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Abstract
In the present paper, we describe a method of determination of the probability of reaching 
the critical crack length at the tooth root of the cylindrical geared wheels of the drive 
system of the Fiomax 2000 ring spinner. The Paris-Erdogan formula was utilised for cal-
culations of the fatigue crack length depending on the number of load cycles. Experimental 
investigations were performed on cylindrical geared wheels. The wheel specimens were 
manufactured from 1.6523 steel (UE) according to a technical specification relevant to 
the drive system of the ring spinner. The experiments were performed using a professional 
pulsator (pulsating test machine). Based upon the experiments (series of 12 tests), ma-
terial constants and were calculated. These parameters were utilised in the Paris law of 
crack propagation for further calculations. Moreover it was also ascertained that these 
unknowns are related via the deterministic relationship. Therefore a function allowing for 
approximation of constant in dependence on exponent m was derived. In the next step, for 
the values of parameter chosen – belonging to the variability interval, established from 
experimental data – we determined the times of reaching the critical length of the fatigue 
crack. It was stated that the best approximation distribution describing the simulated 
random values of times of reaching the critical length of the tooth crack for the drive sys-
tem of the ring spinner is the asymptotic Gumbel’s distribution. Knowing the distribution 
and number of cycles until reaching the critical crack length at the tooth root, one can 
evaluate the fatigue life of the damaged wheel in the ring spinner (Fiomax) drive system 
for the assumed probability. The goal of the present paper is evaluation of the working 
time of the elements of the drive system of a ring spinner until the occurrence of damage. 
The highest fatigue life of geared wheels was achieved within the interval (4.3 – 4.5)x 105 
cycles. However, it is recommended to change of the geared wheel in case of the spotting 
of early symptoms of defect. For the stretching apparatus, the authors of the present paper 
suggest the exchange of the idler geared wheels at least once per year.
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spinning frame.
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b	� width of the geared cylindrical 
wheel,

BEX	 idler gear wheel,
CEX	 idler gear wheel,
C	� the Paris formula material con-

stant,
dl	 increase in crack length,
EEX	 idler gear wheel,
FEX	 idler gear wheel,
G	� constant utilized for determination 

of tooth shape coefficient,
Gv	 total stretch of spinning stream,
Hv	� main draft of fiber assembly,
HzEX	 idler gear wheel,
hfp	 addendum height of tooth profile,
l	 crack length,
lkr	 critical length of crack,
lmin	 introductory crack length,
m	 exponent of Paris curve (law),
mn	 normal module,
my	� mean value of random value distri-

bution,
N	� number of fatigue (loading) cy-

cles,
NwEX	idler gear wheel,

u	� expected value of random value 
distribution,

R	 reliability,
VEX	 idler gear wheel,
Vv	� introductory stretch of spinning flow,
x	� nominal value of coefficient of dis-

placement of tooth profile (correc-
tion coefficient),

zi	� teeth number for standard cylindri-
cal wheel,

zn	� teeth number related to the trans-
verse pitch diameter,

αn	 normal pressure angle,
α	� probability estimated based upon 

random value distribution,
β	 helix angle,
ΔK	 coefficient of stress intensity,
σ	 maximal stress in the crack tip,
σ 2

y	 variation of random value y,
ϑ	� auxiliary angle used for determina-

tion of tooth shape coefficient,
θ	 working time of gear until damage,
ρhf	� radius of the transition curve (fi-

let radius) for the tangential tooth 
shape.

Nomenclature
a0, a1, a2	� constants of an equation deter-

mined based upon numerical 
simulation,

A1, A2, A3, �A4, A5 constants related to the 
equation for calculations of 
the intensity factor coefficient, 
determined for known techni-
cal specification of the geared 
cylindrical wheel and known 
loading conditions,
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	 Introduction 
The propagation of a fatigue crack at the 
tooth root of geared wheels in the ring 
spinner drive system (i.e. in its basic ele-
ments) can generate damage to the whole 
system or can decrease the quality of the 
end-product. The propagation of cracks 
reaching the critical length at the tooth 
root of the cylindrical geared wheel is 
connected with the phenomenon of ex-
ceeding the limit, and in consequence 
instant fatigue breakage occurs, preclud-
ing further work of the machine, which 
diminishes the output of the manufactur-
ing process. In industrial practice, such 
damage has to be eliminated immediate-
ly. Knowledge of phenomena occurring 
during machine operation diminishes 
the risk of a breakdown of the whole 
machine [40]. Introductory initiation of 
tooth cracks in geared wheels in the nor-
mal service conditions of a particular ma-
chine can remain unidentified. Damage at 
the tooth foot – in rare cases – can happen 
very rapidly, damaging other working el-
ements of a particular machine.

In the textile industry, there are several 
methods for yarn manufacture, depend-
ing on the structure of yarn required for 
a special end-product. During the spin-
ning process, the manufacturer aims for 
achievement of a product of the highest 
physical properties. In the case of ring 
spinning the maximal ultimate rotational 
velocity of a spindle is equal to approx. 
25 000 rev/min, whereas in the case of 
rotor spinning this velocity is equal to 
150 000 rev/min. This essential increase 
in the rotational velocity of machine 
working elements has a negative influ-
ence on the reliability of the machine. 
Moreover in the case of ring spinning, 
the upper ultimate rotational velocity of 
spindles is limited by the dimensions of 
the machine working elements. Classi-

cal ring spinning still has the dominant 
role in the spinning sector of the tex-
tile industry due to the quality of yarn 
achieved as well as its universality. 
During the spinning process, one of the 
essential factors influencing the produc-
tion output is rupture of the spinning 
flow. This phenomenon causes the most 
essential problems within the whole 
technology of yarn production because 
it influences the production output, qual-
ity and number of defective products. 
The breakage or rapture resistance of 
yarn can be considered as one of the 
most important indicators which charac-
terise the technological and organisation 
level of a spinning mill, and it compris-
es the basis for objective evaluation of 
its work. The guarantee of breakage re-
sistance is not an easy task due to the 
complex mechanism of yarn breakage. 
The number of ruptures is influenced by 
the following factors [31-33]:
n	 yarn/thread tension and its variability,
n	 mass distribution of feeding and out-

put product,
n	 strength of yarn,
n	 winding angle,
n	 mechanical defects of the stretching 

apparatus and spindles,
n	 damage to driving system, especially 

geared wheels,
n	 disruptions of operation of turn-

ing-winding system: shuttle-ring.

The number of ruptures can be evaluat-
ed only when the working conditions of 
yarn manufacturing are known as well 
as when we can assume that rupture oc-
curs if its tension exceeds its strength. 
Unfortunately, although in industrial 
conditions the average yarn tension does 
not exceed the strength, yarn is subject 
to rupture. Due to this fact, for evaluat-
ing the number of ruptures expected, it 
is necessary to determine the variability 
of yarn tension and strength. However, 

the phenomenon of rapture itself should 
be analysed by means of probabilistic 
methods [34] i.e. based upon probability 
theory [35]. Yarn ruptures are also influ-
enced by the uneven work of the machine 
drive system and changes in the velocity 
of machine working elements caused es-
pecially by the structure of the cop. Other 
reasons for wearing out machine working 
elements in ring spinning are the rotation 
of the cop in order to obtain yarn twist 
and strains on construction elements of 
the machine. Failure of the driving ele-
ment of the spinning machine impacts the 
quality of the yarn, leading to destruction 
of the driving system in extreme cases. In 
ring spinners, the stretching apparatus is 
an essential element of the drive system. 
Frequent changes in rotational velocity 
have a direct influence on the dynamics 
of loading changes. The stretching ap-
paratus consists of a series co-operating 
gears which are utilized for the setting of 
stretches. Geared teeth are subject mainly 
to high-cyclic fatigue phenomena. 

Due to the cyclic loading of gear teeth 
(entering in and losing contact), there is 
a possibility of fatigue breakage of a par-
ticular tooth, which is usually connected 
to exceeding (at the tooth) the bending 
stresses of the foot – i.e. the so-called al-
lowable/ultimate fatigue limit. Whereas 
the cause of too high values of stresses 
can be different e.g. a too low tooth mod-
ule, over-loading, the notch effect as well 
as defects of the transit surface (filet zone) 
at the tooth foot. Tooth fatigue breakage 
is usually initiated on the transit surface 
and propagates along the arc placed along 
the tooth foot. The described shape of the 
crack forms invisibly on the outer surface 
of the tooth surface perpendicular to its 
main geometrical axis. Despite the prop-
agation of the fatigue crack in its intro-
ductory phase, the operation of the gear 
is still possible and allowable. However, 

Figure 1. Consecutive phases of propagation of a fatigue crack: a) initiation, b) propagation, c) critical/final crack which launches the process 
of rapid growth of the crack, so- called full break of the tooth, d) fatigue crack at the tooth root after full break.

a) b) c) d)
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in the case of a continuously propagating 
crack, after exceeding of the fatigue limit 
or critical crack length, total breakage of 
the tooth can happen. In the majority of 
cases, the critical crack length of a crack 
located at the tooth foot is approximate-
ly half of the tooth width (Figure 1, 
see page 135). However, a detailed de-
scription of the situation depends on the 
loading character and geometrical shape 
of the toothing given via its technical 
specification. Early performed diagnos-
tics of the apparatus or whole drive sys-
tem consisting in registration of damage 
symptoms and their comparison with the 
standard (benchmark) signals allows for 
detection of incorrectness connected with 
the machine operation routine. Such an 
approach directly influences the fatigue 
life of the machine. 

