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Optimisation of Thermal Conditions  
in a Composite Wet Diving Suit
Abstract
The main goal was to optimise the thermal conditions within a diving suit and improve the 
user’s comfort. The wet diving suit consisted of (i) an external neoprene layer with air bub-
bles as additional insulation, and (ii) internal textile clothing to improve the insulation ef-
fect. Both layers were connected as a composite because the friction coefficient is very high. 
The core temperature should be constant and monitored during activity because a change 
in it is a sign of hypothermia. The internal textile layer contained textronic systems to trans-
fer the medical parameters selected. The state variable is the temperature, whereas the 
design variables are the coordinates of the crucial points within the layers. Heat transfer 
is described by a state equation and set of boundary and initial conditions. The first-order 
sensitivities of an arbitrary behavioural functional are formulated and implemented into 
the optimality conditions of the problem. A simple numerical example of the optimisation of 
the thermal conditions is considered.
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	 Nomenclature
A, B, C, D – constants acc. Liang and  

Qu [2], 
A – matrix of thermal conduction coef-

ficients,
b – vector of design parameters,
bj

1; bj
2 – vertex coordinates Aj, j = 1,2…m, 

of the Bezier polygon,
C – constraint functional, in this case the 

global cost of the structure,
C0 –  constant value of the constraint 

functional imposed (structural cost),
c – volumetric heat capacity,
F – objective functional,
F’ – Lagrange functional (the auxiliary 

function),

p
p Db

DGg =  – global (material) derivative 
of g with respect to design parameter bp,

p

p

b
gg ∂
∂=  – partial (local) derivative of g 
with respect to design parameter bp,

H – mean curvature of external bound-
ary Γ,

h – surface film conductance,
Kf – volumetric strain modulus of the ma-

terial within the filling,
Km – volumetric strain modulus of the 

textile material, 
n – unit vector normal to the external 

boundary Γ, directed outwards to the 
domain Ω bounded by this boundary,

P – number of design parameters during 
the sensitivity analysis,

q – vector of heat flux density, 
q* – vector of initial heat flux density,

qn ⋅=nq  – heat flux density normal to the 
external boundary,

T – temperature, 
Ta; Tb – temperatures of the upper and lower 

surface of composite acc. Liang and  
Qu [2],

T0 – prescribed value of temperature, 
T0L – assumed level of temperature,
T∞ – temperature of surrounding water,

t – real time in primary and additional 
structures,

u – unit cost of structure,
Vf – volume of free spaces between the 

textile material,
Vm – volume of textile material,
( )t,,bxvp  – transformation velocity field 

associated with design parameter bp,
pp

nv vn ⋅=  – transformation velocity nor-
mal to the external boundary Γ,

vf – vector of flow velocity,
x – vector of points’ coordinates,
Γ – external boundary of structure,
γ – boundary integrand of the objective 

functional,
ε – effective porosity of textile material,
ξ – slack variable of the Lagrange func-

tional for inequality problems,
ξm; ξf – coefficients for the textile material 

and material within the free spaces,
λs – substitute heat transfer coefficient,
λm; λf – heat transfer coefficients of the 

textile material and material within 
free spaces,

Σ – discontinuity line between adjacent 
parts of the piecewise smooth bound-
ary Γ,

σ – Stefan-Boltzmann constant,
ρ – density of fibres,
τ – transformed time in the adjoint struc-

ture,
χ – Lagrange multiplier,
Ψ – domain integrand of the objective 

functional,
Ω – domain of the structure,∆

 – gradient operator,

( )!jmj!
m!

j
m

−
=







  – Newton symbol.

