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Abstract
One of the most important stages in the design process of compression products is describing 
the relationship between the force and elongation of the knitted fabric, using appropriate 
and scientifically justified force values in the fabric undergoing a stretching and relaxation 
test, in the form of a hysteresis loop. Research on this issue was carried out on two variants 
of knitted fabrics with elastomeric threads – a warp and a weft – knitted one. Based on 
the functions of the relation between the force and relative elongation determined and on 
Laplace’s law, compression bands with intended values of unit pressure were designed and 
manufactured and then subjected to experimental verification. In addition, a procedure was 
presented for dividing compression fabrics into specific compression classes.
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to serious incompatibility with the indi-
rect experimental method of unit pres-
sure evaluation according to the stripline 
testing described in CEN/TR 15831:2009 
(E), which uses Laplace’s law for calcu-
lating the compression value [6].
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Introduction 

Designing compression products supporting the process of external treatment should be based 
on Laplace's law (1), which describes the relation between unit pressure exerted on a 
cylindrical body model with circumference G1 and the circumferential force F in a fabric strip 
of width s (Fig.1). Currently in many cases the technique of constructing compression 
products is based on identical percentage reduction of the basic structural dimensions, 
regardless of the patient's real body circumferences. The reduction value is often 10% for the 
first set, and 15% or 20% for all  subsequent compression garments [1-5]. This leads to 
serious incompatibility with the indirect experimental method of unit pressure evaluation 
according to the stripline testing described in CEN/TR 15831:2009 (E), which uses Laplace's 
law for calculating the compression value [6]. 
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where: 
F,  cN  – circumferential force in a fabric strip of 

width s  
G1,  cm   body part circumference  
s, cm  –  width of the fabric strip  
P,  hPa – unit pressure, 
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have a significant effect on the value of unit 
pressure. 
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where:
F, cN – circumferential force in a fabric 
strip of width s, 
G1, cm – body part circumference, 
s, cm – width of the fabric stri, 
P, hPa – unit pressure.

According to Laplace’s law, the length of 
circumference G1 and the circumferential 
force F have a significant effect on the 
value of unit pressure.

Improving the accuracy of determining 
circumferences G1 can be achieved by 
eliminating manual dimensioning of the 
human body and replacing it with the 3D 
scanning technique [7-13].

In practice, the same type of compression 
knitted fabric can be applied to products 
suitable for different lengths of circum-
ferences G1. Depending on the value of 
body circumference G1 and the intended 
value of unit pressure, irrespective of the 
type of fabric, the value of force F equals 
that calculated from Laplace’s law.
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Fig. 1. Cylindrical model of a body part 
covered with a compression band  
 

Improving the accuracy of determining circumferences G1 can be achieved by eliminating  
manual dimensioning of the human body and replacing it with the 3D scanning technique [7-
13]. 

In practice, the same type of  compression knitted fabric can be applied to products 
suitable for different lengths of circumferences G1 . Depending on the value of body 
circumference G1 and the intended value of unit pressure, irrespective of the type of fabric, 
the value of force F equals that calculated from Laplace's law. 
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As the same knitted fabric is often used for different lengths of circumferences G1 , an 

important stage in the design process of compression products becomes taking into account 
the complex relations between  force F and relative elongation  in dependence on the 
stretching range. In most works [13-15] on the modeling of compression products, a constant 
value of longitudinal rigidity of the fabric is adopted, irrespective of the relative elongation. In 
model studies, such an approach can be justified. An example of such research is work [14], 
in which, apart from the analytical model using Laplace's law, the results of modeling unit 
pressure with the finite element method for a cylinder and  cone are also presented. 
Comparing unit pressure values calculated according to the analytical model and with the 
finite element method revealed differences in the range of 1-7%. On the other hand, works 
[13,15] analysed the influence of the seam, the intended dimensional tolerances of  body parts 
and the manufacturing tolerance of the compression product on the value of unit pressure in 
dependence on the longitudinal rigidity of the compression fabric. Different aspects 
concerning the design and modeling of compression products are presented in a review article 
[16]. 

For the purpose of constructing products with an intended value of unit pressure, it is 
necessary to describe the relationship between force and elongation using real and 
scientifically justified values of forces in  knitted fabric subjected to deformation hysteresis 
within different relative elongations. The results of tests conducted on knitted fabrics with 
elastomeric thread subjected to deformation hysteresis indicate significant differences in 
forces for the same elongation in cases where the fabrics are stretched to different values of 
relative elongation 17-18]. 
 