Aiming for proper and continuous ma-
chine operation, it is very important to 
operate it under recommended work con-
ditions and according to the requirements 
as well as regular performance of mainte-
nance tasks (especially repairs). Frequent 
checking of the drive and working sys-
tems of a spinner has a positive influence 
on the reduction of costs connected with 
the elimination of errors and defects oc-
curring during the production process.

Evaluation of the technical state of spin-
ning machines is usually performed 
based on diagnostic investigations [16-
18], [23-26], [29]. These investigations 
consists in different aspects e.g. anal-
ysis of vibrations [16, 23, 25], state of 
surfaces of co-operating geared wheels 
[17, 24], pitting [18, 24, 27] or scoring 
[26-28]. Considering only the symptoms 
of damage to machine elements is not 

sufficient and in some cases can lead 
to the opinion that the drive system is 
evaluated as sufficient or working prop-
erly. However, non-identified damage 
can appear suddenly, especially for such 
elements as geared wheels, bearings and 
shafts [19, 20, 22, 27, 28]. Therefore ad-
ditional duties – besides possible dam-
age identification via inspections – con-
sist in the utilization of statistical and 
probabilistic methods and modelling 
routines [36, 37].

The characteristic feature of phenomena 
taking place during the wear of working 
elements of heavy textile machines (un-
der variable loading conditions) is the 
complete randomness of these processes. 
In the case of the classic approach to eval-
uation of the fatigue life of working ele-
ments, mainly general statistical methods 
are used. Advanced probabilistic models 
are used very rarely due to really com-
plicated mathematical modelling. Nev-
ertheless in related references dedicated 
to the maintenance of textile machinery 
and devices, one can find probabilistic 
models which are based on the follow-
ing types of random value distributions: 
exponential, Weibull, normal, Gumbel, 
Ferecht, Reyleigh, Gamma and log-nor-
mal distributions [36]. The majority of 
the distributions previously mentioned 
imply the application of advanced nu-
merical methods and techniques as well 
as the conducting of investigations on 
a large number of specimens. Therefore 
during the identification of damage to 
a particular system, at the beginning it 
should be assumed that the probabilistic 
model applied allows for description of 
the phenomenon considered based on the 
operational investigations conducted.

	 Analysis of fatigue crack 
propagation for the  
sub-systems of the drive 
system of a Fiomax 2000 ring 
spinning machine

During design activities, the designers of 
machines and devices, including textile 
ones, pay special attention to immedi-
ate and fatigue strains and stresses [22]. 
However, nowadays, it is an insufficient 
approach to the design task because the 
user also considers such parameters of 
a product as its fatigue life and reliability. 
It is due to the fact that the last character-
istics mentioned have a direct influence 
on costs connected with operation and 
maintenance procedures.

The fatigue life of the elements of tex-
tile machines and devices, especially 
of geared wheels, is mainly determined 
based on fatigue investigations. Based 
on these experiments, one can derivate 
a Woehler curve [30, 37, 38] which in 
turn can be utilized for further calcula-
tions taking into account fatigue hypoth-
eses e.g. Palmgren – Miners, Haibach, 
Corten-Dolan or Szala [30, 37, 41]. In 
the present paper, a method of fatigue life 
determination based on fracture mechan-
ics principles [37] has been described. 
The application of the boundary element 
method allowed to describe the propa-
gation of a fatigue crack (a = f (N)). Af-
ter inserting of this relationship into the 
Paris – Erdogan formula (or other), the 
fatigue life measured from the number of 
loading cycles was obtained. 

In the case of fatigue investigations of 
geared wheels, we create fatigue charts 
utilizing the bi-logarithmic co-ordinate 
system lg σF – lg NF (Figure 2), where σF  
is the bending stress (at the tooth foot) in 
the case of pulsating loading (from zero 
level), whereas NF is the relevant fatigue 
life measured by means of the number of 
cycles. 

Based on this chart, one can deter-
mine the basic fatigue characteristics of 
a geared wheel-specimen i.e. average 
value of the unlimited fatigue strength of 
the tooth foot related to bending stresses 
σF lim (for a probability of damage equal 
to 50%) according to the ISO 6336 stand-
ard. It is an approximate value because 
it depends on the assumed basic number 
of cycles. According to the ISO 6336 
standard, for hardened steel, this value is 
equal to NF lim = 3 · 106 cycles. The chart 
discussed also allows determination 

Figure 2. Woehler 
fatigue curve for 
the bending tooth of 
geared wheels.
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of the average limited fatigue life, i.e.  
σF > σF lim (for a probability of damage 
equal to 50%) relevant to the fatigue life 
assumed NF > NF lim. Moreover in the re-
verse approach it is also possible to deter-
mine the fatigue life NF for the assumed 
level of stress σF.

Having determined the fatigue life (from 
the beginning of crack initiation, through-
out the propagation until damage), it is 
possible to determine the reliability of the 
arbitrary drive system of the Fiomax 2000 
spinner. The drive system of the stretch-
ing gear in the head of the ring spinner 
(Figure 3) has been analysed in the pres-
ent paper. The geared wheels have been 
chosen arbitrarily for consideration, but 
only from those which allow determina-
tion of the total even stretch Equation (1) 
initial stretch, see Equation (2) and final-
ly, main stretch, see Equation (3).

During the operation of machines, the 
geared wheels are subjected to variable 
loading which can cause damage, espe-
cially fatigue damage. The phenomena 
which occur most frequently are defects 
of the drive system e.g. fatigue cracks 
near the tooth foot.

As a crack, one considers this imper-
fection of the material structure to have 
a particular size and shape. When the 
material is loaded, the crack surfaces can 
open or be displaced in relation to each 
other, whereas in the unloaded state these 
surfaces can contact each other. Cracks 
can penetrate throughout an element 

Figure 3. Scheme of the drive system of the stretching apparatus of the Fiomax 2000 ring spinner [11].

(Figure 4.a), can exist in its internal vol-
ume e.g. defect of the crystal structure, 
(Figure 4.b) or partly penetrate into the 
material interior (Figure 4.c).

In theoretical and practical considera-
tions, the terms ‘crevice’, ‘rupture’ are 
also considered. In so-called fracture me-
chanics, a ‘crack’ represents a real defect 

Equation (1), (2) and (3).

Figure 4. a) In-plane crack (throughout), b) internal crack (void), c) edge crack.

a) b) c)
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= 22,199, (1) 
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inside the material. A crevice has a theo-
retically radius of curvature equal to zero 
at its tip (Figure 5).

As a cracking process, we consider the 
growth of a crack to consist in an in-
crease in its characteristic dimension i.e. 
length. Regarding the front (tip) of the 
crack, we consider its edge to be inside 
the material.

In general, three characteristic models of 
crack propagation – proposed by Irwin 
– are considered, i.e. a crack of mode 
I (opening) excited by tension stress, 
a crack of mode II (longitudinal shear) 
excited by shear loading acting parallel 
to the cracking plane and perpendicular 
to the crack front, as well as a crack of 
mode III (tangential shear) excited by 
shear loading parallel to the crack front 
(Figure 6).

The main factors which have an essen-
tial influence on the crack direction and 
propagation are the loading and material 
structure. The process of crack initiation 
can take place in the following structure 
forms [39]:
n	 slip bands,
n	 boundaries of grains,
n	 undersurface inclusions (very rare). 

Other indicators like heat-chemical and 
mechanical treatment of material surfac-
es, the work environment and the var-
iability of loading also have an crucial 
influence.
Depending on the material structure, the 
causes of cracks arising/occurring can be 
divided into following types:
n	 point defects (Figure 7) – in fact, one 

can distinguish four types of defects:  
1 – vacancies (empty place –Schot-
thy’s defect), 2 – inter-node atom, 
3 – improper atom (inter-node), 4 – 
improper atom in the exact structure 
node,

n	 dislocations (Figure 8) – along an 
edge (the plane of the additional plane 
exists in a crystal volume), screw 
dislocations (i.e. defect of the crystal 
structure caused by the displacement 
of part of the crystal volume around 
the particular axis).

Cracks passing along the grain bounda-
ries frequently exist in the case of high 
stress amplitudes and at high tempera-
tures. Sometimes even a relatively mod-
erate force can cause that the inter-par-
ticle bonds are subject to damage. Weak 
bonds caused that molecular crystals are 

Figure 6. Models of crack propagation: mode I – crack of opening, mode II – crack of  
(in-plane) longitudinal shear, mode III – crack of (out-of-plane) tangent shear.