	 Problem definition. 
Hypothermia

Protection against heat loss and, conse-
quently, hypothermia is the key role of 

a diving suit. Hypothermia is caused by 
severe environmental exposure [12 - 15]. 
The key to establishing a diagnosis of 
hypothermia is the rapid determination 
of the true core temperature, i.e. the tem-
perature of the human body measured by 
direct contact. At a given temperature, 
specific physical examination findings 
vary among patients. However, an exam-
ination does provide a frame of reference 
for dividing presenting symptoms into 
mild, moderate, and severe hypothermic 
signs [13]. Typical mild hypothermia 
for most people is shivering vigorously 
(34 °C – 35 °C), which may develop into 
altered judgment, amnesia and dysarthria 
(below 34 °C), the respiratory rate may 
increase, and ataxia and apathy may be 
experienced (33 °C). During moderate 
hypothermia, oxygen consumption de-
creases, with most people being in a stu-
por (32 °C); the body loses its ability to 
generate heat by shivering (31 °C), and 
finally people may become brain dead 
(28 °C – 30 °C). During severe hypother-
mia, the body becomes markedly suscep-
tible to ventricular fibrillation (28 °C), 
with 83% of people becoming comatose 
(below 27 °C).

The most popular and cheapest protec-
tion against heat loss is a wet diving suit, 
which consists of an external neoprene 
layer with air bubbles as additional insu-
lation, as well as internal textile clothing 
to improve the heat insulation of the body. 
These suits are typically used where the 
water temperature is 10 °C – 25 °C [1, 5]. 
Although water can enter the suit, it pre-
vents excessive heat loss because little of 
the water warmed inside the suit escapes 
from it. A correct shape ensures optimal 
thermal conditions, which are critical for 
warmth. A suit that is too loose will al-
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	 Physical model
A wet diving suit consist of two differ-
ent layers. The external layer is of neo-
prene foam which can result from (i) the 
chemical reaction with the special sub-
stance during the hardening process or 
(ii) the injection of nitrogen inwards into 
the foam. The internal textile clothing 
has a typical compact, inhomogeneous 
structure which can be, for example, ny-
lon fabrics or synthetic fur fabrics. Water 
can enter the suit, and the textile structure 
consists of textile elements as well as the 
water within the free spaces. Thus we 
have to homogenise the wet suit to cre-
ate a physical model. The homogeneous 
structure has the same conditions of heat 
transfer within the whole domain, which 
considerably simplifies the solution pro-
cedure. 

There are a few efficient homogenisation 
methods. Golański, Terada, Kikuchi [1] 
introduced the classic rule of mixture to 
determine the substitute heat transfer co-
efficient in the form

.
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Turner’s model is developed according to 
the hydrostatic analogy, with the substi-
tute coefficient equal to
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Medical parameters can be transmitted 
from the fabrics by special printed ele-
ments on the textile surface or by special 
metallic elements. The textronic system 
has a negligible volume/mass in rela-
tion to the whole textile clothing, and the 
structure can be homogenised by means 
of the above methods.

The neoprene layer can be homogenised 
by means of specially developed proce-
dures. Liang and Qu [2] determined the 
substitute coefficient of a material sub-
jected to the different temperatures on 
the parallel external surfaces. The mod-
el introduced includes the radiation of 
the free spaces filled with gas or liquid, 
located symmetrically and repeatable 
in the material. The authors discussed 
the two shapes of the spaces: the cyl-
inder (2D problem) and the sphere (3D 
problem). The substitute heat transfer 
coefficient has the form of Equation 3 
(see page 108).

The problem of calculating the time 
comes from the scale. A macro scale 
implies a 3D problem, whereas a micro 
scale can be treated as a 2D problem. Let 
us next assume, for simplicity, that the 
surrounding fluid is subjected to laminar 
flow, which ensures the other mechanism 
of heat transfer is a turbulent one. The 
heat balance allows to formulate a state 
equation describing heat transfer within 
the suit. 