In order  to design  individual circumferences of a compression product in a free state G0 with 
an intended value of unit pressure P, it is necessary to know the mechanical characteristics of 
the knitted fabric in the form of the experimental relationship between the force and relative 
elongation F=f(). 
The purpose of the considerations presented is to answer the following questions: 
- which force values from the tension characteristics and relaxation- deformation of the 
knitted fabric should be taken into account to describe the relationship between force and 
relative elongation, 
- what range of tensile forces should be adopted for testing the knitted fabric. 
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hysteresis indicate significant differences 
in forces for the same elongation in cases 
where the fabrics are stretched to differ-
ent values of relative elongation [17-18].

In order to design individual circumfer-
ences of a compression product in a free 
state G0 with an intended value of unit 
pressure P, it is necessary to know the 
mechanical characteristics of the knitted 
fabric in the form of the experimental re-
lationship between the force and relative 
elongation F = f(ε).

The purpose of the considerations pre-
sented is to answer the following ques-
tions:
n	 which force values from the tension 

characteristics and relaxation- defor-
mation of the knitted fabric should be 
taken into account to describe the re-
lationship between force and relative 
elongation,

n	 what range of tensile forces should be 
adopted for testing the knitted fabric.

	 Material, test object  
and methods

Complex relations between parameters F 
and ε will be determined for an example 
of two variants of knitted fabrics, whose 
structures and basic properties are pre-
sented in Figures 2 and 3.

Tests of knitted fabric were performed 
for relative elongations ε in the range of 
0÷1,0 for separate stretching ranges in-
creased by a relative elongation of 0.1. 
For each elongation value, tests were 
carried out on 5 rectangular samples cut 
along the wale-wise direction, with a free 
length of 100 mm and width of 75 mm, 
subjected to stretching and relaxation at 
a speed of 200 mm/min in accordance 
with PN-ENV 12718:2002 [19] on 
a Hounsfield tensile testing machine, us-
ing needles to stabilise the width of the 
fabric. For each stretching range, 6 hys-
teresis loops were performed. Figures 3 
and 4 show changes in the mean values 
of force as a function of relative elonga-

tion for the above- mentioned variants 
of knitted fabrics for selected succes-
sive ranges enlarged by a relative elon-
gation of 0.2 for the 6th hysteresis loop 
in both the tension and relaxation phase. 
Adopting the force values from the 6th 
hysteresis loop results from the effect of 
mechanical conditioning on force chang-
es. The greatest changes in force values 
are observed between the first and sec-
ond hysteresis loop. For the subsequent 
hysteresis loops, the differences between 
force values are smaller, and practically 
disappear after the 5th & 6th loops.

The stretching and relaxation curves 
shown in Figures 4 and 5 differ in the 
force values within the common range of 
relative elongation for different stretch-
ing ranges. The higher the relative elon-
gation to which the fabrics are stretched, 
the lower the force values at the same 
relative elongation for both the tension 
and relaxation phases. Introducing the 
functions of force and elongation to the 
design process of compression products 

Figure 2. a) View of the face of a weft-knitted fabric plated with 
elastomeric yarns, b) Schematic record of the stitch of a weft-knitted 
fabric plated with elastomeric yarns. Fabric properties: wale density 
Pk =190/10 cm, course density Pr = 340/10 cm, surface density 
M = 260 g/m2.

Figure 3. a) View of the face of a warp-knitted fabric with elastomeric 
yarns as the weft, b) Schematic record of the stitch of a warp-knitted 
fabric with elastomeric yarns as the weft. Fabric properties: wale 
density Pk = 120/10 cm, course density Pr = 740/10 cm, surface 
density M = 234 g/m2.

Material, test object and methods

Complex relations between the parameters F and  will be determined on the example 

of  two variants  of  knitted  fabrics,  whose structures  and basic  properties  are presented in 

figures (2,3).

Fig. 2. a) View of the  

face of a weft-knitted  

fabric  plated  with  

elastomeric yarns 

Fig. 2. b) Schematic 

record of the stitch of  

a weft-knitted fabric 

plated with 

elastomeric yarns 

Fig. 3. a) View of the 

face of a warp-

knitted fabric with 

elastomeric yarns as 

the weft 

Fig. 3. b) Schematic 

record of the stitch of  

a warp-knitted fabric  

with elastomeric 

yarns as the weft

Fabric properties:

Wale density Pk=190/10cm

Course density Pr=340/10cm

Surface density M=260 g/m2

Fabric properties:

Wale density Pk=120/10cm

Course density Pr=740/10cm

Surface density M=234 g/m2

The tests of knitted fabric were performed for relative elongations Ɛ in the range of 