Figure 5. a) Crack ρ ≠ 0, b) crevice ρ = 0.

a) b)

Figure 8. Linear defects in material (dislocations) [9].

Figure 7. Point defects of crystals. 
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susceptible to deformations. An exem-
plary crack propagation along the grain 
boundaries is presented in Figure 9.

Exemplary scenarios of crack propaga-
tions [10] are shown in Figure 10. Three 
curves representing crack propagation 
are drawn as a function depending on 
the following ratio: the number loading 
cycles N nin relation to the fatigue life 
N (until breakage). The points on the ab-
scissa axis are related to the percentage, 
whereas the axis of ordinates represent 
an increase in the crack length (semi-log 
coordinate system).

As can be noticed, crack initiation is not 
always connected with its propagation. 
Similarly not every defect or initiated 
crack could be identified or detected.

Exemplary models of crack propagation 
are presented in Figure 11.

High stress concentration appears around 
the crack tip. Crack propagation is caused 
by an outbreak of slip planes, whereas 
the propagation and length increase of 
the crack occurs in the direction of the 
presence of tangent stresses (Figure 11, 
level 1 and 2). Under active loading, the 
crack opens consecutively and an in-
crease in its length occurs simultaneously 
Δa (Figure 11, level 3). Strengthening of 
the material and increasing stresses cause 
blunting of the crack tip (Figure 11, 
level 4). During one cycle of loading, 
the crack propagates by Δa. Around the 
elastic surrounding of the crack tip, small 
plastic deformations occur. An increase 
in plastic deformations takes place along
with an increase in loading. Assuming 
that the acting load has a variable charac-
ter, then due to changes in the directions 

Figure 9. Loss of cohesion of material: a)trans-crystal (crack crossing through grains); b) inter-
crystal (crack going along grain boundaries) [9].

Figure 10. Different scenarios of fatigue crack propagation [10].

Figure 11. Exemplary model of crack propagation [9].

a)

b)
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level 3). Strengthening of the material and increasing stresses cause blunting of the crack tip 

(Fig. 11, level 4). During one cycle of loading, the crack propagates by a . Around the elastic 

surrounding of the crack tip, small plastic deformations occur. An increase in plastic 

deformations takes place along 

with an increase in loading. Assuming that the acting load has a variable character, then due 

to  changes in the directions of the acting force,  the closing of edges near the crack tip takes 

place as well as the arising of plastic deformations  (Fig. 11, level 5). 

 

Prediction of the working time of the stretching gear of the Fiomnax 2000 ring spinner 

Usually the detection of a fatigue crack at the tooth foot implies the immediate 

switching off of the drive system. The sudden suspension of the technological process is 

frequently connected with high economic losses. Therefore there is a need for the preparation 

of methodology for determination of the time when a particular crack reaches the critical 

length. The aims of these attempts are the assurance of continuous technological processes as 

well as minimisation of losses due to the sudden suspension of production. 

A model which enables prediction of the time for reaching the critical crack length (for crack 

growing at tooth foot ) is derived by solving the modified Paris law [1, 12]: 
𝑑𝑑𝑙𝑙
𝑑𝑑𝑁𝑁 = 𝐶𝐶 ∙  ∆𝐾𝐾 𝑙𝑙  𝑚𝑚 . 

 

(4) 

Relationship (4) is a commonly applied equation describing the velocity of fatigue crack 

propagation. Paris, in his publication, stated that velocity of cracking depends on stress 

intensity coefficient 𝐾𝐾. According to this concept, crack propagation is governed by the 

variability of local stresses in the crack tip, whereas coefficient 𝐾𝐾 describes the effect of load 

action and the stress field in the area around (neighborhood of) the tip. Depending on the 

crack model considered (Fig. 6), one should distinguish adequate stress intensity coefficients: 

crack opening - 𝐾𝐾𝐼𝐼, crack under longitudinal shear - 𝐾𝐾𝐼𝐼𝐼𝐼  and for a crack relevant to tangent 

shear - 𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼 . In general, the stress intensity coefficient 𝐾𝐾 is expressed by the following 

formula:  

𝐾𝐾 = 𝜍𝜍 ∙  𝛼𝛼 ∙ 𝜋𝜋 ∙ 𝑙𝑙, (5) 

where: 𝜍𝜍 external stress at the crack tip, 𝛼𝛼 – parameter depending on the shape of the 

specimen and crack geometrical form. 

   (5)

where: σ external stress at the crack tip, 
α – parameter depending on the shape of 
the specimen and crack geometrical form.

In the present paper, we utilise the formu-
la for determination of the range of the 
stress intensity coefficient ΔK as a func-
tion of the range of the relevant stress, 
i.e.: Δσ = σF > ΔσF lim and the ultimate 
length of the crack l: 
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In the present paper, we utilise the formula for determination of the range of the stress 

intensity coefficient ∆𝐾𝐾 as a  function of the range of the relevant stress, i.e.: ∆𝜍𝜍 = 𝜍𝜍𝐹𝐹 >
∆𝜍𝜍𝐹𝐹 𝑙𝑙𝑖𝑖𝑚𝑚  and the ultimate length of the crack 𝑙𝑙:  

∆𝐾𝐾 = ∆𝜍𝜍 ∙  𝜋𝜋 ∙ 𝑎𝑎 = 𝜍𝜍𝐹𝐹 ∙  𝜋𝜋 ∙ 𝑎𝑎. (6) 

Coefficients 𝐶𝐶 and 𝑚𝑚 – which appear in  formula (4) – are  material-based constants 

determined via experimental investigations.  

The parameters of the model were determined based on the results of investigations of geared 

wheel-specimens made of 1.6523 (20 HNM) steel. Similar (equivalent) materials considered 

in different countries are listed in Table 1 for comparison. 

 

Table 1. Equivalent materials for 20HNM steel – utilized for manufacturing of the geared 

wheel  specimens 

Polska UE USA France Japan China Russia 

20HNM 1.6523 8617 20NCD2 SNCM220 20CrNiMo 20HGNM 

Technical specifications i.e. geometrical parameters of the geared wheels. are listed in Table 

2. Within the framework of the experiments, a pair of idler gear wheels of a FIOMAX spinner 

were utilised. The adequate tooth numbers were as follows:  𝑧𝑧1 = 39 and 𝑧𝑧2 = 64 [11], 

respectively. The wheels were subjected to  heat treatment, carburization, nitration and 

hardening (reaching hardness: 58 ± 2 HRC). Investigations were performed ona hydro-

pulsating test machine, at a maximal pressure force equal to 150 kN. The experimental tooth 

loading applied had a constant-amplitude, sinusoidal course of 30 Hz frequency [38]. 

Table 2. Parameters of the geared wheels investigated [11] 

Normal module mn 2.0 

Pressure angle 𝛼𝛼𝑛𝑛  20 deg 

Number of teeth z1 39 

Helix angle 𝛽𝛽 0 deg 

Correction coefficient x 0 

Radius of reference tooth shape 𝜌𝜌𝑕𝑕𝑓𝑓  0,5 

Addendum height  hfp 2,5 

 

The following measurements were performed: measurements of fatigue crack propagation for 

12 teeth of the wheel-specimen, And the loading acting in the direction normal to the pitch 

 (6)

Coefficients C and m – which appear in 
formula (4) – are material-based con-
stants determined via experimental in-
vestigations. 

The parameters of the model were deter-
mined based on the results of investiga-
tions of geared wheel-specimens made of 
1.6523 (20 HNM) steel. Similar (equiv-
alent) materials considered in different 
countries are listed in Table 1 for com-
parison. 

Technical specifications i.e. geometri-
cal parameters of the geared wheels. are 
listed in Table 2. Within the framework 
of the experiments, a pair of idler gear 
wheels of a FIOMAX spinner were uti-
lised. The adequate tooth numbers were 
as follows: z1 = 39 and z2 = 64 [11], re-
spectively. The wheels were subjected 
to heat treatment, carburization, nitra-
tion and hardening (reaching hardness: 
58 ± 2 HRC). Investigations were per-
formed ona hydro-pulsating test ma-
chine, at a maximal pressure force equal 
to 150 kN. The experimental tooth load-
ing applied had a constant-amplitude, si-
nusoidal course of 30 Hz frequency [38].

The following measurements were 
performed: measurements of fatigue 
crack propagation for 12 teeth of the 
wheel-specimen, And the loading act-
ing in the direction normal to the pitch 
diameter, which caused a bending stress 
equal to 1500 MPa. Measurement of the 
fatigue crack length were performed by 
means of a laboratory microscope, after 
every 5×104 cycles from the moment of 
crack detection. 

In Figure 12, curves of growth of the fa-
tigue crack depending on the number of 
loading cycles are shown.

Based on an analysis of the data shown in 
Figure 12, one can state that it is possible 

Table 1. Equivalent materials for 20HNM steel – utilized for manufacturing of the geared 
wheel specimens.