	 Mathematical model
The state variable is the temperature T. 
The transient heat transport is described 
within each layer by a second-order cor-
relation with respect to the state variable 
and a first-order with respect to time. 
The equation is applied, in general, by 
Korycki [9] but can be simplified be-
cause a typical diving suit does not con-
tain internal heat sources. The problem 
is accompanied by a set of boundary and 
initial conditions. The structure contacts 
the body; the boundary is also the por-
tion ΓT subjected to the first-kind condi-
tion. An optimal microclimate is secured 
by the prescribed temperature T0 of the 
water layer between the skin and diving 
suit. Heat is transported unidirection-
ally from the skin to the surroundings. 
The heat flux density on the side sur-
faces Γq can be consequently neglected, 
qn = 0 , and the structure is subjected to 
the second-kind condition. The exter-
nal boundary portion ΓC is subjected to 
the third kind boundary condition, i.e. 
convectional heat flux. The fourth-kind 
boundary conditions are defined for the 
common surfaces of the internal bound-
ary, i.e. between the neoprene layer and 
internal clothing. The heat flux density 
normal to this boundary portion ΓN has 
the same value. Heat can be additionally 
radiated from the external boundary por-
tion Γd to the water layers surrounding 
the diving suit. Some questions concern-
ing radiation are introduced, for exam-
ple, by Bialecki [2]. Li [10] discussed 
the parameters describing the combined 
conduction and radiation. The initial 
condition describes the temperature dis-
tribution within the structure.
 
The diving suit contacts the skin through 
a thin water layer entering the suit. The 
boundary ΓT of the internal clothing is also 
subjected to the constant temperature of 
the water layer, T0(1) = 35 °C, which is the 
minimal temperature of a normal human 
metabolism. Heat is transported unidirec-
tionally from the skin to the surroundings, 

low too much water to circulate over the 
diver’s skin. A suit that is too tight is very 
uncomfortable and can impair circulation 
at the neck, a very dangerous condition 
which can cause blackouts. For this rea-
son, many divers choose to have wetsuits 
custom-tailored to optimise the thermal 
conditions.

Both layers are connected in a similar 
fashion to the composite because the 
friction coefficient between the neoprene 
and internal textile clothing is very high. 
The core temperature should be constant 
during work and permanently monitored 
because a change therein can be a sign 
of hypothermia. The design variables are 
geometric coordinates of the character-
istic points describing the current shape 
of the layers. The heat transfer is defined 
by a state equation and a set of boundary 
and initial conditions. The textile layer 
contains textronic systems to transfer the 
medical parameters selected. 

Less popular and much more expensive 
is the dry diving suit. These suits can be 
used in a wide range of water tempera-
tures depending on the structure. A dry 
suit is a composite made of different 
materials, where water cannot enter the 
structure. Thus, the body is protected by 
the material. Additional protection can be 
the thin layer of air between the suit and 
the skin.

The main idea of the paper was to op-
timise the thermal conditions of a wet 
diving suit. The problem also concerns 
the user’s comfort but not the opti-
mal adaptation of the diving suit to the 
body’s shape. Furthermore it is neces-
sary to discuss the heat transport model 
for non-isotropic composite structures 
of specific conditions and next solve the 
problem. The solution is sensitivity ori-
ented, containing the sensitivities of the 
state fields as well as the sensitivity ex-
pressions within the structure. The ma-
terial derivative concept as well as the 
direct and adjoint approaches to sensi-
tivity analysis are considered, cf. Dems, 
Mróz [2], Dems, Korycki, Rousselet [3], 
Korycki [7 - 9]. The sensitivity oriented 
optimisation of the thermal conditions 
within a composite diving suit was not 
found in the literature analysed. The 
problem is very common for divers, as 
well as the different special textile struc-
tures, smart clothing, etc. The microcli-
mate formed by a diving suit is totally 
different from that within typical cloth-
ing, cf. [16]. 
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with the heat flux density being negligible 
on the side surfaces Γq of the textile cloth-
ing and neoprene. The external part of 
the neoprene layer is subjected to thermal 
convection and thermal radiation. We as-
sume the surrounding temperature T∞ and 
surface film conductance h. The problem 
has the form of Equation 4. 