0÷1,0  for  separate  stretching  ranges  increased  by  0.1  of  relative  elongation.  For  each 

elongation value, the tests were carried out on 5 rectangular samples cut along the wale-wise 

direction, with a free length of 100 mm and a width of 75 mm, subjected to stretching and 

relaxation at a speed of 200 mm/min in accordance with PN-ENV 12718:2002 [19] on a 

Hounsfield tensile testing machine, using needles to stabilize the width of the fabric. For each 

stretching range, 6 hysteresis loops were performed. Figures 3 and 4 show changes in the 

mean values of force as a function of relative elongation for the above mentioned variants of 

knitted fabrics, for the selected successive ranges enlarged by 0.2 of relative elongation for the 

6th hysteresis loop in both tension and relaxation phase. Adopting the force values from the 

6th hysteresis loop results from the effect of mechanical conditioning on force changes. The 

greatest changes of force values are observed between the first and the second hysteresis loop. 

For the subsequent hysteresis  loops the differences between force values  are smaller,  and 

practically disappears after 5, 6 loops.

Fig.  4.  Hysteresis  loops  for  the  subsequent  

stretching  ranges  of  a  weft-knitted  fabric  

plated with elastomeric yarn (variant 1).

Fig.  5.  Hysteresis  loops  for  the  subsequent  

stretching  ranges  of  a  warp-knitted  fabric  

with elastomeric yarn as a weft (variant 2).
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Material, test object and methods 

Complex relations between the parameters F and  will be determined on the example 
of two variants of knitted fabrics, whose structures and basic properties are presented in 
figures (2,3). 
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The tests of knitted fabric were performed for relative elongations Ɛ in the range of 

0÷1,0 for separate stretching ranges increased by 0.1 of relative elongation. For each 
elongation value, the tests were carried out on 5 rectangular samples cut along the wale-wise 
direction, with a free length of 100 mm and a width of 75 mm, subjected to stretching and 
relaxation at a speed of 200 mm/min in accordance with PN-ENV 12718:2002 [19] on a 
Hounsfield tensile testing machine, using needles to stabilize the width of the fabric. For each 
stretching range, 6 hysteresis loops were performed. Figures 3 and 4 show changes in the 
mean values of force as a function of relative elongation for the above mentioned variants of 
knitted fabrics, for the selected successive ranges enlarged by 0.2 of relative elongation for 
the 6th hysteresis loop in both tension and relaxation phase. Adopting the force values from 
the 6th hysteresis loop results from the effect of mechanical conditioning on force changes. 
The greatest changes of force values are observed between the first and the second hysteresis 
loop. For the subsequent hysteresis loops the differences between force values are smaller, 
and practically disappears after 5, 6 loops. 
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Figure 4. Hysteresis loops for the subsequent stretching ranges of a 
weft-knitted fabric plated with elastomeric yarn (variant 1).

Figure 5. Hysteresis loops for subsequent stretching ranges of 
a warp-knitted fabric with elastomeric yarn as the weft (variant 2).

240
220
200
180
160
140
120
100

80
60
40
20

0

Fo
rc

e 
F,

 c
N

/c
m

0.0 0.2 0.4 0.6 0.8 1.0
Relative elongation ε 

550
500
450
400
350
300
250
200
150
100

50
0

Fo
rc

e 
F,

 c
N

/c
m

0.0 0.2 0.4 0.6 0.8 1.0
Relative elongation ε 



62 FIBRES & TEXTILES in Eastern Europe  2018, Vol. 26,  3(129)

only for the maximum elongation range 
(e.g. ε = 1) leads to a significant overes- 
timation of unit pressure for relatively 
small values of body circumferences. For 
example, for a warp knitted fabric (Fig-
ure 3) and circumference G1 = 18 cm, 
the circumferential force for s = 1 cm at 
the intended pressure value P = 20 hPa 
equals 
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functions of force and elongation to the design process of compression products only for the 
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relatively small values of body circumferences. For example, for a warp knitted fabric (Figure 
3) and circumference G1=18 cm, the circumferential force for s=1 cm at the intended pressure 
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   = 57 cN, which is obtained with elongation =0,2. 
 
On the other hand, for the deformation range =0,2 of the knitted fabric stretched only 

up to this elongation value, the force at standstill equals F=121 cN. According to Laplace's 
law, this results in the unit pressure P=42.2 hPa, as long as the form of the function adopted in 
the design process is defined for the stretching range =1. 
To eliminate one of the causes of errors in the design process of compression products, in the 
mechanical characteristics one should take into account the complex relations between 
relative elongation and force in dependence on the stretching range. Therefore for the general 
mechanical characteristics of the knitted fabric, the force values obtained from individual 
stretching ranges were taken into account, and the greater the number of these stretching 
ranges, the more precise the mechanical characteristics of the knitted fabric. 
 