Poland EU USA France Japan China Russia
20HNM 1.6523 8617 20NCD2 SNCM220 20CrNiMo 20HGNM

Table 2. Parameters of the geared wheels investigated [11].
Normal module mn 2.0
Pressure angle αn 20 deg
Number of teeth z1 39
Helix angle β 0 deg
Correction coefficient x 0
Radius of reference tooth shape ρhf 0,5
Addendum height hfp 2,5

Table 3. Constants C and m for the Paris model determined for the experimental data shown 
in Figure 12.

Test no. 1 2 3 4 5 6
C × 1011 4.724 4.213 0.172 0.178 0.349 1.323

m 1.913 1.929 2.472 2.449 2.325 2.073
Test no. 7 8 9 10 11 12
C × 1011 5.149 5.562 2.645 3.688 1.079 1.523

m 1.872 1.848 2.364 1.928 2.132 2.041

Table 4. Constants of Paris law determined for the empirical data shown in Figure 13.
Test no. 1 2 3 4 5 6
C × 1011 1.381 1.081 0.908 0.573 0.437 0.437

m 2.1 2.14 2.168 2.24 2.28 2.28
Test no. 7 8 9 10 11 12
C × 1011 0.282 0.240 0.240 0.221 0.211 0.172

m 2.34 2.36 2.36 2.37 2.395 2.395

of the acting force, the closing of edges 
near the crack tip takes place as well as 
the arising of plastic deformations (Fig-
ure 11, level 5).

	 Prediction of the working time 
of the stretching gear of the 
Fiomnax 2000 ring spinner

Usually the detection of a fatigue crack 
at the tooth foot implies the immedi-
ate switching off of the drive system. 
The sudden suspension of the technolog-
ical process is frequently connected with 
high economic losses. Therefore there is 
a need for the preparation of methodol-
ogy for determination of the time when 
a particular crack reaches the critical 
length. The aims of these attempts are 
the assurance of continuous technologi-
cal processes as well as minimisation of 
losses due to the sudden suspension of 
production.

A model which enables prediction of the 
time for reaching the critical crack length 

(for crack growing at tooth foot ) is de-
rived by solving the modified Paris law 
[1, 12]:
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level 3). Strengthening of the material and increasing stresses cause blunting of the crack tip 

(Fig. 11, level 4). During one cycle of loading, the crack propagates by a . Around the elastic 

surrounding of the crack tip, small plastic deformations occur. An increase in plastic 

deformations takes place along 

with an increase in loading. Assuming that the acting load has a variable character, then due 

to  changes in the directions of the acting force,  the closing of edges near the crack tip takes 

place as well as the arising of plastic deformations  (Fig. 11, level 5). 

 

Prediction of the working time of the stretching gear of the Fiomnax 2000 ring spinner 

Usually the detection of a fatigue crack at the tooth foot implies the immediate 

switching off of the drive system. The sudden suspension of the technological process is 

frequently connected with high economic losses. Therefore there is a need for the preparation 

of methodology for determination of the time when a particular crack reaches the critical 

length. The aims of these attempts are the assurance of continuous technological processes as 

well as minimisation of losses due to the sudden suspension of production. 

A model which enables prediction of the time for reaching the critical crack length (for crack 

growing at tooth foot ) is derived by solving the modified Paris law [1, 12]: 
𝑑𝑑𝑙𝑙
𝑑𝑑𝑁𝑁 = 𝐶𝐶 ∙  ∆𝐾𝐾 𝑙𝑙  𝑚𝑚 . 

 

(4) 

Relationship (4) is a commonly applied equation describing the velocity of fatigue crack 

propagation. Paris, in his publication, stated that velocity of cracking depends on stress 

intensity coefficient 𝐾𝐾. According to this concept, crack propagation is governed by the 

variability of local stresses in the crack tip, whereas coefficient 𝐾𝐾 describes the effect of load 

action and the stress field in the area around (neighborhood of) the tip. Depending on the 

crack model considered (Fig. 6), one should distinguish adequate stress intensity coefficients: 

crack opening - 𝐾𝐾𝐼𝐼, crack under longitudinal shear - 𝐾𝐾𝐼𝐼𝐼𝐼  and for a crack relevant to tangent 

shear - 𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼 . In general, the stress intensity coefficient 𝐾𝐾 is expressed by the following 

formula:  

𝐾𝐾 = 𝜍𝜍 ∙  𝛼𝛼 ∙ 𝜋𝜋 ∙ 𝑙𝑙, (5) 

where: 𝜍𝜍 external stress at the crack tip, 𝛼𝛼 – parameter depending on the shape of the 

specimen and crack geometrical form. 

   (4)

Relationship (4) is a commonly ap-
plied equation describing the velocity 
of fatigue crack propagation. Paris, in 
his publication, stated that velocity of 
cracking depends on stress intensity co-
efficient K. According to this concept, 
crack propagation is governed by the 
variability of local stresses in the crack 
tip, whereas coefficient K describes the 
effect of load action and the stress field 
in the area around (neighborhood of) 
the tip. Depending on the crack model 
considered (Figure 6), one should dis-
tinguish adequate stress intensity coeffi-
cients: crack opening – KI, crack under 
longitudinal shear – KII and for a crack 
relevant to tangent shear – KIII. In gen-
eral, the stress intensity coefficient K is 
expressed by Equation (5):
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to determine the working time of a wheel 
(of the drive system) as a function of 
crack growth (near tooth foot) depending 
on the loading excited. For a crack length 
greater than 2 mm, accelerated fatigue 
crack growth was observed.

	 Determination of constants 
in Paris-Erdogan equation

In the second phase of investigations, 
constants C and m for the Paris model (4) 
were established based on experimental 
results. These constants were derived 
utilising the modified method of definite 
integral [2]. The results obtained are pre-
sented in Table 3.

In Figure 13, a chart of the relationship 
of constant C against exponent m is 
shown. It was made utilizing the exper-
imental data gathered in Table 3. 

Based on an analysis of the chart, one can 
conclude that constants C and m depend 
on one another and the adequate relation-
ship can be expressed by means of a par-
ticular function. For the data presented in 
Figure 13, the approximation relation-
ship between C and m is proposed in the 
following form:
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𝐶𝐶 × 1011 4.724 4.213 0.172 0.178 0.349 1.323 
𝑚𝑚 1.913 1.929 2.472 2.449 2.325 2.073 
Test no. 7 8 9 10 11 12 
𝐶𝐶 × 1011 5.149 5.562 2.645 3.688 1.079 1.523 
𝑚𝑚 1.872 1.848 2.364 1.928 2.132 2.041 
 

In Fig. 13, a chart of the relationship of constant 𝐶𝐶 against exponent 𝑚𝑚 is shown. It was made 

utilizing the experimental data gathered in Table 3.  

 
Fig. 13. Funkcja aproksymująca stałe materiałowe 𝐶𝐶 i 𝑚𝑚 zestawione w tabeli 3 

 
Based on an analysis of the chart, one can conclude that constants 𝐶𝐶 and 𝑚𝑚 depend on one 

another and the adequate relationship can be expressed by means of a particular function. For 

the data presented in Fig. 13, the approximation relationship between 𝐶𝐶 and 𝑚𝑚 is proposed in 

the following form: 

 𝐶𝐶 𝑚𝑚 = 𝑎𝑎0 ∙ 𝑚𝑚𝑎𝑎1 + 𝑎𝑎2.   (7) 

Where, coefficients 𝑎𝑎0 = 7,49 × 10−8,𝑎𝑎1 =  −11,435, &𝑎𝑎2 = −1,675 × 10−12  have been 

determined by means of the method of minimization of the average square error between the 

data given in Table 3 and those calculated utilizing the approximation function (7). Inserting 

formula (7) into (4), we obtain the following equation: 
𝑑𝑑𝑙𝑙
𝑑𝑑𝑁𝑁 = (𝑎𝑎0 ∙ 𝑚𝑚𝑎𝑎1 + 𝑎𝑎2) ∙ (𝛥𝛥𝐾𝐾 𝑙𝑙 )𝑚𝑚 .      (8) 

 

Furthermore utilizing formula (6) for approximation of the empirical data, we obtained the 

constants of the model - gathered in Table 4. 

   (7)

Where, coefficients a0 = 7.49 × 10–8,  
a1 = −11.435, & a2 = −1.675 × 10−12 have 
been determined by means of the method 
of minimization of the average square er-
ror between the data given in Table 3 and 
those calculated utilizing the approxima-
tion function (7). Inserting Equation (7) 
into (4), we obtain the following Equa-
tion:
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Figure 15. Bar chart (histogram) of times of reaching the critical value by 
the fatigue crack for 1.6523 (20HNM) steel and stresses at the tooth foot  
σF = 1500 MPa in the drive system of a Fiomax 2000 spinner.

Figure 14. Comparison of fracture curves obtained based on the 
solution of Equations (8) and (4) with empirical data relevant to 
test no 3.

Figure 13. Approximation function of C and m summarized in 
Table 3.

Figure 12. Curves representing growth of fatigue cracks at the 
tooth foot for 12 geared wheels loaded at moment M = 750 MPa, 
manufactured of 1.6523 (20HNM) steel.

