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Abstract
Plant fibres (PFs) are preferred reinforcements of bio-composites. Knowledge of their lifespan 
requires a study of their viscoelastic behaviour. In this paper, a stress relaxation analysis of 
kenaf fibres was performed at a constant rate of deformation at room temperature. A method 
for extracting the relaxation modulus in the deferred zone was proposed. This method was 
compared, using simulation, with the Zapas-Phillips method and experimental data via 
three predictive models: the stretched exponential function or KWW, the inverse power law 
of Nutting and the prony series. The results indicate that the relaxation modulus obtained 
by the method proposed is in good agreement with the experimental modulus. In addition, 
the estimated error is of the same order of magnitude as in the case of the Zapas-Phillips 
method. The parameters estimated from the KWW function (β = 0.4) and prony series model 
showed an important contribution in the study of the delayed response of kenaf fibres. These 
results can have a significant impact on the use of kenaf fibres in midterm and long-term 
loading applications.

Key words: kenaf fibres, relaxation test, relaxation modulus, predictive model, delayed 
behavior.
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ed that the introduction of short fibres for 
the reinforcement of composites increas-
es the rate of stress relaxation.

Different methods of extracting the 
modulus from relaxation experiments 
have also been proposed in the litera-
ture. Kelchner and Aklonis [18], Zapas 
and Phillips [8, 19], Smith, and Lee and 
Knauss [19-21] proposed more or less 
accurate and simple methods based on 
the simulated response of virtual poly-
meric materials, rather than real experi-
mental data.

Modelling the viscoelastic properties of 
PFs is necessary to accurately predict the 
long-term performance of PF compos-
ites. Predictive models are generally used 
to model the delayed behaviour of natu-
ral fibres in creep and relaxation experi-
ments. However, in the literature, several 
studies have focussed on modelling the 
viscoelastic behaviour of materials. Cisse 
[22] highlighted the viscoelastic nature 
of flax fibre after a creep test. He used 
analogic rheological models to predict 
the viscoelastic behaviour of flax fibre. 
Bourmaud et al. [23] studied the viscoe-
lastic behaviour of flax fibre nanoindenta-
tion footprint recovery. The authors used 
Maxwell’s two branch and three branch 
models to describe the viscoelastic be-
haviour of flax fibres. In addition, they 
also used the Kolrausch-Williams-Watts 
(KWW) function to replicate the viscoe-
lastic behaviour of flax fibre. Sasaki [24] 
used mechanical models based on the 

	 Introduction
Natural fibres in general and PFs in 
particular are increasingly used in sev-
eral fields of engineering applications 
because of their interesting properties. 
These fibres are biodegradable and en-
vironmentally friendly. For an optimal 
use of PFs in structures, knowledge of 
their behaviour in service is essential. 
Many applications require that fibres be 
permanently loaded in the long run [1]. 
However, it is difficult or impossible to 
carry out long-term tests [2]. Thus, lim-
ited laboratory tests such as the creep 
and relaxation are used to predict their 
behaviour in service by extrapolation. 
A significant number of works have al-
ready been conducted to characterise and 
model the elastic behaviour of PFs [3-7]. 
Yet, only few studies have been devoted 
to the viscoelastic behaviour of PFs. 

The linear viscoelasticity of a material 
in stress relaxation depends largely on 
the relaxation modulus. The modulus of 
relaxation in stress can be determined 
by the progressive application of defor-
mation [8] or by instantaneous deforma-
tion [9]. In addition, approaches for the 
characterisation of material stress relax-
ation behaviours are reported [10-15]. 
The stress relaxation behaviour of rein-
forced composites of plant fibres are also 
reported [16, 17]. These authors conclud-