Model interpretations of experimental results 

 
To answer the question as to which force values from the tension characteristics and 

relaxation - deformation of the knitted fabric should be taken into account to properly 
describe the relationship between force and relative elongation, an analysis was made of the 
results of the process of stretching and relaxation of the fabric in relation to its rheological 
properties and  conditions of use of the products supporting external treatment. Textiles, 
including knitted fabrics, are characterised by good viscoelastic properties, and the 
relationship between relative elongation ε, the value of the tensile force F and time t of the 
force action can be qualitatively described by the rheological three-element Zener model and  
resulting equation [20]. 
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57 cN, which is ob-
tained with elongation ε = 0,2.

On the other hand, for the deforma-
tion range ε = 0,2 of the knitted fabric 
stretched only up to this elongation value, 
the force at standstill equals F = 121 cN. 
According to Laplace’s law, this results 
in the unit pressure P = 42.2 hPa, as long 
as the form of the function adopted in the 
design process is defined for the stretch-
ing range ε = 1.

To eliminate one of the causes of errors 
in the design process of compression 
products, in the mechanical character-
istics one should take into account the 
complex relations between relative elon-
gation and force in dependence on the 
stretching range. Therefore for the gener-
al mechanical characteristics of the knit-
ted fabric, the force values obtained from 
individual stretching ranges were taken 
into account, and the greater the number 
of these stretching ranges, the more pre-
cise the mechanical characteristics of the 
knitted fabric.

	 Model interpretations  
of experimental results

To answer the question as to which force 
values from the tension characteristics 
and relaxation – deformation of the knit-
ted fabric should be taken into account 
to properly describe the relationship be-
tween force and relative elongation, an 
analysis was made of the results of the 
process of stretching and relaxation of 
the fabric in relation to its rheological 
properties and conditions of use of the 
products supporting external treatment. 
Textiles, including knitted fabrics, are 

characterised by good viscoelastic prop-
erties, and the relationship between rela-
tive elongation ε, the value of the tensile 
force F and time t of the force action can 
be qualitatively described by the rheo-
logical three-element Zener model (Fig-
ure 6) and resulting equation [20].
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where:
C, C1– elasticity constants,
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scribing the stretching process
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The values of force FD calculated during 
the process of dynamic stretching ac-
cording to Equation (4) for the variant 
of warp-knitted fabric with elastomer-
ic threads and measurement conditions 
for relative elongation ε = 1 obtained 
after 30 s (
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 = 0,03333) and with the 
following values of rheological parame-
ters C = 460 cN/cm, C1 = 400 cN/cm & 
η = 2114 cN·s/cm equals FD = 530,2 cN/cm  
(Figure 7). This value corresponds to 
the results obtained in the experimental 
test (Figure 8). Constants C and C1 can 
be determined on the basis of experi-
mental studies and from two equations: 
(C + C1) ∙ ɛ = Fmax – referring to rapid dy-
namic stretching, and C ∙ ɛ = Fmin – refer-
ring to a long relaxation period.

According to the Zener model, at the mo-
ment the extreme value of relative elon-
gation is obtained – i.e. when the stretch-
ing process stops – the value of 
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 = 0 –, 
which causes an incremental decrease in 
the force value as a result of transition to 
the relaxation phase.

For the following relaxation conditions: 
ε = const and 
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 = 0, we obtain Equa-
tion (5), describing the relaxation pro-
cess according to the Zener model. For 
the rheological parameters and measure-
ment conditions at standstill adopted, we 
obtain force FR = 461,4 cN.
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The difference in forces F=FD-FR=68,8 cN corresponds to the incremental change in force 
values at standstill. Then, depending on the standstill duration, force values further decrease 
as relaxation occurs. Theoretically with the passage of time t ,  expression (-tC1/) - 
describing the relaxation process, tends to zero, since the deformation of spring C1 is received 
by the attenuator. 
It should be noted that during the relaxation phase at standstill, the force value increases, as 
the term ·      from the negative value takes a value of 0, and the relationship between 
rheological parameters and the measurement conditions can be again described by the 
equation for the relaxation phase, which is proven by both model simulations (Fig.7) and the 
experimental test (Fig.8). The existing differences between the model and experimental values 
are due to the nonlinearity of the system and anisotropy of the viscoelastic properties of the 
knitted fabrics. Taking into account the considerations and  conditions of use of compression 
products presented, which are applied in therapies of a relatively long duration [5] and are 
most often used at rest, for the description of the function of force and relative elongation we 
adopted the force values from the relaxation phase i.e. at standstill, when the stretching 
process is stopped in the sixth hysteresis loop for particular stretching ranges. Final 
mechanical characteristics of the knitted fabric in the form of the function of force and 
relative elongation are shown in Fig. 9 and 10. 