Furthermore utilizing Equation (6) for 
approximation of the empirical data, we 
obtained the constants of the model – 
gathered in Table 4.

In Figure 14, there are exemplary solu-
tions of Equations (8) and (4) related to 
the data collected during test no 3, pre-
pared according to the items shown in 
Tables 3 and 4, respectively. Based on an 
analysis of the charts, we can draw the 
conclusion that the application of Equa-
tion (8) gives some errors in comparison 
to empirical data describing the growth of 
the fatigue crack in time. If the points of 
chart 14 are placed on the approximation 
curve, then we obtain the compatibility 
of the crack growth chart with the empir-
ical data. A characteristic phenomenon is 
the incompatibility of data determined by 
means of Equation (8) within the mid-
dle range of the process of crack growth, 
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whereas in the final range the empirical 
and model-based data overlap each other. 
In industrial practice, an engineer is inter-
ested in the time when the crack reaches 
the ultimate size, after which final tooth 
breakage takes place. Thus one could 
utilize Equation (8) due to the compat-
ibility of results with empirical data in 
the upper range of the crack growth chart 
(curve of fracture).

	 Prediction of the number 
of fatigue cycles acting 
on the geared wheel of 
the spinner drive system until 
reaching the crack critical length 

Assuming that the probability distribu-
tion value m in Equation (8) is uniform 
(even) within the range mmin ≤ mi ≤ mmax, 
the time (number of cycles) until the 
crack reaches the ultimate value can be 
determined using the transformed rela-
tionship (8): 
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Assuming that the probability distribution value 𝑚𝑚 in formula (8) is uniform (even) within the 

range 𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑚𝑚𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 , the time (number of cycles) until the crack reaches the ultimate 

value  can be determined using the transformed relationship (8):  

𝑁𝑁𝑖𝑖 =  1
(𝑎𝑎2 + 𝑎𝑎0∙𝑚𝑚𝑖𝑖1) ∙ ∆𝐾𝐾(𝑙𝑙)𝑚𝑚𝑖𝑖 𝑑𝑑𝑙𝑙.

𝑙𝑙𝑘𝑘𝑟𝑟

𝑙𝑙𝑚𝑚𝑖𝑖𝑛𝑛

 (9) 

where: 𝑚𝑚𝑖𝑖  – value of exponent 𝑚𝑚 established within the range  𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑚𝑚𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 , 𝑙𝑙𝑘𝑘𝑟𝑟  – 

critical crack length, 𝑙𝑙𝑚𝑚𝑖𝑖𝑛𝑛  – minimal crack length.  

In Fig. 15, we present a histogram of the distribution of time Ni of reaching the critical fatigue 

crack length by the tooth foot /material 1.6523 (20HNM) steel/. A bar chart was prepared 

taking into account 200 values of parameter 𝑚𝑚 within the interval 2.14 ≤ 𝑚𝑚 ≤ 2.395 for 

stresses near the tooth foot equal to 𝜍𝜍𝐹𝐹 = 1374 𝑀𝑀𝑃𝑃𝑎𝑎, critical crack length 𝑙𝑙𝑘𝑘𝑟𝑟 = 2,4 𝑚𝑚𝑚𝑚 and 

minimal crack length 𝑙𝑙𝑚𝑚𝑖𝑖𝑛𝑛 = 0,05 𝑚𝑚𝑚𝑚. 

 
Fig. 15. Bar chart (histogram) of times of reaching the critical value by the fatigue crack  

for 1.6523 (20HNM) steel and stresses at the tooth foot 𝜍𝜍𝐹𝐹 = 1500 𝑀𝑀𝑃𝑃𝑎𝑎  

in the drive system of a Fiomax 2000 spinner 

 

Based on an analysis of the data shown in the chart, one can state that the longer the operating 

time of the geared wheel, the lower its fatigue life. The highest fatigue life was achieved in 

the following interval (4.3 – 4.5) x 105 cycles. The scatter is connected, as usual, with the 

propagation of defects or a particular damage mechanism.  

In practice, it means that the recommended change of the geared wheel should be made before  

the performance of 3 x106  cycles (ISO 6336-3:2006, Calculation of load capacity of spur and 

helical gears - Part 3: Calculation of tooth bending strength).  

Due to the wear of the most frequently cooperating geared wheels, their continuous 

monitoring (SHM) is recommended. Taking into account the quality of the products as well as 

 

(9)

where: mi – value of exponent m estab-
lished within the range mmin ≤ mi ≤ mmax, 
lkr – critical crack length, lmin – minimal 
crack length. 

In Figure 15 (see page 141), we pres-
ent a histogram of the distribution of 
time Ni of reaching the critical fatigue 
crack length by the tooth foot /material 
1.6523 (20HNM) steel/. A bar chart was 
prepared taking into account 200 val-
ues of parameter m within the interval  
2.14 ≤ m ≤ 2.395 for stresses near the 
tooth foot equal to σF = 1374 MPa, criti-

cal crack length lkr = 2,4 mm and minimal 
crack length lmin = 0,05 mm.

Based on an analysis of the data shown 
in the chart, one can state that the longer 
the operating time of the geared wheel, the 
lower its fatigue life. The highest fatigue 
life was achieved in the following interval 
(4.3 – 4.5) x 105 cycles. The scatter is con-
nected, as usual, with the propagation of 
defects or a particular damage mechanism. 

In practice, it means that the recommend-
ed change of the geared wheel should be 
made before the performance of 3 x 106 
cycles (ISO 6336-3:2006, Calculation of 
load capacity of spur and helical gears 
– Part 3: Calculation of tooth bending 
strength). 

Due to the wear of the most frequently co-
operating geared wheels, their continuous 
monitoring (SHM) is recommended. Tak-
ing into account the quality of the prod-
ucts as well as the manufacture profile 
relating to the assortment and thickness 
of yarns, the change of the most utilised 
geared wheels in the stretching apparatus 
has to be made at least once per two years.

Utilizing the commercial package Sta-
tistica, it was stated that the most suit-
able distribution which approximates 
the bar chart (histogram) is asymptotic 
Gumbel’s distribution, having the dis-
tribution density function given in the 
standard [3, 5]:
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the manufacture profile relating to the assortment and thickness of yarns, the change of the 

most utilised geared wheels in the stretching apparatus  has to be made at least once per two 

years. 

Utilizing the commercial package Statistica, it was stated that the most suitable distribution 

which approximates the bar chart (histogram) is asymptotic Gumbel’s distribution, having the 

distribution density function given in the standard [3]: 

 𝑓𝑓 𝑦𝑦 = 𝛼𝛼 ∙ 𝑒𝑒𝑥𝑥𝑝𝑝 −𝛼𝛼 ∙  𝑦𝑦 − 𝑢𝑢 − 𝑒𝑒−𝛼𝛼∙ 𝑦𝑦−𝑢𝑢   .  (10) 

Central moments of the distribution (mean value and variance) are expressed by the following 

formulas: 

 𝑚𝑚𝑦𝑦 = 𝑢𝑢 + 𝛿𝛿
𝛼𝛼  ;     𝜍𝜍𝑦𝑦2 = 𝜋𝜋2

6∙𝛼𝛼2,  (11) 

where: δ – Euler constant, equal to 𝛿𝛿 ≈ 0,577. 

The distribution parameters (8) for  1.6523 (20 HNM) steel were as follows: my =4.594·105,  

σy = 3.557·104, u = 4.434·104 , α = 3.605·10-5. 

Reliability i.e. the probability that after the passage of Ni cycles, a particular crack reaches the 

critical length 𝑙𝑙𝑘𝑘𝑟𝑟  – is expressed by the following  formula: 

 𝑅𝑅 =  𝑓𝑓 𝑦𝑦 𝑑𝑑𝑦𝑦𝑦𝑦1
0  .  (12) 

 

Verification of the numerical model 

During machine operation, diagnostics symptoms were registered which indicated an 

initiation of the damage process of the gear teeth in the drive system of the Fiomax 200 

spinner. Based on eye inspection of toothing, a crack near the tooth foot of a length equal to 

approx. 0,5 mm was detected. The time of gear operation until reaching the critical crack 

length 𝑙𝑙𝑘𝑘𝑟𝑟 = 2,14 𝑚𝑚𝑚𝑚 was evaluated. A fatigue crack was spotted on the pinion of the first 

stage of the reducer, working at a constant rotational velocity 𝑛𝑛 = 1460 obr/min. The pinion 

was made of 1.6523(20 HNM) steel, hardened up to 60±2 HRC. Geometrical parameters of 

the gear tooth are given in Table 2. 