The problem can be simplified consider-
ably for steady heat transfer. The time de-
rivative of the temperature with respect 
to time is negligible, and the problem has 
the form of Equation 5.

We can analyse the heat balance, i.e. the 
heat densities within a unit volume of 
the surrounding fluid caused by different 
thermal phenomena. The state parameter 
is still the temperature T. The energy 
source is the 3D fluid convection as well 
as the 3D heat conduction within the unit 
domain. Heat is lost by convection, con-
duction and the accumulation within the 
material. Consequently the energy corre-
lation for the fluid contains an additional 
term which describes the fluid convec-
tion and depends on the flow velocity 
vf and fluid temperature T, cf. Zarzycki 
[17], as is presented in Equation 6.

We integrate the above equations numer-
ically and determine the temperature dis-
tribution between the external boundary 
of the diving suit and the surroundings 
with respect to the flow velocity.

	 Sensitivity oriented 
optimisation

Let us consider an arbitrary behavioral 
functional associated with the transient 
heat transfer problem, described within 
the structure as is presented in Equation 
7, where Ψ and γ are continuous and dif-
ferentiable functions of their arguments. 
According to the material derivative con-
cept, the first-order sensitivity is assumed 
as the material derivative of the function-
al with respect to the design parameter 
and analysed by means of the direct and 
adjoint approaches.

Let us first analyse the direct approach. 
The unknown sensitivities of the state 
fields are obtained by means of the ad-
ditional structure associated with each 
design parameter. This approach is use-
ful for calculating the sensitivities of the 
entire response field with respect to a few 
design variables. The number of prob-

lems is equal to the number of design pa-
rameters, and we additionally solve the 
primary problem. The additional struc-
ture has the same shape, with the thermal 
properties as primary, and is characterised 
by the correlations following from the 
differentiation of primary equations with 
respect to design parameters. The state 
equation and set of conditions are charac-
terised, acc. [9], with respect to the van-
ishing heat source f = 0 see Equation 8.

The first-order sensitivity expression can 
be simplified to the form of [9] Equa-
tion 9. 

The adjoint approach for calculating the 
first-order sensitivity requires the solu-
tion of the one adjoint and the primary 
heat transfer problem. The adjoint and 
primary structures have the same shape 
as well as thermal and radiation prop-
erties. The adjoint method is most con-
venient for estimating first-order sensi-
tivities with respect to a few objective 
functionals. The equations of the adjoint 
heat conduction problem are the heat 
conduction equation and the boundary 
and initial conditions, cf. Korycki [9] 
see Equation 10.

( ) ( )

( )
.

D3
D2Tarctg

D3
D2Tarctg

TTCDA3
1

DDTT
DDTTln

TTCD6A
1

DT
DTln

TTCD3A
1

A
1λ

ab

ab
22

2
a

2
a

2
b

2
b

ab
22

b

b

ab
22s







 −

−
−

−
−

+−
+−

−
+

+
+

−
−=

( ) ( )

( )
.

D3
D2Tarctg

D3
D2Tarctg

TTCDA3
1

DDTT
DDTTln

TTCD6A
1

DT
DTln

TTCD3A
1

A
1λ

ab

ab
22

2
a

2
a

2
b

2
b

ab
22

b

b

ab
22s







 −

−
−

−
−

+−
+−

−
+

+
+

−
−= (3)

( ) ( ) ( )
( ) ( ) ( )[ ] ( )( ) ( )( )
( ) ( ) ( ) ( ).   ;  T,0T      ;  t,T σt,q

;    t,qt,q   ;    t,T-t,Tht,q

   ;   0t,q   ;    t,Tt,T

0d
4r

n

N
2

n
1

nCnc

qnT
0

Γ∪Ω∈=Γ∈=

Γ∈=Γ∈=

Γ∈=Γ∈=

∞

xxxxx
xxxxxxx

xxxxx

;     
T

dt
dTcdiv-

*

Ω∈






+∇⋅=

=
x

qAq

q
	 (4)