The physical-mathematical description of the relationship between force and relative 
elongation shown in Figures 9 and 10 takes into account the differences in the relations 
between the values F and  in  dependence on the stretching range and rheological properties 
of the compression fabrics tested. 

  
Fig. 9. Force values as a function of relative 
elongation in the 6th hysteresis loop for 
different fabric stretching ranges 
(variant 1). 

Fig. 10. Force values as a function of relative 
elongation in the 6th hysteresis loop for 
different fabric stretching ranges (variant 2). 
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The difference in forces ∆F = FD – FR = 
68,8 cN corresponds to the incremental 
change in force values at standstill. Then, 
depending on the standstill duration, 
force values further decrease as relax-
ation occurs. Theoretically with the pas-

sage of time t → ∞, expression (-tC1/η) 
– describing the relaxation process, tends 
to zero, since the deformation of spring 
C1 is received by the attenuator.

It should be noted that during the relax-
ation phase at standstill, the force value 
increases, as the term η · 
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 from the 
negative value takes a value of 0, and the 
relationship between rheological param-
eters and the measurement conditions 
can be again described by the equation 
for the relaxation phase, which is prov-
en by both model simulations (Figure 7) 
and the experimental test (Figure 8). 
The existing differences between the 
model and experimental values are due 
to the nonlinearity of the system and an-
isotropy of the viscoelastic properties of 
the knitted fabrics. Taking into account 
the considerations and conditions of 
use of compression products presented, 
which are applied in therapies of a rela-
tively long duration [5] and are most of-
ten used at rest, for the description of the 
function of force and relative elongation 
we adopted the force values from the re-
laxation phase i.e. at standstill, when the 
stretching process is stopped in the sixth 
hysteresis loop for particular stretching 
ranges. Final mechanical characteristics 
of the knitted fabric in the form of the 
function of force and relative elongation 
are shown in Figures 9 and 10.

The physical-mathematical description 
of the relationship between force and rel-
ative elongation shown in Figures 9 and 
10 takes into account the differences in 
the relations between the values F and 
ε in dependence on the stretching range 
and rheological properties of the com-
pression fabrics tested.

	 Experimental verification 
of unit pressure

Based on the functions defining the rela-
tion between force and relative elonga-
tion obtained for the fabrics analysed and 
on Laplace’s law, the lengths of the com-
pression bands in a relaxed state G0 were 
calculated, with the intended values of 
unit pressure P in the range of 10÷30 hPa, 
for a cylindrical body model with circum-
ference G1 = 34.7 cm. Table 1 shows the 
band circumferences in a relaxed state G0 
for the two fabrics analysed. The bands 
were made on an autolap machine using 
the flat seam technique, with the seam 
width Ls = 0.4 cm. Unit pressure was 
measured using a PICOPRESS device, 
made by MICROLAB ELEKTRONICA 

Figure 6. Three-element Zener model. 
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(S.a.a di Bergamo Giorgio & C., Italy), 
at a measurement resolution of 1 mmHg.

The existing differences between the in-
tended unit pressure and values measured 
can be ascribed to the manufacturing tol-
erance of the band (hand cutting, joining 
with a seam), which is ± 0.2 cm, and the 
manual method of placing the bands on 
the cylinder (Figure 11). Manual plac-
ing does not guarantee equal values of 
circumferential forces, due to the uneven 
elongation of the knitted fabric and fric-
tion forces between the band and surface 
of the cylinder, which counteract equali-
sation of the circumferential forces.

	 Procedure for determining 
fabric suitability for 
a particular compression class

The maximum stretching range of a com-
pression fabric is closely related to its 
suitability for a particular compression 
class and its useful elongation.

In the procedure for determining the suit-
ability of a knitted fabric for a particular 
compression class, the following three 
steps can be distinguished:

In accordance with PN-P-04953:1972 
(Methods of testing textile products, 
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Figure 7. Hysteresis diagram according to standard three-element 
Zener Model.

Figure 8. Experimental diagram of hysteresis for a warp-knitted 
fabric with elastomeric threads as the weft
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Taking into account the presented considerations and the conditions of use of compression 
products, which are applied in therapies of a relatively long duration [5] and are most often 
used at rest, for the description of the function of force and relative elongation we adopted the 
force values from the relaxation phase i.e. the standstill, when the stretching process is 
stopped in the sixth hysteresis loop for particular stretching ranges. Final mechanical 
characteristics of the knitted fabric in the form of the function of force and relative elongation 
are shown in Fig. 9 and 10. 