The probability of damage occurrence can be determined based on relationship (9), assuming 

that we know the density distribution function 𝑓𝑓 𝑦𝑦 , whose parameters 𝑢𝑢 and 𝛼𝛼 are calculated 

utilizing  formula (8), if  moments 𝑚𝑚𝑦𝑦  and 𝜍𝜍𝑦𝑦2 ,determined based on  adequate statistics, are 

known. The number of possible cycles 𝑁𝑁𝑖𝑖   until reaching the critical fatigue crack length  is 

determined utilizing  formula (4) after some transformations: 

𝑁𝑁𝑖𝑖 =  1
(7.49 ∙ 10−8 ∙ 𝑚𝑚𝑖𝑖

−11,435 − 1.675 ∙ 10−11) ∙ ∆𝐾𝐾(𝑙𝑙)𝑚𝑚𝑖𝑖
𝑑𝑑𝑙𝑙.

2,4

0,05
 

	 (10)
Central moments of the distribution 
(mean value and variance) are expressed 
by Equation (11):
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the manufacture profile relating to the assortment and thickness of yarns, the change of the 

most utilised geared wheels in the stretching apparatus  has to be made at least once per two 

years. 

Utilizing the commercial package Statistica, it was stated that the most suitable distribution 

which approximates the bar chart (histogram) is asymptotic Gumbel’s distribution, having the 

distribution density function given in the standard [3]: 

 𝑓𝑓 𝑦𝑦 = 𝛼𝛼 ∙ 𝑒𝑒𝑥𝑥𝑝𝑝 −𝛼𝛼 ∙  𝑦𝑦 − 𝑢𝑢 − 𝑒𝑒−𝛼𝛼∙ 𝑦𝑦−𝑢𝑢   .  (10) 

Central moments of the distribution (mean value and variance) are expressed by the following 

formulas: 

 𝑚𝑚𝑦𝑦 = 𝑢𝑢 + 𝛿𝛿
𝛼𝛼  ;     𝜍𝜍𝑦𝑦2 = 𝜋𝜋2

6∙𝛼𝛼2,  (11) 

where: δ – Euler constant, equal to 𝛿𝛿 ≈ 0,577. 

The distribution parameters (8) for  1.6523 (20 HNM) steel were as follows: my =4.594·105,  

σy = 3.557·104, u = 4.434·104 , α = 3.605·10-5. 

Reliability i.e. the probability that after the passage of Ni cycles, a particular crack reaches the 

critical length 𝑙𝑙𝑘𝑘𝑟𝑟  – is expressed by the following  formula: 

 𝑅𝑅 =  𝑓𝑓 𝑦𝑦 𝑑𝑑𝑦𝑦𝑦𝑦1
0  .  (12) 

 

Verification of the numerical model 

During machine operation, diagnostics symptoms were registered which indicated an 

initiation of the damage process of the gear teeth in the drive system of the Fiomax 200 

spinner. Based on eye inspection of toothing, a crack near the tooth foot of a length equal to 

approx. 0,5 mm was detected. The time of gear operation until reaching the critical crack 

length 𝑙𝑙𝑘𝑘𝑟𝑟 = 2,14 𝑚𝑚𝑚𝑚 was evaluated. A fatigue crack was spotted on the pinion of the first 

stage of the reducer, working at a constant rotational velocity 𝑛𝑛 = 1460 obr/min. The pinion 

was made of 1.6523(20 HNM) steel, hardened up to 60±2 HRC. Geometrical parameters of 

the gear tooth are given in Table 2. 

The probability of damage occurrence can be determined based on relationship (9), assuming 

that we know the density distribution function 𝑓𝑓 𝑦𝑦 , whose parameters 𝑢𝑢 and 𝛼𝛼 are calculated 

utilizing  formula (8), if  moments 𝑚𝑚𝑦𝑦  and 𝜍𝜍𝑦𝑦2 ,determined based on  adequate statistics, are 

known. The number of possible cycles 𝑁𝑁𝑖𝑖   until reaching the critical fatigue crack length  is 

determined utilizing  formula (4) after some transformations: 

𝑁𝑁𝑖𝑖 =  1
(7.49 ∙ 10−8 ∙ 𝑚𝑚𝑖𝑖

−11,435 − 1.675 ∙ 10−11) ∙ ∆𝐾𝐾(𝑙𝑙)𝑚𝑚𝑖𝑖
𝑑𝑑𝑙𝑙.

2,4

0,05
 

  (11)

where: δ – Euler constant, equal to  
δ ≈ 0.577.

The distribution parameters (8) for 
1.6523 (20 HNM) steel were as fol-
lows: my = 4.594·105, σy = 3.557·104, 
u = 4.434·104, α = 3.605·10-5.

Reliability i.e. the probability that af-
ter the passage of Ni cycles, a particular 
crack reaches the critical length lkr – is 
expressed by the following formula:
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the manufacture profile relating to the assortment and thickness of yarns, the change of the 

most utilised geared wheels in the stretching apparatus  has to be made at least once per two 

years. 

Utilizing the commercial package Statistica, it was stated that the most suitable distribution 

which approximates the bar chart (histogram) is asymptotic Gumbel’s distribution, having the 

distribution density function given in the standard [3]: 
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where: δ – Euler constant, equal to 𝛿𝛿 ≈ 0,577. 

The distribution parameters (8) for  1.6523 (20 HNM) steel were as follows: my =4.594·105,  

σy = 3.557·104, u = 4.434·104 , α = 3.605·10-5. 

Reliability i.e. the probability that after the passage of Ni cycles, a particular crack reaches the 

critical length 𝑙𝑙𝑘𝑘𝑟𝑟  – is expressed by the following  formula: 

 𝑅𝑅 =  𝑓𝑓 𝑦𝑦 𝑑𝑑𝑦𝑦𝑦𝑦1
0  .  (12) 

 

Verification of the numerical model 

During machine operation, diagnostics symptoms were registered which indicated an 

initiation of the damage process of the gear teeth in the drive system of the Fiomax 200 

spinner. Based on eye inspection of toothing, a crack near the tooth foot of a length equal to 

approx. 0,5 mm was detected. The time of gear operation until reaching the critical crack 

length 𝑙𝑙𝑘𝑘𝑟𝑟 = 2,14 𝑚𝑚𝑚𝑚 was evaluated. A fatigue crack was spotted on the pinion of the first 

stage of the reducer, working at a constant rotational velocity 𝑛𝑛 = 1460 obr/min. The pinion 

was made of 1.6523(20 HNM) steel, hardened up to 60±2 HRC. Geometrical parameters of 

the gear tooth are given in Table 2. 

The probability of damage occurrence can be determined based on relationship (9), assuming 

that we know the density distribution function 𝑓𝑓 𝑦𝑦 , whose parameters 𝑢𝑢 and 𝛼𝛼 are calculated 

utilizing  formula (8), if  moments 𝑚𝑚𝑦𝑦  and 𝜍𝜍𝑦𝑦2 ,determined based on  adequate statistics, are 

known. The number of possible cycles 𝑁𝑁𝑖𝑖   until reaching the critical fatigue crack length  is 

determined utilizing  formula (4) after some transformations: 

𝑁𝑁𝑖𝑖 =  1
(7.49 ∙ 10−8 ∙ 𝑚𝑚𝑖𝑖

−11,435 − 1.675 ∙ 10−11) ∙ ∆𝐾𝐾(𝑙𝑙)𝑚𝑚𝑖𝑖
𝑑𝑑𝑙𝑙.
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0,05
 

   (12)

	 Verification of the numerical 
model

During machine operation, diagnostics 
symptoms were registered which indi-
cated an initiation of the damage process 
of the gear teeth in the drive system of 
the Fiomax 200 spinner. Based on eye 
inspection of toothing, a crack near the 
tooth foot of a length equal to approx. 
0,5 mm was detected. The time of gear 
operation until reaching the critical 
crack length lkr = 2,14 mm was evaluat-
ed. A fatigue crack was spotted on the 
pinion of the first stage of the reducer, 
working at a constant rotational velocity 
n = 1460 obr/min. The pinion was made 
of 1.6523 (20 HNM) steel, hardened up 
to 60 ± 2 HRC. Geometrical parameters 
of the gear tooth are given in Table 2.

The probability of damage occurrence can 
be determined based on Equation (9), as-
suming that we know the density distribu-
tion function f (y), whose parameters u and 
α are calculated utilizing Equation (8), if 
moments my and σ 2

y, determined based on 
adequate statistics, are known. The num-
ber of possible cycles Ni until reaching the 
critical fatigue crack length is determined 
utilizing Equation (4) after some transfor-
mations, see Equation (13).