;    
T
0div-

* Ω∈




+∇⋅=

=
x

qAq
q

( ) ( ) ( )
( ) ( ) ( )[ ] ( )( ) ( )( )
( ) ( ) .  T σq

;    qq   ;    T-Thq

   ;   0q   ;    TT

d
4r

n

N
2

n
1

nCnc

qnT
0

Γ∈=

Γ∈=Γ∈=

Γ∈=Γ∈=

∞

xxx
xxxxxxx

xxxxx

	 (5)

( )
;Ω       

T
dt
dTρcdivT ρcdiv-

fluid
*

f ∈






+∇⋅=

=+
x

qAq

qv ( ) ( ) ( )
( ) ( ) ( )[ ] ( ) ( ).   T,0T    ;    t,T-t,Tht,q

   ;   0t,q   ;    t,Tt,T

0Cnc

qnT
0

Γ∪Ω∈=Γ∈=

Γ∈=Γ∈=

∞ xxxxxx
xxxxx

	 (6)

;    
T

0div-

*









x

qAq

q
     
            
    .  T σq

;    qq   ;    T-Thq

   ;   0q   ;    TT

d

4r

n

N

2

n

1

nCnc

qnT

0









xxx

xxxxxxx

xxxxx

(5)

We  can  analyse  the  heat  balance,  i.e.  the  heat  densities  within  a  unit  volume  of  the 

surrounding fluid caused by  different thermal phenomena. The state parameter is still the 

temperature  T.  The  energy  source  is  the  3D  fluid  convection  as  well  as  the  3D  heat 

conduction  within  the  unit  domain.  Heat  is  lost  by   convection,   conduction  and  the 

accumulation within the material. Consequently the energy correlation for the fluid contains 

an additional term which describes the fluid convection and depends on the flow velocity vf 

and  fluid temperature T, cf. Zarzycki [17]. 
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We integrate  the  above equations  numerically  and determine  the  temperature  distribution 

between the external boundary of the diving suit and the surroundings with respect to the flow 

velocity.

4. Sensitivity oriented optimisation

Let us consider an arbitrary behavioral functional associated with the transient heat transfer 

problem, described within the structure as follows
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and we  additionally solve the primary problem. The additional structure has the same shape, 

~ 7 ~

	 (7)

;     
T

dt
dTcdiv-

*ppp

p
p

Ω∈







+∇⋅=

=
x

qAq

q

( )
( ) ( )
( ) ( )

( )( ) ( )( )
( )

( ) ( ).   TT,0T

;      vqTTσT4q

    t,qt,q

;      vTTht,q

1,2;i   ;    vqqvqt,q

;    TTTt,T

p
00p

p
0

d
p
n

rpr
n

pp3rp
n

N
2p

n
1p

n

c
p
n

ppp
nc

q
p
n

0
nn,

p0
n

p
n

0
p

0
n

p
n

T
p00

p
0pp

Γ∪Ω∈⋅∇−=

Γ∈∇⋅+⋅∇−⋅∇+=

Γ∈=

Γ∈∇⋅+−=

=Γ∈−⋅∇−∇⋅+=

Γ∈⋅∇−==

Γ

ΓΓ∞

ΓΓΓΓ

xvx
xqvv

xxx
xqx

xvqx

xvx

	 (8)

Equations 3, 4, 5, 6, 7 and 8.
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with the thermal properties as  primary,  and is characterised by the correlations following 

from the differentiation of primary equations with respect to design parameters.  The state 

equation and  set of conditions are characterised, acc. [9], with respect to the vanishing heat 

source f=0 
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The first-order sensitivity expression can be simplified to the following [9] 
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The problem is sensitivity oriented, i.e. we introduce the first-order sensitivity expressions in 
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domain  Ω.  Introducing  the  Lagrange  functional   2

0CCFF    cf.  [5]  and  its 

stationarity correlations, we formulate the optimality conditions






















.0Cdu 

d u vF

2

0

p

np





(12)
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Equations 9, 10 and 11.