function of KWW to predict viscoelas-
tic behaviour. He also presented several 
other methods to study the viscoelastic 
properties of biological materials. Saiful 
et al.  [25] proposed linear viscoelastic 
models based on the prony series. Chen 
[26] proposed a method of determining 
the coefficients of viscoelastic modulus 
materials using prony series representa-
tion from the rate dependent data. Goh et 
al. [27] proposed a method based on the 
finite time increment formulation of the 
convolution integral, and is applicable for 
materials which exhibit separable strain 
and time variables. The authors applied 
this method to determine the constitu-
tive constants of a non-linear viscoelastic 
material. The selected time-dependent 
function is based on the prony series. Re-
cently, Xu and Engquist [28] proposed 
a mathematical model based on the sig-
moidal function to predict and model the 
linear viscoelasticity relaxation modulus 
of biological materials. The stress relax-
ation behaviour of nanocomposites was 
reported in [29]. The KWW and Max-
well-Weichert models were used to pre-
dict the relaxation phenomenon observed. 
However, the authors conclude that the 
models fit the experimental points well.

However, these authors used various 
classical functions for predicting the pa-
rameters and adjusting the experimen-
tal curve. In addition, knowledge of the 
mechanical properties of the constituents 
taken separately makes it possible to op-
timise the bio-composite.
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In this work, an extraction method for the 
relaxation modulus of stress that bypass-
es the integral equation solution will be 
introduced. The method applied is based 
on the discretisation of the experimental 
curve in the delayed field. The current 
paper is directed towards replacing the 
classical functions in the integral equa-
tion to compare the experimental data 
with the values calculated by the Zap-
pas-Phillips and discretisation methods 
for the experimental curve. 

	 Material and methods
Stress relaxation test
The relaxation test consists of applying 
a quasi-instantaneous constant deforma-
tion to the fibre, and monitoring the re-
sponse (stress) over time. Twenty kenaf 
fibres with a 60 ± 1.8 μm mean diame�-
ter were prepared and tested on a LIYI 
1066A type universal tensile testing ma-
chine. The LIYI machine is equipped 
with a 50 N load sensor of 0.05% accura-
cy and controlled by TM2101 software. 
The tests were conducted at a room tem-
perature of 24 ± 1 °C and relative humid-
ity of 50 ± 1.5%.

An almost instantaneous strain of the or-
der of 0.25% was applied with a cross-
head speed of 1 mm/min-1, followed by 
a hold time of 7200 s. Fibre preparation 
was carried out according to the ASTM 
D3822 standard.

Linear viscoelasticity analysis method
In theory, when the strain is instantane-
ously applied, the relaxation modulus 
can be determined as: 
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Where, σ(t) is the time dependent stress 
response, and ε0 is the strain amplitude. 
However, in practice the application of 
an instantaneous strain is not possible. 
In a stress relaxation test, with time 
0 ≤ t ≤ t0, the strain is applied at a con-
stant rate. Where, t0 is the time for the 
stress to reach its maximum value. Sub-
sequently, a constant deformation level 
is maintained at time t ≥ t0 (Figure 1). 
Generally, a discrepancy is observed be-
tween the responses to a constant strain 
and the ideal response to an instantane-
ous strain.

Therefore, Equation (1) is not applicable 
for calculation of the relaxation modulus. 
According to [8], the integral Boltzmann 
equation may be appropriate. In the stress 
relaxation of a linear viscoelastic materi-
al under uniaxial loading, the Boltzmann 
Equation (2) can be given as [9, 30]:
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Figure1. Ramp of strain 

Where, t0 is the time for the stress to reach its maximum value. 

Therefore, Equation 1 is not applicable for  calculation of the relaxation modulus. According to [8], the 

integral Boltzmann equation may be appropriate. In the stress relaxation of a linear viscoelastic material 

under uniaxial loading, the Boltzmann Equation can be given as[9] [30]: 

                                                       d
t

dt
dtt  

0

)()()(                                     (2) 

Where, σ is the stress, t the time, E the relaxation modulus, and 


 
dt

d )(  the strain rate. 