The physical-mathematical description of the relationship between force and relative 
elongation shown in Figures 9 and 10 takes into account the differences in the relations 
between the values F and ,  depending on the stretching range and rheological properties of 
the tested compression fabrics. 

  
Fig. 9. Force values as a function of relative 
elongation in the 6th hysteresis loop for 
different fabric stretching ranges 
(variant 1). 

Fig. 10. Force values as a function of 
relative elongation in the 6th hysteresis loop 
for different fabric stretching ranges (variant 
2). 
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÷30 hPa, for a cylindrical body model with circumference G1 = 34.7 cm. Table 2 shows bands 
circumferences in a relaxed state G0 for the two analyzed fabrics. The bands were made on an 
autolap machine using a flat seam technique, with the seam width Ls= 0,4 cm. Unit pressure 
was measured using PICOPRESS device by MICROLAB ELEKTRONICA, with 
measurement resolution 1 mmHg. 
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Figure 9. Force values as a function of relative elongation in the 
6th hysteresis loop for different fabric stretching ranges (variant 1).

Figure 10. Force values as a function of relative elongation in the 
6th hysteresis loop for different fabric stretching ranges (variant 2).

Table 1. Parameters and dimensions of the 
compression band. Parameters calculated: 
cylinder circumference G1 = 34,7 cm, seam 
width Ls = 0,4 cm. 

P, hPa Variants of 
knitted fabrics Go, cm
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Elastic products, Determining elasticity 
indices) – the term “useful elongation” 
stands for relative elongation at stretch-
ing corresponding to the initial part of the 
stretching graph, characterised by a faster 
increase in elongation in relation to the 
force increase.

After useful elongation is exceeded, the 
value of longitudinal rigidity increases, 
due to deformation of the stitch, which is 
made of a non-elastomeric yarn.

However, this method of determining 
useful elongation is burdened with error, 
resulting from the subjective choice of 
the segment with the greatest curvature. 
Therefore in our tests useful elongation 
was determined on the basis of the first 
derivative of the function of the force 
and relative elongation dF/dε, which 
describes the values of longitudinal 

Figure 11. Test results of unit pressure exerted by compression bands on a cylindrical model 
with circumference G1 = 34,7 cm. Series 1 – pressure for variant W1, series 2 – pressure for 
variant W2, series 3 – intended pressure values.

Making mechanical characteristics of 
a knitted fabric in the form of a relation 
between force and relative elongation 

Determining useful elongation of the 
fabric and corresponding force value

Determining the extreme values of 
body circumferences  from Laplace’s 
law as a function of unit pressure P 

for its lower and upper limits for each 
compression class

Figure 12. Stages of the procedure for de-
termining fabric suitability for a particular 
compression class.
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W2 

27,2 
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20 22,5 
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Table 1. Parameters and 
dimensions of the compression 
band. Counting parameters: 
cylinder circumference 
G1=34,7 cm, seam width 
Ls=0,4 cm  
 

Fig. 11. Test results of unit pressure exerted by compression 
bands on a cylindrical model with circumference G1=34,7 
cm. Series 1 – pressure for variant W1, series 2 – pressure 
for variant W2, series 3 – intended pressure values. 

The existing differences between the intended unit pressure and the measured values can be 
ascribed to the manufacturing tolerance of the band (hand cutting, joining with a seam), which 
is  0,2 cm, and the manual method of placing the bands onto the cylinder. The manual 
placing does not guarantee equal values of circumferential forces, due to uneven elongation of 
the knitted fabric and the friction forces between the band and the surface of the cylinder, 
which counteract the equalization of the circumferential forces. 
   
Procedure for determining fabrics suitability for a particular compression class 
 
The maximum stretching range of a compression fabric is closely related to its suitability for a 
particular compression class and its useful elongation. 
In the procedure for determining the suitability of a knitted fabric for a particular compression 
class, the following three steps can be distinguished: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In accordance with PN-P-04953:1972 (Methods 
of testing textile products, Elastic products, 
Determining elasticity indices) – the term “useful 
elongation” stands for relative elongation at 
stretching, corresponding to the initial part of the 
stretching graph, characterized by a faster 
increase of elongation in relation to force 
increase. 
After useful elongation is exceeded, the value of 
longitudinal rigidity increases, due to the 
deformation of the stitch, which is made of a non-
elastomeric yarn. 
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choice of the segment with the greatest curvature. 
Therefore, in our tests useful elongation was 
determined on the basis of the first derivative of 
the function of force and relative elongation 
dF/d, which describes the values of longitudinal 
rigidity along the experimental curve. 
Determination of the fabric suitability for a 
particular compression class was performed on 
the example of a weft-knitted fabric plated with 
elastomeric yarns (Fig.2). According to the 
procedure described above, the value dF/d in the 
initial part of the graph stays on a more or less 
constant level up to 1,3 of relative elongation  
(fig.13). 

