.2

Distance between the lower surface of the material package and the 
blocking point of the needle thread within the previous interlacement b M 0.006

Radius of the bobbin hook with the bobbin thread R M 0.009
Diameter of the needle and bobbin thread d M 0.0002
Stitch stroke s M 0.0025
Material package thickness h M 0.002
Dynamic modulus of initial elasticity of the thread En N/m2 5×109

Thread mass after discretisation (located within the interlacement) M kg 0.001
Dynamic coefficient of friction of the thread in the interlacement m - 0.4
Maximal friction force of the interlacement within the needle channel T N 0.3
Breaking force of the bobbin thread s0 N 0.2
Breaking force of the needle thread P N 3.5
Mean acceleration of the eye of the take-up disc during the stitch 
tightening z1 m/s2 -14.8

Mean velocity of the eye of the take-up disc z2 m/s 3.5

Table 2. Coordinates x = x(t) for selected values from the time range t0 = 0; tk = 0.0026 s 
and different values of thermal elongation parameter C.

C
Coordinates x = x(t) ×104, m for selected time t, ms

0, ms 0.65, ms 1.30, ms 1.85, ms 2.60, ms
0 0 0.14033 0.77195 1.94379 4.92667

0.008 0 0.21700 1.08175 2.57546 6.18129
0.016 0 0.29171 1.38347 3.19021 7.40066
0.024 0 0.36445 1.67703 3.78789 8.58447

Table 3. Coordinates x = x(t) for selected values from the time range t0 = 0; tk = 0.0026 s 
and different needle thread lengths L.

L, m
Coordinates x = x(t) ×104, m for selected time t, ms

0, ms 0.65, ms 1.30, ms 1.85, ms 2.60, ms
0.35 0 0.32695 1.46857 3.25582 7.20654
0.45 0 0.28902 1.26129 2.73628 5.89815
0.55 0 0.27016 1.15760 2.47892 5.26122
0.65 0 0.25924 1.09690 2.32643 4.88097



FIBRES & TEXTILES in Eastern Europe  2011, Vol. 19, No.  2 (85)52

The curves obtained have the same strong 
nonlinear shape. The coordinate of the 
interlacement location x = x(t) is consid-
erably less for the multibarrier frictional 
structure of the take-up disc (the needle 
thread length L = 0.65 m) than for the refer-
ence model [11] (the needle thread length  
L = 0.30 m). Considering the time  
t = 0.65.10-3 s, the change in length 
(from L = 0.35 m to the assumed value  
L = 0.65 m) decreases coordinate x 
by about 21%. Considering the time  
t = 2.6.10-3 s, the same change in length 
L decreases coordinate x by about 32%. 
The bigger the active length L, the bigger 
the thread elongation, as described by the 
linear correlation according to Hooke’s 
Law. We see at once that the changes in 
coordinate x = x(t) are not proportional 
to the increase in the length of the needle 
thread. The needle thread is also more 
sensitive to the location of frictional bar-
riers for the minimal than for the maxi-
mal permissible length.

The changes in coordinate x are diffi-
cult to describe because the geometry 
of the needle thread is complicated, and 
the shape is not a straight line. The main 
geometric disturbances are caused by the 
frictional barriers within the take-up disc 
zone, which is also the main cause of the 
length increase within the model of the 
take-up disc presented in relation to that 
of Wiezlak and Elmrych-Bochenska [11]. 
The bigger the active length L of the nee-
dle thread, the longer the time of stitch 
tightening during interlacement creation 
within the needle channel. 

n	 Conclusions 
The number and configuration of the mo-
bile barriers within the take-up disc are 
the basic parameters during stitch tight-

ening, cf. Korycki, Krasowska [8]. The 
needle thread and bobbin thread have 
the same material parameters. Thus the 
dynamics of the lockstitch formation are 
determined together for the complete 
stitch link.

The behaviour of the thread was deeply 
analysed, and mechanical as well as ther-
mal elongations were introduced. The as-
sumed dependence stress–strain is linear, 
which allows to introduce Hooke’s Law, 
thereby simplifying the dynamical equa-
tion. Some components within the basic 
dynamical equation can be neglected, 
and the description of roots is relatively 
easy. The thermal behaviour is described 
by two parallel phenomena: the shrink-
age and the simple elongation of the 
yarn. The main mathematical difficulty 
is to obtain a unique solution, which was 
found for different values of the thermal 
parameter C.

Taking off the thread from the bobbin 
hook is a complex process: the needle 
thread is subjected to elongation, and a 
new part of the thread is introduced from 
the bobbin hook. The superposition prin-
ciple allows to analyse both problems 
separately. 

The frictional forces during stitch link 
formation and on the mobile frictional 
barriers of the take-up disc are variable, 
a description of which is difficult. The 
diameters of mobile barriers do not in-
fluence the final result of the dynamical 
reactions significantly, and the errors are 
no greater than a few percent. Thus these 
diameters are neglected in the model pro-
posed.

The model contains the mass of needle 
thread discretised at one point. The alter-

native is to introduce a few points of the 
mass divided along the thread and con-
necting elements between these points. 
Hence a basic dynamical equation should 
be formulated separately for each part 
of the thread. Of course, the greater the 
number of points, the more complicated 
and time-consuming the calculations. 
The results obtained can be finally ap-
plied for the optimisation of the needle 
thread during lockstitch tightening.
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