The strain in the relaxation experiment (figure 1) makes it possible to define the following relation [19]: 

 











00

00)(
tt

tttt

                                                                                                       (3) 

Combining Eqs (3) and (2), gives: 























0

0
00

0
00

)(

)(
)( t

t

ttdtE

ttdtE
t








                                                                                       (4) 

ε 

εo 

Time to 

   (2)

Where, σ is the stress, t the time, E the

relaxation modulus, and 

4 
 

 

 

 

 

 

 

 

 

Figure1. Ramp of strain 

Where, t0 is the time for the stress to reach its maximum value. 

Therefore, Equation 1 is not applicable for  calculation of the relaxation modulus. According to [8], the 

integral Boltzmann equation may be appropriate. In the stress relaxation of a linear viscoelastic material 

under uniaxial loading, the Boltzmann Equation can be given as[9] [30]: 

                                                       d
t

dt
dtt  

0

)()()(                                     (2) 

Where, σ is the stress, t the time, E the relaxation modulus, and 


 
dt

d )(  the strain rate. 

The strain in the relaxation experiment (figure 1) makes it possible to define the following relation [19]: 

 











00

00)(
tt

tttt

                                                                                                       (3) 

Combining Eqs (3) and (2), gives: 























0

0
00

0
00

)(

)(
)( t

t

ttdtE

ttdtE
t








                                                                                       (4) 

ε 

εo 

Time to 

 the
strain rate.

The strain in the relaxation experiment 
(Figure 1) makes it possible to define the 
following relation [19]:
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Methods of extraction  
of the relaxation modulus
Zapas and Phillips method
Zapas-Phillips [8] and recently Sor-
vari-Malinen [19] proposed a method 
for determining the relaxation modulus 
of viscoelastic materials. The method 
of Zapas and Phillips was to integrate 
Equation (4) using the midpoint rule 
for t ≥ t0. Thus, the relaxation modulus 
is estimated following Equation (5) 
below:

5 
 

2.3- Methods of extraction of the relaxation modulus 

2.3.1- Zapas and Phillips method 

Zapas-Phillips [8] and recently Sorvari-Malinen [19] proposed a method for determining the relaxation 

modulus of viscoelastic materials. The method of Zapas and Phillips was to integrate equation (4) using 

the midpoint rule for t≥ to. Thus, the relaxation modulus is estimated following Equation 5 below : 

           0
0

0
)()2/( tttttE 




                                                                                     (5) 

Or       2/)2/()( 0
0

tttttE 






                                                                                  (6) 

2.3.2- Sorvari and Malinen method 

Sorvari and Malinen [19] derived Equation 4 as a function of time for t ≥ to and finally integrated it using 

the two-point trapezoidal rule to estimate the relaxation modulus using Equation 7 or Equation 8 below: 

0

00
0

2

)()()( ttttttE  







                                                                                          (7) 

Or 

0
2

)()()(
0

0

0

0 





 



ttttttE





                                                                                 (8) 

Where 
0

0
0

t
 



 

For the stress rate, the following formula has been defined: 

h
hthtt

2
)()()( 


                                                                                               (9) 
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Sorvari and Malinen method
Sorvari and Malinen [19] derived Equa-
tion (4) as a function of time for t ≥ t0 and 
finally integrated it using the two-point 
trapezoidal rule to estimate the relaxation 
modulus using Equation (7) or Equa-
tion (8) below:
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Figure1. Ramp of strain 

Where, t0 is the time for the stress to reach its maximum value. 

Therefore, Equation 1 is not applicable for  calculation of the relaxation modulus. According to [8], the 
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Discretisation method
An infinite curve can be considered an 
infinite succession of segments. Accord-
ingly, the curve of Figure 2, obtained 
during the stress relaxation test, is dis-
cretised here using a simple method that 
bypasses the integral equation used in 
viscoelasticity theory. Using a square 
triangle obtained from a segment as il-
lustrated in Figure 2, we can obtain the 
relationship between the stress σ(t) and 
the corresponding times tn. as below:
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Where, the abscissa tn is supposed to 
be the midpoint of the time interval of 
Equation (12). Thus, the relaxation mod-
ulus at time tn is given by:

6 
 

 
Figure 2. Illustration of the discretisation method’s  relaxation curve 

An infinite curve can be considered an infinite succession of segments. Accordingly, the curve of figure 

2, obtained during the stress relaxation test, is discretised here using a simple method that bypasses the 

integral equation used in viscoelasticity theory. Using a square triangle obtained from a segment as 

illustrated in figure.2, we can obtain the relationship between the stress σ(t) and the corresponding times 

tn. as below: 

 
1

1)1(

11

111)1( )()()()(


















nn

nnnn

nn

nnnn

tt
tt

tt
tt 

                                                            (10) 

                 
22

1111
1








 nnnn

nn
tttttt                                                                    (11) 

Combining Eqs (10) and (11) gives: 

2
)()(

)( 111)1(  
 nnnn

nn

tt
t


  ,   1 1n n nt t t                                                                (12) 

Where, the abscissa tn is supposed to be the midpoint of the time interval of Equation 12. Thus, the 

relaxation modulus at time tn is given by: 

0

111)1(

2
)()(

)(

  

 nnnn
nn

tt
tE        tn˃t0                                                                                                                   (13) 

tn ˃ t0     (13)
n ϵ [1, k], 

Where, k is the total number of experi-
mental data obtained.

The discrepancy between the experiment 
and numerical calculations is given by 
[19]:
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However, three classical models are generally used to represent the relaxation function.: the prony series 

[28-29], the power law [33][9], and the stretched exponential law [8][34][35]. 





n

i

t
ie

iEEtE
1

/exp)(                                                                                                        (16) 

Ee is an equilibrium modulus, Ei  the elastic component, and τi the associated relaxation times. 
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Ee is an equilibrium modulus, Ei the elas-
tic component, and τi the associated re-
laxation times.
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[8, 35] Equation (17), to represent the 
relaxation function is defined as:
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Where, Eexp is the experimental relaxation modulus, and Enum is the relaxation modulus computed using 

Equation.13 of the discretisation method. 

2.4- Viscoelasticity theory modelling 

To describe the delayed behaviour of kenaf fibre in stress relaxation testing from Equation 4, Equation 2 
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However, three classical models are generally used to represent the relaxation function.: the prony series 
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Ee is an equilibrium modulus, Ei  the elastic component, and τi the associated relaxation times. 

The stretched exponential function, or the Kohlrausch Williams Watts (KWW) [8][35] Equation,  to 

represent the relaxation function is defined as: 
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E0 and Ee are the instantaneous and equilibrium modulus, respectively. β is a characteristic coefficient that 

depends on the viscoelastic behaviour of different materials. β=0 describes the elastic behaviour and β=1 

the viscous behaviour. 
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E0 and Ee are the instantaneous and 
equilibrium modulus, respectively. β is 
a characteristic coefficient that depends 
on the viscoelastic behaviour of different 
materials. β = 0 describes the elastic be-
haviour and β = 1 the viscous behaviour.

The empirical power law was proposed 
by Nutting [33] to adjust experimental 
creep data. In addition to the inverse rela-
tionship between the creep modulus and 
relaxation modulus, this law can be put in 
the following form [33]: 
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Where K0 and m are parameters of the 
model m = 0, and would represent the 
elastic behaviour of the material, and 
m = 1 would correspond to the viscous 
behaviour. The behaviour of viscoelas-
tic material is between these two values. 
The power law has the advantage of be-
ing simple to use, with only two parame-
ters materials (K0 and m).

Substituting Equations (16), (18) or (19) in  
Equation (15), after integration and deri-

vation of 
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This modelling approach allows to pre-
dict the material parameters more ac-
curately. The various parameters of the 
models Equations (20)-(25) are estimat-
ed by fitting the experimental data using 
the “nlinfit” function in matlab, based on 
the Levenberg-Marquardt optimisation 
algorithm.