The time transformation is introduced 
and the final time t = tf at the primary and 
additional problem is equivalent to the 
starting time at the adjoint problem τ = 0. 
The first-order sensitivity expression has 
now the form [9] of Equation 11. 

The problem is sensitivity oriented, i.e. 
we introduce the first-order sensitivity 
expressions in the optimisation correla-
tion. The optimisation problem is defined 
as the minimisation of the objective func-
tional with the imposed constraint of the 
structural cost C. Assuming a homogene-
ous structure in technical problems, the 
structural cost is proportional to the area 
of domain Ω. Introducing the Lagrange 
functional ( )2

0CCFF ξχ +−+=′  cf. [5] 
and its stationarity correlations, we for-
mulate the optimality conditions
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The functional most applied is the meas-
ure of the heat flux density in the form:
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The minimisation of the above functional 
corresponds to the design of a diving suit 
of optimal insulation.

The functional can be a global measure 
of the maximum local temperature in 
the domain. We determine the optimal 
heat conditions by minimising the dis-
tribution of the state variable within the 
structure:
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	 Numerical example
Let us now optimise the wet diving suit 
within a water environment. Of course, 
the diving suit should ensure optimal in-
sulation, cf. Figure 1. The primary struc-
ture can be characterised by Equation 4. 
The diving suit contacts the skin through 
the thin water layer entering the suit. The 
boundary ΓT of the textile has the tempera-
ture of the water layer T0(1) = 34 °C, from 
t = 0 to t = 10 s. The temperature increases 
in conjunction with the value T0(1) = 36 °C 
till the end of optimisation. The external 

part of the neoprene layer is subjected 
to thermal convection as well as thermal 
radiation to the surrounding temperature 
T∞

 = 0 °C, with the surface film conduct-
ance h = 5. Additionally let us introduce 
the negligible initial heat flux density 
q* = 0. The primary problem is defined 
with respect to the above assumptions as 
presented in  Equation 15. 

In this case the objective functional, Equa-
tion 13, should be minimised, and the in-
tegrand is γ = qn on the external boundary 
portion ΓC and Γd. The additional structures 
are defined by Equation 8. Introducing the 

 x2 

      ΓC+ Γd    qn=qnc+qn
r  

 Γq qn=0  2 

   1 

   ΓT     T=T0 

       x1 

         Γq qn=0 

 

Fig.1: Shape optimization of the segment of the wet diving suit, boundary conditions,  
1 – textile clothing, 2 – neoprene; 

 

Figure 1. Shape optimization of the segment 
of the wet diving suit, boundary conditions, 
1 – textile clothing, 2 – neoprene.
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conditions shown in Figure 1, with the ma-
terial derivatives of temperature T0

P = T0P 
known in advance, we simplify the equa-
tion to the form presented  Equation 16.

According to Equation 9, the sensitivity 
expression has the form of Equation 17.

The adjoint approach can be defined by  
Equation 18, cf. Equation 10.

The sensitivity expression is consequent-
ly described by the simplified Equa-
tion 11 presented as Equation 19.

Practically speaking, we assume that the 
fabrics of the internal clothing have iso-
tropic thermal properties, which means 
that the matrix of heat conduction coef-

ficients now has only one component 
– the heat conduction coefficient de-
termined by the homogenisation meth-
od A = λ. The material parameters of 
the clothing are ( )   W/(mK)0,0301 =A , 
c(1) = 1610 · 103 J/(m3K). This layer was 
homogenised by means of the rule of 
mixture. The external neoprene layer has 
the parameters ( )   W/(mK)0,0502 =A  and 
c(2) = 2500 · 103 J/(m3K). The neoprene is 
homogenised by means of the special 
method with air bubbles, according to 
Liang and Qu [11]. 