Fig. 12. Stages of the procedure for 
determining fabrics suitability for a 
particular compression class 
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Due to the risk of 
excessive 
deformation of the 
compression 
fabric, e.g. 
because of 
oversize  
elongation when 
the product is put 
on and during the 
non-rest period of 
its use, the 
maximum 
elongation value 
equal to 0,85 of 
useful elongation 
(max= 0,85·u) 
was adopted for 
the analysis. 

Figure 13. Stretching of a weft-knitted fabric plated with elastomeric 
yarn - series 1, and its first derivative - series 2 

 

 
Based on the determined value of force F for the adopted maximum permissible 

elongation (max= 0,85·u) and the Laplace’s law, it is possible to determine fabric suitability 
for a particular compression class, according to the equation which defines maximum value of 
the circumference G1max, for which the tested type of compression fabric can still be used. 
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where: 
F - force in the fabric strip of width s at maximum elongation, corresponding to the elongation 
value (max= 0,85·u=1,1), which for the analyzed knitted fabric equals F=217 cN/cm, 
Pmin, Pmax - pressures  for  the lower and upper values in particular classes. 

Determining from Laplace’s law 
the extreme values of body 

circumferences    as a function 
of unit pressure P for its lower 

and upper limits for each 
compression class 

 

   

Figure 13. Stretching of a weft-knitted fabric plated with elastomeric yarn – series 1, and 
its first derivative – series 2.
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A graphic illustration of determining maximum lengths of circumferences G1max for 
the lower and upper values in the 1st compression class is shown in Fig. 14, whereas Fig.15 
illustrates the calculated maximum values of G1 body circumferences for particular 
compression classes on the example of a weft-knitted fabric plated with elastomeric yarns. 

  
Fig 14. Graphic illustration of determining 
maximum body circumferences for the lower 
and upper limits of 1st compression class. 
Series 1 – for the lower limit of 1st 
compression class, series 2 – for the upper 
limit of 1st compression class, series 3 – force 
value for max=0,85 u 

Fig 15. Extreme values of body 
circumferences G1max for particular 
compression classes. Series 1 – for the 
lower limit of  compression class, series 2 
– for the upper limit of  compression 
class 

 
Conclusions 
 

1. The  conducted model interpretations of experimental results and the conditions of use 
of compression products justify introducing to the design process the relation between 
force and relative elongation, calculated on the basis of force values determined in the 
relaxation phase, when the process of fabric stretching stops in the sixth hysteresis 
cycle for individual stretching ranges. 

2. Introducing the relationship between force and elongation of the knitted fabric based 
on force values determined in the relaxation phase, when the process of stretching the 
knitted fabric stops, for different stretching ranges eliminates the causes of errors in 
the design of compression products, as it takes into account the differences in the 
relations between values F and , depending on the stretching range and rheological 
properties of the tested fabric. 

3. The assessment of the suitability of knitted fabrics with elastomeric threads for 
particular compression classes based on the procedure of determining useful 
elongation and on Laplace's law allows to calculate the maximum lengths of body 
circumferences G1 for which the tested variant of compression fabric can still be used. 
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relations between values F and , depending on the stretching range and rheological 
properties of the tested fabric. 

3. The assessment of the suitability of knitted fabrics with elastomeric threads for 
particular compression classes based on the procedure of determining useful 
elongation and on Laplace's law allows to calculate the maximum lengths of body 
circumferences G1 for which the tested variant of compression fabric can still be used. 
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The existing differences between the intended unit pressure and the measured values can be 
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is  0,2 cm, and the manual method of placing the bands onto the cylinder. The manual 
placing does not guarantee equal values of circumferential forces, due to uneven elongation of 
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choice of the segment with the greatest curvature. 
Therefore, in our tests useful elongation was 
determined on the basis of the first derivative of 
the function of force and relative elongation 
dF/d, which describes the values of longitudinal 
rigidity along the experimental curve. 
Determination of the fabric suitability for a 
particular compression class was performed on 
the example of a weft-knitted fabric plated with 
elastomeric yarns (Fig.2). According to the 
procedure described above, the value dF/d in the 
initial part of the graph stays on a more or less 
constant level up to 1,3 of relative elongation  
(fig.13). 