	 Results and discussion
Stress relaxation test of kenaf fibres
Figure 3 below shows the stress relaxa-
tion test result of kenaf fibre. The strain 
applied (0.25%) is chosen in the elastic 
domain, in the area where the tensile 
curve of the kenaf fibre exhibits non-
linearity [37]. This value of the strain 
is selected for better appreciation of the 
relaxation phenomenon. Results show 
a significant decrease in stress under 
constant strain over time, indicating the 
viscoelastic behaviour of the fibre.

The stress time curve of Figure 3 al-
lowed to identify the value of instantane-
ous stress for the application of the strain 
rate. Under constant strain, the evolving 
stress observed over time is termed de-
ferred (viscoelastic solution). In this so-
called deferred range, two zones can be 
distinguished: The first zone of relaxa-
tion is characterised by a rapid descent 
of the stress until its equilibrium state, 
followed by the second linear zone, char-
acterised by the stability of the stress 
over time. After 7200 s, corresponding 
to the relaxation holding time, a decrease 
in stress is observed in the interval 53.34 
-146.98 MPa. 

Stress relaxation behaviour of kenaf 
fibres
To study the stress relaxation behaviour 
of the fibre, the instantaneous stress is 
subtracted from the deferred response. 
Only data obtained during the period of 
constant strain are used to determine the 
properties of the material. The results 
obtained are shown in Figure 4 in terms 
of normalised deferred stress 
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3.1.2. Stress relaxation behaviour of kenaf fibres 

To study the stress relaxation behaviour of the fibre, the instantaneous stress is subtracted from the 

deferred response. Only data obtained during the period of constant strain are used to determine the 

properties of the material. The results obtained are shown in figure 4 in terms of normalised deferred 

stress 
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0  is the instantaneous stress, and )(t  is the 
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logarithm of time all have the same shape. 

 

 

Figure4. Normalised deferred stress curves as a function of the logarithm of time. 

Given the similarity of the different curves,  computation of the average is performed on the curves 

resulting from the stress relaxation test of  kenaf fibre. This allows to build a relaxation "master curve" at 

room temperature, shown in figure 5. 
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the instantaneous stress, and σ(t) is the 
deferred stress (during the relaxation). 
The normalised deferred stress relaxa-
tion curves plotted against the logarithm 
of time all have the same shape.

Given the similarity of the different 
curves, computation of the average is 
performed on the curves resulting from 
the stress relaxation test of kenaf fibre. 
This allows to build a relaxation “master 
curve” at room temperature, shown in 
Figure 5.

Plant fibres have polymeric constituents 
(cellulose, hemicellulose and lignin). 
The curve of Figure 5 presents a pla-
teau at short times corresponding to the 
instantaneous modulus E0 = 35.37 GPa. 
This plateau would correspond to the mo-
lecular mobility of the cellulose chains. 
Then it decreases exponentially to reach 
an equilibrium, as defined by the relax-
ation modulus Er = 12.255 GPa, which 

would correspond to the total equilibrium 
of cellulose molecules. The part that de-
creases exponentially could be attributed 
to the branching of long chains of cellu-
lose molecules. In addition, the master 
curve of the relaxation modulus makes 
it possible to obtain an equilibrium mod-
ulus greater than zero. This would show 
the influence of pure elastic behaviour on 
kenaf fibre behaviour.

Comparison between the master curve 
and calculated relaxation modulus
The analytical results obtained are com-
pared with the experimental relaxation 
master curve. This is plotted in Figure 6. 
A good correlation is observed between 
the experimental master curve of the 
relaxation modulus and curves result-
ing from the extraction methods of the 
relaxation modulus. The results of the 
error calculation indicate that the mean 
relative error affecting the discretisation 
method with respect to the experimental 

points is around 2.39%, while that of the 
Zapas-Phillips method is 0.54%.