The optimisation is determined for the 
5 steps within the time period tinit

 = 0;  
tfinal

 = 40 s; Δt = 10 s. The design param-
eters are the 24 coordinates of the Bezier 
polygon points shown in Figure 2. The 
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Equations 15, 16, 17, 18 and 19.

Bezier curve is determined by means 
of these polygon points according to 
the correlation
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where t is the real parameter from the 
range 0 ≤ t ≤ 1; Of course, the first and 
last point of the Bezier polygon are 
situated on the curve and the boundary 
is tangent to the polygon within these 
points. The number of design param-
eters is equal to 24, and consequently 
there are coordinates bj

1 and bj
2, cf. 

Figure 2. 

We have to introduce additional con-
straints on the material shape and 
thickness. Only a quarter of the whole 
cross-section is optimised due to the 
symmetry of the problem. All the 
points of the Bezier polygon on the 
external and internal boundaries of the 
neoprene layer can change the loca-
tion no greater than 10% of the initial 
value. The same points on the external 
boundary of the clothing contacting the 
skin can change maximally 5% only in 
the direction outside the thorax. Thus, 
water can perhaps enter the suit more 
dynamically. The additional constraint 
is the material thickness of the front 
side of thorax (the upper part in Fig-
ure 3), which is 20% greater in relation 
to the side part of the suit (the right-
hand side in Figure 3).

The analysis step allows to introduce 
a Finite Element Net made of 600 
nodes. The synthesis step is performed 
by means of the external penalty func-
tion. The optimal shape is obtained in 
9 iterations, and the optimal functional 
is equal to 81,79% of the initial value.

	 Conclusions
Heat transport and optimal thermal 
conditions are the main factors of the 
user’s comfort and safety in extreme 
environmental conditions, for example 
while diving. The transient problems 
are complicated and should be solved 
approximately by means of different 
numerical methods. The problem can 
be considerably simplified for steady 
heat transport in a diving suit, especial-
ly for some particular cases. Boundary 
conditions are formulated by means of 
the real physical phenomena within the 
composite structure of the diving wet 
suit. 
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Fig.3: Shape optimization of the segment of the wet diving suit, initial and optimal shapes. 
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Figure 3. Shape optimization of the segment of the wet diving suit, 
initial and optimal shapes.

The results presented show that the meth-
od discussed can be a promising tool to 
optimise the thermal conditions within 
a composite diving suit. The bound-
ary was modelled by means of the Bezier 
curve, which makes the analysis similar to 
the real shape of the thorax and other parts 
of the human body. Different constraints 
can be introduced to improve the insula-
tion effect (for example different material 
thicknesses, maximal changes in the posi-
tion of the Bezier points etc.). The shape 
obtained has the minimal increased mate-
rial thickness of the front, decreased thick-
ness of the sides and more space between 
the skin and clothing. Thus for the diver 
the thin layer of water entering the suit can 
now be additional insulation of constant 
temperature during the optimisation time. 
Of course, a complete wet diving suit 
of different boundary conditions needs 
modelling by means of 3D elements. The 
optimal thermal conditions need much 
more calculation time. However, basic 
conclusions can be formulated by means 
of simple 2D optimisation. The additional 
advantage is the little calculation time in 
relation to the other methods.

It is evident that the optimisation results 
obtained should be practically verified, 
which is beyond the scope of the publi-
cation presented and will be introduced 
in the next paper. The main difficulty is 
always the balance between the compu-
tational effort required to solve the prob-
lem and the complexity of the modelling. 
Basic 2D or simple 3D models as well as 
the applied FE Net are relatively uncom-
plicated, therefore the effective calcula-
tion time is low. The more complicated 
shapes need the advanced space FE Net, 
in which the calculation time grows sig-
nificantly. Moreover, the results can be 

verified for existing wet diving suits and 
the temperature measured within selected 
points of the structure.
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