Fig. 12. Stages of the procedure for 
determining fabrics suitability for a 
particular compression class 
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Figure 13. Stretching of a weft-knitted fabric plated with elastomeric 
yarn - series 1, and its first derivative - series 2 
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A graphic illustration of determining maximum lengths of circumferences G1max for 
the lower and upper values in the 1st compression class is shown in Fig. 14, whereas Fig.15 
illustrates the calculated maximum values of G1 body circumferences for particular 
compression classes on the example of a weft-knitted fabric plated with elastomeric yarns. 

  
Fig 14. Graphic illustration of determining 
maximum body circumferences for the lower 
and upper limits of 1st compression class. 
Series 1 – for the lower limit of 1st 
compression class, series 2 – for the upper 
limit of 1st compression class, series 3 – force 
value for max=0,85 u 

Fig 15. Extreme values of body 
circumferences G1max for particular 
compression classes. Series 1 – for the 
lower limit of  compression class, series 2 
– for the upper limit of  compression 
class 

 
Conclusions 
 

1. The  conducted model interpretations of experimental results and the conditions of use 
of compression products justify introducing to the design process the relation between 
force and relative elongation, calculated on the basis of force values determined in the 
relaxation phase, when the process of fabric stretching stops in the sixth hysteresis 
cycle for individual stretching ranges. 

2. Introducing the relationship between force and elongation of the knitted fabric based 
on force values determined in the relaxation phase, when the process of stretching the 
knitted fabric stops, for different stretching ranges eliminates the causes of errors in 
the design of compression products, as it takes into account the differences in the 
relations between values F and , depending on the stretching range and rheological 
properties of the tested fabric. 

3. The assessment of the suitability of knitted fabrics with elastomeric threads for 
particular compression classes based on the procedure of determining useful 
elongation and on Laplace's law allows to calculate the maximum lengths of body 
circumferences G1 for which the tested variant of compression fabric can still be used. 
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rigidity along the experimental curve. 
Determination of fabric suitability for 
a particular compression class was per-
formed for the example of a weft-knit-
ted fabric plated with elastomeric yarns 
(Figure 12). According to the procedure 
described above, value dF/dε in the ini- 
tial part of the graph stays at a more or 
less constant level up to a relative elon-
gation ε of 1.3 (Figure 13).

Due to the risk of excessive deformation 
of the compression fabric, e.g. because 
of excessive elongation when the prod-
uct is put on and during the non-rest pe-
riod of its use, the maximum elongation 
value, equal to 0.85 of useful elongation 
(εmax = 0,85 · εu), was adopted for the 
analysis.

Based on the value of force F determined 
for the maximum permissible elongation 
(εmax = 0,85 · εu) adopted and Laplace’s 
law, it is possible to determine fabric suit-
ability for a particular compression class 
according to the equation which defines 
the maximum value of circumference 
G1max at which the type of compression 
fabric tested can still be used. 
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where:
F – force in a fabric strip of width s at 
maximum elongation, corresponding to 
the elongation value (εmax = 0,85·εu = 1,1),  
which equals F = 217 cN/cm for the ana-
lysed knitted fabric,
Pmin, Pmax – pressures for the lower and 
upper values in particular classes.

A graphic illustration of determining 
the maximum lengths of circumferenc-
es G1max for the lower and upper values 
in the 1st compression class is shown in 
Figure 14, whereas Figure 15 illustrates 
the maximum values of body circum-
ferences G1 for particular compression 
classes for the example of a weft-knitted 
fabric plated with elastomeric yarns.

	 Conslusions
1.	 The model interpretations of experi-

mental results conducted and the con-
ditions of use of compression prod-
ucts justify introducing the relation 
between force and relative elongation 
to the design process, calculated on 
the basis of force values determined in 
the relaxation phase, when the process 
of fabric stretching stops in the sixth 

hysteresis cycle for individual stretch-
ing ranges.

2.	 Introducing the relationship between 
the force and elongation of the knit-
ted fabric based on force values deter-
mined in the relaxation phase, when 
the process of stretching the knitted 
fabric stops, for different stretching 
ranges eliminates the causes of errors 
in the design of compression products, 
as it takes into account differences in 
the relations between values F and εin 
dependence on the stretching range 
and rheological properties of the fab-
ric tested.

3.	 The assessment of the suitability 
of knitted fabrics with elastomeric 
threads for particular compression 
classes based on the procedure of 
determining usefulelongation and on 
Laplace’s law allows to calculate the 
maximum lengths of body circumfer-
ences G1 at which the variant of com-
pression fabric tested can still be used.
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