Modelling the delayed behaviour  
of kenaf fibre
Figures 7, 9 and 11 illustrate the relaxa-
tion modulus curves as a function of the 
logarithm of time. These curves show 
a comparison between experimental data 
of the relaxation modulus and the values 
of the relaxation modulus extracted by 
the Zapas-Phillips method and the meth-
od proposed herein. The Zapas-Phillips 
method is used here because of the ease 
of implementation and the quality of 
accuracy. Three predictive models (the 
KWW function, Prony series and the 
Nutting inverse power law) are used to 
adjust the master curve in this work. Sim-
ulations were performed under the same 
experimental conditions with a final 
strain of the order of 0.25%, for a time 
during which the stress reaches its max-
imum value t0 = 0.9 s, using a crosshead 

Figure 3. Illustration of the relaxation stress curve versus time of 
kenaf fibre.
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significant decrease in stress under constant strain over time, indicating the viscoelastic behaviour of the 
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The stress time curve of figure 3 allowed to identify the value of  instantaneous stress for the application 

of the strain rate. Under constant strain, the evolving stress observed over time is termed deferred 

(viscoelastic solution). In this so-called deferred range, two zones can be distinguished: The first zone of 
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second linear zone, characterised by the stability of the stress over time. After 7200 s, corresponding to 
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0  is the instantaneous stress, and )(t  is the 

deferred stress (during the relaxation). The normalised deferred stress relaxation curves plotted against the 

logarithm of time all have the same shape. 

 

 

Figure4. Normalised deferred stress curves as a function of the logarithm of time. 

Given the similarity of the different curves,  computation of the average is performed on the curves 

resulting from the stress relaxation test of  kenaf fibre. This allows to build a relaxation "master curve" at 

room temperature, shown in figure 5. 
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Figure.5. Master curve of kenaf fibres of the response of the relaxation modulus as a function of the logarithm of 

time 

Plant fibres have polymeric constituents (cellulose, hemicellulose and lignin). The curve of figure 5 

presents a plateau at short times corresponding to the instantaneous modulus E0 = 35.37 GPa,. This 

plateau would correspond to the molecular mobility of the cellulose chains. Then it decreases 

exponentially to reach an equilibrium, as defined by the relaxation modulus Er= 12.255 GPa, which would 

correspond to the total equilibrium of cellulose molecules. The part that decreases exponentially could be 

attributed to the branching of  long chains of  cellulose molecules. In addition, the master curve of the 

relaxation modulus makes it possible to obtain an equilibrium modulus greater than zero. This would 

show the influence of pure elastic behaviour on  kenaf fibre behaviour. 

3.1.3. Comparison between the master curve and  calculated relaxation modulus 

The analytical results obtained are compared with the experimental relaxation master curve. This is 

plotted in figure 6. A good correlation is observed between the experimental master curve of the 

relaxation modulus and  curves resulting from the extraction methods of the relaxation modulus. The 

results of the error calculation indicate that the mean relative error affecting the discretisation method 

with respect to the experimental points is around 2.39%, while that of the Zapas-Phillips method is 

0.54%. 
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Figure6. Comparison between the experimental master curve and  calculated data 

3.1.4. Modelling the delayed behaviour of kenaf fibre 

Figures7, 9 and 11 illustrate the relaxation modulus curves as a function of the logarithm of time. These 

curves show a comparison between experimental data of the relaxation modulus and the values of the 

relaxation modulus extracted by the Zapas-Phillips method and the method proposed herein. The Zapas-

Phillips method is used here because of the ease of implementation and the quality of accuracy. Three 

predictive models (the KWW function, Prony series and the Nutting inverse power law) are used to adjust 

the master curve in this work. Simulations were performed under the same experimental conditions with a 

final strain of the order of 0.25%, for a time during which the stress reaches its maximum value t0 = 0.9 s, 

using a crosshead speed of 1 mm.min-1. In line with the different curves, predictive models allow a better 

smoothing of the master curve. Tables 1, 2 and 3 summarise the values of  estimated parameters of the 

predictive models. These are yielded from the non-linear regression based on the Levenberg-Marquardt 

algorithm for different values of the relaxation modulus. 