The values of stress intensity coefficients 
were chosen based on rules given in [30], 
where Equations (14) and (15).
Where additionally:
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The values of stress intensity coefficients were chosen based on rules given in [30], where:  

∆𝐾𝐾 𝑙𝑙 = 𝜍𝜍 ∙  𝜋𝜋 ∙ 𝑙𝑙 ∙  𝐴𝐴1 + 𝐴𝐴2 ∙
𝑙𝑙
𝑏𝑏 + 𝐴𝐴3 ∙  

𝑙𝑙
𝑏𝑏 

2
+ 𝐴𝐴4 ∙  

𝑙𝑙
𝑏𝑏 

3
+ 𝐴𝐴5 ∙  

𝑙𝑙
𝑏𝑏 

4
 , (13) 

𝑏𝑏 =  𝑧𝑧𝑛𝑛 ∙ 𝑠𝑠𝑖𝑖𝑛𝑛  
𝜋𝜋
3 − 𝜗𝜗 +  3 ∙  𝐺𝐺

𝑐𝑐𝑜𝑜𝑠𝑠⁡(𝜗𝜗)−
𝜌𝜌𝑓𝑓𝑃𝑃
𝑚𝑚𝑛𝑛

  ∙ 𝑚𝑚𝑛𝑛 = 4.99. (14) 

 

where additionally: 

𝜌𝜌𝑓𝑓𝑃𝑃  = 0,25 𝑚𝑚𝑛𝑛 , 𝐺𝐺 = 𝜌𝜌𝑓𝑓𝑃𝑃
𝑚𝑚𝑛𝑛

− 𝑕𝑕𝑓𝑓𝑃𝑃
𝑚𝑚𝑛𝑛

+ 𝑥𝑥,  

𝑕𝑕𝑓𝑓𝑃𝑃  = 1,25 𝑚𝑚𝑛𝑛 ,  

𝜗𝜗 – angle, calculated by means of the equation:  𝜗𝜗 = 2∙𝐺𝐺
𝑧𝑧𝑛𝑛
∙ 𝑡𝑡𝑔𝑔 𝜗𝜗 − 𝐻𝐻,   

𝐴𝐴1 = 0,625;𝐴𝐴2 = −2,766; 𝐴𝐴3 = 10,17; 𝐴𝐴4 = −16,178; 𝐴𝐴5 = 10,293; 
2,14 ≤ 𝑚𝑚𝑖𝑖 ≤ 2,395 for  𝑖𝑖 = 1⋯200. 

 

The constants are determined based on the approximation of the stress intensity coefficient 

obtained (in turn) via simulation of the propagation of the fatigue crack in the BEASY 

package for the stress near the tooth foot equal to 1374 MPa. 

The BEASY package [21-22] is an engineering calculation system utilizing the boundary 

element method for the solution of several different problems e.g. related to elastic theory, 

problems of elastic contact as well as cracking. The modules connected with fatigue and 

fracture calculations are based on the procedures designed by the international research team 

Flagro – NASA. Specialized files i.e. NASMFM and NASMFC are added to this package, 

which contain a considerable database of strength properties of versatile materials. 

In Fig. 16, charts of changes in the stress intensity coefficient and its approximation function 

are shown. 

hfP = 1,25 mn,
ϑ – angle, calculated by means of the 
equation: 
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The values of stress intensity coefficients were chosen based on rules given in [30], where:  
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𝑏𝑏 + 𝐴𝐴3 ∙  

𝑙𝑙
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+ 𝐴𝐴4 ∙  

𝑙𝑙
𝑏𝑏 

3
+ 𝐴𝐴5 ∙  

𝑙𝑙
𝑏𝑏 

4
 , (13) 

𝑏𝑏 =  𝑧𝑧𝑛𝑛 ∙ 𝑠𝑠𝑖𝑖𝑛𝑛  
𝜋𝜋
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𝜌𝜌𝑓𝑓𝑃𝑃
𝑚𝑚𝑛𝑛

  ∙ 𝑚𝑚𝑛𝑛 = 4.99. (14) 

 

where additionally: 

𝜌𝜌𝑓𝑓𝑃𝑃  = 0,25 𝑚𝑚𝑛𝑛 , 𝐺𝐺 = 𝜌𝜌𝑓𝑓𝑃𝑃
𝑚𝑚𝑛𝑛

− 𝑕𝑕𝑓𝑓𝑃𝑃
𝑚𝑚𝑛𝑛

+ 𝑥𝑥,  

𝑕𝑕𝑓𝑓𝑃𝑃  = 1,25 𝑚𝑚𝑛𝑛 ,  

𝜗𝜗 – angle, calculated by means of the equation:  𝜗𝜗 = 2∙𝐺𝐺
𝑧𝑧𝑛𝑛
∙ 𝑡𝑡𝑔𝑔 𝜗𝜗 − 𝐻𝐻,   

𝐴𝐴1 = 0,625;𝐴𝐴2 = −2,766; 𝐴𝐴3 = 10,17; 𝐴𝐴4 = −16,178; 𝐴𝐴5 = 10,293; 
2,14 ≤ 𝑚𝑚𝑖𝑖 ≤ 2,395 for  𝑖𝑖 = 1⋯200. 

 

The constants are determined based on the approximation of the stress intensity coefficient 

obtained (in turn) via simulation of the propagation of the fatigue crack in the BEASY 

package for the stress near the tooth foot equal to 1374 MPa. 

The BEASY package [21-22] is an engineering calculation system utilizing the boundary 

element method for the solution of several different problems e.g. related to elastic theory, 

problems of elastic contact as well as cracking. The modules connected with fatigue and 

fracture calculations are based on the procedures designed by the international research team 

Flagro – NASA. Specialized files i.e. NASMFM and NASMFC are added to this package, 

which contain a considerable database of strength properties of versatile materials. 

In Fig. 16, charts of changes in the stress intensity coefficient and its approximation function 

are shown. 

A1 = 0.625; A2 = −2.766; A3 = 10.17;  
A4 = −16.178; A5 = 10.293;
2.14 ≤ mi ≤ 2.395 for i = 1 ··· 200.
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the manufacture profile relating to the assortment and thickness of yarns, the change of the 

most utilised geared wheels in the stretching apparatus  has to be made at least once per two 

years. 

Utilizing the commercial package Statistica, it was stated that the most suitable distribution 

which approximates the bar chart (histogram) is asymptotic Gumbel’s distribution, having the 

distribution density function given in the standard [3]: 

 𝑓𝑓 𝑦𝑦 = 𝛼𝛼 ∙ 𝑒𝑒𝑥𝑥𝑝𝑝 −𝛼𝛼 ∙  𝑦𝑦 − 𝑢𝑢 − 𝑒𝑒−𝛼𝛼∙ 𝑦𝑦−𝑢𝑢   .  (10) 

Central moments of the distribution (mean value and variance) are expressed by the following 

formulas: 

 𝑚𝑚𝑦𝑦 = 𝑢𝑢 + 𝛿𝛿
𝛼𝛼  ;     𝜍𝜍𝑦𝑦2 = 𝜋𝜋2

6∙𝛼𝛼2,  (11) 

where: δ – Euler constant, equal to 𝛿𝛿 ≈ 0,577. 

The distribution parameters (8) for  1.6523 (20 HNM) steel were as follows: my =4.594·105,  

σy = 3.557·104, u = 4.434·104 , α = 3.605·10-5. 

Reliability i.e. the probability that after the passage of Ni cycles, a particular crack reaches the 

critical length 𝑙𝑙𝑘𝑘𝑟𝑟  – is expressed by the following  formula: 

 𝑅𝑅 =  𝑓𝑓 𝑦𝑦 𝑑𝑑𝑦𝑦𝑦𝑦1
0  .  (12) 

 

Verification of the numerical model 

During machine operation, diagnostics symptoms were registered which indicated an 

initiation of the damage process of the gear teeth in the drive system of the Fiomax 200 

spinner. Based on eye inspection of toothing, a crack near the tooth foot of a length equal to 

approx. 0,5 mm was detected. The time of gear operation until reaching the critical crack 

length 𝑙𝑙𝑘𝑘𝑟𝑟 = 2,14 𝑚𝑚𝑚𝑚 was evaluated. A fatigue crack was spotted on the pinion of the first 

stage of the reducer, working at a constant rotational velocity 𝑛𝑛 = 1460 obr/min. The pinion 

was made of 1.6523(20 HNM) steel, hardened up to 60±2 HRC. Geometrical parameters of 

the gear tooth are given in Table 2. 

The probability of damage occurrence can be determined based on relationship (9), assuming 

that we know the density distribution function 𝑓𝑓 𝑦𝑦 , whose parameters 𝑢𝑢 and 𝛼𝛼 are calculated 

utilizing  formula (8), if  moments 𝑚𝑚𝑦𝑦  and 𝜍𝜍𝑦𝑦2 ,determined based on  adequate statistics, are 

known. The number of possible cycles 𝑁𝑁𝑖𝑖   until reaching the critical fatigue crack length  is 

determined utilizing  formula (4) after some transformations: 

𝑁𝑁𝑖𝑖 =  1
(7.49 ∙ 10−8 ∙ 𝑚𝑚𝑖𝑖

−11,435 − 1.675 ∙ 10−11) ∙ ∆𝐾𝐾(𝑙𝑙)𝑚𝑚𝑖𝑖
𝑑𝑑𝑙𝑙.

2,4

0,05
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The values of stress intensity coefficients were chosen based on rules given in [30], where:  

∆𝐾𝐾 𝑙𝑙 = 𝜍𝜍 ∙  𝜋𝜋 ∙ 𝑙𝑙 ∙  𝐴𝐴1 + 𝐴𝐴2 ∙
𝑙𝑙
𝑏𝑏 + 𝐴𝐴3 ∙  

𝑙𝑙
𝑏𝑏 

2
+ 𝐴𝐴4 ∙  

𝑙𝑙
𝑏𝑏 

3
+ 𝐴𝐴5 ∙  

𝑙𝑙
𝑏𝑏 

4
 , (13) 

𝑏𝑏 =  𝑧𝑧𝑛𝑛 ∙ 𝑠𝑠𝑖𝑖𝑛𝑛  
𝜋𝜋
3 − 𝜗𝜗 +  3 ∙  𝐺𝐺

𝑐𝑐𝑜𝑜𝑠𝑠⁡(𝜗𝜗)−
𝜌𝜌𝑓𝑓𝑃𝑃
𝑚𝑚𝑛𝑛

  ∙ 𝑚𝑚𝑛𝑛 = 4.99. (14) 

 

where additionally: 

𝜌𝜌𝑓𝑓𝑃𝑃  = 0,25 𝑚𝑚𝑛𝑛 , 𝐺𝐺 = 𝜌𝜌𝑓𝑓𝑃𝑃
𝑚𝑚𝑛𝑛

− 𝑕𝑕𝑓𝑓𝑃𝑃
𝑚𝑚𝑛𝑛

+ 𝑥𝑥,  

𝑕𝑕𝑓𝑓𝑃𝑃  = 1,25 𝑚𝑚𝑛𝑛 ,  

𝜗𝜗 – angle, calculated by means of the equation:  𝜗𝜗 = 2∙𝐺𝐺
𝑧𝑧𝑛𝑛
∙ 𝑡𝑡𝑔𝑔 𝜗𝜗 − 𝐻𝐻,   

𝐴𝐴1 = 0,625;𝐴𝐴2 = −2,766; 𝐴𝐴3 = 10,17; 𝐴𝐴4 = −16,178; 𝐴𝐴5 = 10,293; 
2,14 ≤ 𝑚𝑚𝑖𝑖 ≤ 2,395 for  𝑖𝑖 = 1⋯200. 

 

The constants are determined based on the approximation of the stress intensity coefficient 

obtained (in turn) via simulation of the propagation of the fatigue crack in the BEASY 

package for the stress near the tooth foot equal to 1374 MPa. 

The BEASY package [21-22] is an engineering calculation system utilizing the boundary 

element method for the solution of several different problems e.g. related to elastic theory, 

problems of elastic contact as well as cracking. The modules connected with fatigue and 

fracture calculations are based on the procedures designed by the international research team 

Flagro – NASA. Specialized files i.e. NASMFM and NASMFC are added to this package, 

which contain a considerable database of strength properties of versatile materials. 

In Fig. 16, charts of changes in the stress intensity coefficient and its approximation function 

are shown. 

(14)

(15)
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Fig. 16. Approximation of the stress intensity coefficient 

determined by means of the Beasy system 

 

Central moments for statistics 𝑁𝑁𝑖𝑖  are equal to  𝑚𝑚𝑦𝑦 = 5,221 ∙ 105 & 𝜍𝜍𝑦𝑦 = 4,436 ∙ 104, which,  

in turn,  entered into  relationship (9) allow for the determination of distribution parameters 

𝑢𝑢 =5,022∙ 105& 𝛼𝛼 = 2,898 ∙ 10−5. 

The distribution density function of time (i.e. number of cycles) until reaching the critical 

length by the crack analyzed, determined based on relationship (10), has the following form: 

 

𝑓𝑓 𝑦𝑦 = 2,898 ∙ 10−5 ∙ 𝑒𝑒𝑥𝑥𝑝𝑝 −2,898 ∙ 10−5 ∙  𝑦𝑦 − 5,022 ∙ 105 − 𝑒𝑒−2,898∙10−5 ∙ 𝑦𝑦−5,022 ∙105  . 
(15) 

 

In Fig. 17, a chart of the course of the reliability function against the number of working 

cycles for a gear having a broken tooth (breakage near tooth foot) is presented. 
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Equation (13), (14), (15) and (16).
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The constants are determined based on the 
approximation of the stress intensity coef-
ficient obtained (in turn) via simulation of 
the propagation of the fatigue crack in the 
BEASY package for the stress near the 
tooth foot equal to 1374 MPa.

The BEASY package [21-22] is an engi-
neering calculation system utilizing the 
boundary element method for the solu-
tion of several different problems e.g. re-
lated to elastic theory, problems of elastic 
contact as well as cracking. The modules 
connected with fatigue and fracture cal-
culations are based on the procedures 
designed by the international research 
team Flagro – NASA. Specialized files 
i.e. NASMFM and NASMFC are added 
to this package, which contain a consid-
erable database of strength properties of 
versatile materials.

In Figure 16, charts of changes in the 
stress intensity coefficient and its approx-
imation function are shown.

Central moments for statistics Ni are 
equal to my = 5,221 ∙ 105 & σy = 4,436 ∙ 104, 
which, in turn, entered into relationship 
(9) allow for the determination of distri-
bution parameters u = 5,022 ∙ 105 & α = 
2,898 ∙ 10−5.

The distribution density function of time 
(i.e. number of cycles) until reaching the 
critical length by the crack analyzed, de-
termined based on relationship (10), has 
the following form, see Equation (16).

In Figure 17, a chart of the course of the 
reliability function against the number of 
working cycles for a gear having a bro-

Figure 16. Approximation of the stress intensity coefficient 
determined by means of the Beasy system.

Figure 17. Reliability function for toothing operation against number 
of cycles, for stress equal to σ = 1316 MPa and value x = 0.005 mm. 

ken tooth (breakage near tooth foot) is 
presented.

Assuming an allowable value of the re-
liability function at a probability level 
equal to 0.95, we can determine the time 
of operation of a gear with a propagating 
fatigue crack until reaching the critical 
value (not exceeding θ = 1.45 hour), si-
multaneously assuming a level of load-
ing not exceeding the allowable stress-
es σ = 1316 MPa (near tooth foot) for 
1.6523 (20HNM) steel, according to the 
standard [3]. 

In the case where nucleation of the pro-
spective fatigue crack has been caused 
by a sudden stopping of the production 
process, where additionally the transient 
stresses have exceeded the elasticity lim-
it of the material and induced a fatigue 
crack above the threshold level, then the 
bending stress near the tooth foot can be 
assumed as 1.3 times lower. The minimal 
computational safety coefficient assumed 
for calculation of the fatigue strength 
near the tooth foot under bending con-
ditions according to the standard [4] can 
be assumed depending on the allowable 
stresses. The operating time of a gear in 
which the process of crack propagation 
takes place elongates up to θ = 2.5 hours, 
in the case of an assumption of reliability 
not less than R = 0.95.

	 Summary
The modified probabilistic model of fa-
tigue crack propagation at the tooth foot 
of a geared wheel proposed allows predic-
tion of the working time of a gear in which 
an initiated fatigue crack propagates. One 

of the essential factors permitting effec-
tive utilization of the model is knowledge 
(proper evaluation) of the stresses at the 
tooth foot (root) in the case of initiation 
of a fatigue crack. Based on the guidelines 
formulated in the standard [4], in cases 
where the geared wheel has been subject-
ed to more than the ultimate number of cy-
cles Ng = 3 ∙ 106 (for carburized alloy and 
hardened steel), the stresses at the tooth 
foot can be considered as having values 
under those allowable (ultimate) in the 
standard [3]. In industrial practice, some 
cases occur frequently i.e. a tooth crack 
takes place when the particular geared 
wheel was subjected to the ultimate num-
ber of cycles. Determination of the stress 
value at the tooth foot for the moment of 
crack initiation is the major problem in 
the model proposed, since based on this 
knowledge, one can predict the time until 
the crack reaches the ultimate length.

The Uneveness of working of the spin-
ner drive system has a direct influence 
on yarn ends down. The stretching appa-
ratus of the ring spinner consists of sev-
eral mutually co-operating gears. Even 
a trivial defect of a single element e.g. 
the geared wheel, bearing or shaft disturb 
or preclude the performance of the man-
ufacturing process. 

In industrial practice, the problem dis-
cussed is solved by installation of diagnos-
tic gauges on a particular machine which 
allow the monitoring of parameters of co-
operating elements of the drive system. Ad-
ditionally these solutions can be supported 
by expert systems enabling an almost on-
line performance of machine repairs. Due 
to the high costs of adaptation of particular 
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procedures, it seems that the most useful is 
the application of probabilistic methods for 
evaluation of the fatigue lives of particular 
elements of drive systems. These activities 
could be planned and performed even at 
the design phase. In the case of machines 
which are currently operated, one can as-
sure that during the repairs of particular 
parts, the spare parts fulfil requirements 
according to fatigue life. 

The probabilistic models proposed ena-
bled determination of the operating time 
of a particular machine until the planned 
repair. Knowledge of the fatigue life of 
key elements of a drive system reduces 
costs connected with the damage risk 
of a particular machine as well as non-
planned break-downs. The method pro-
posed can be also useful for other types 
of ring spinners.
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