The average values of β=0.40 and 0.44 respectively obtained by the method proposed and by the Zapas-

Phillips method are close to that obtained by experiment. These β values are significantly higher than 

those of dental polymers (β = 0.33) at 37°C [33]. In addition, these high β values are noticeable, and the 

average relaxation times are high (τ=101.7, 107.07 and 99.8 s), indicating a significant contribution of 

viscosity. Although such a model is accurate to within 2.73%, it does not provide accurate predictions at 

short times. 
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Figure 5. Master curve of kenaf fibres of the response of the 
relaxation modulus as a function of the logarithm of time.

Figure 6. Comparison between the experimental master curve and 
calculated data.
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Figure 7. Simulation between the experimental data, Zapas-Phillips 
method and proposed method using the KWW.

Figure 10. Comparison of proposed method with experimental data 
and Zapas-Phillips method using the prony series at t ≤100 s.

Table 1. Estimated KWW function parameters.

KWW parameters E0 τ β Ee 

Experimental 26.32 101.7 0.4 12.12

Zapas-Phillips 23.51 107.078 0.44 12.35

Proposed method 24.94 99.8 0.4 12.32

Table 2. Estimated model parameters of the Prony Series.

Prony Series Parameter s 
(n = 3) E1 E2 E3 Ee τ1 τ2 τ3

Experimental 5.69 9.59 9.36 12.49 1.606 40.29 507.8

Zapas-Phillips 3.297 8.723 9.06 12.52 5.31 46.87 510.26

Proposed method 7.33 8.36 9.76 12.421 2.47 40.16 425.63

Table 3. Estimated model parameters of the Nutting Inverse Power Law. 

 K0 n

Experimental 36.96 0.124

Zapas-Phillips 35.23 0.118

Proposed method 34.87 0.116
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However, the Nutting inverse power law applied to the different methods of extraction of the modulus 

presents a quite low exponent value of m = 0.12  . This value, close to that of an elastic solid (m = 0), 

would indicate a less important contribution of the viscoelasticity of kenaf fibre to stress relaxation. The 

values of  coefficient K0 are of the same order of magnitude as the value of the short-term modulus. 

Although this law allows to accurately represent the master curve, it remains insensitive to the response 

during strain under stress. In addition, it is obvious that the equation is useful only at times greater than 

100 s. 

However, the model based on the prony series (figure 9) shows the fitting between  experimental data and 

the different methods. For all three branches, the model shows increasing relaxation times (Table 2). This 

also implies the evolution of the viscosity modulus, as defined by iii E  , from the first branch to 

the third. This would also justify a significant part of the viscoelastic behaviour of kenaf fibre.  

Nevertheless, for all the curves obtained by the predictive models, the factor of ten rule holds quite well. 

 
Figure7. Simulation between the experimental data, Zapas-Phillips method and proposed method using the KWW. 
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Figure8. Simulation between the experimental data, Zapas-Phillips method and proposed method using the KWW at  

t ≤ 100 s. 
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Figure9. Comparison of proposed method with experimental data and Zapas-Phillips method using the prony series 

Figure 8. Simulation between the experimental data, Zapas-Phillips 
method and proposed method using the KWW at t ≤ 100 s.
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Figure9. Comparison of proposed method with experimental data and Zapas-Phillips method using the prony series 

Figure 9. Comparison of proposed method with experimental data 
and Zapas-Phillips method using the prony series.
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Figure10. Comparison of proposed method with experimental data and Zapas-Phillips method using the prony 

series at t ≤100 s. 

 

Table 2. Estimated model parameters of the Prony Series 

prony Series 
Parameter s (n=3) E1 E2 E3 Ee τ1 τ2 τ3 
Experimental 5.69 9.59 9.36 12.49 1.606 40.29 507.8 
Zapas-Phillips 3.297 8.723 9.06 12.52 5.31 46.87 510.26 
Proposed method 7.33 8.36 9.76 12.421 2.47 40.16 425.63 
 

 
Figure11. Comparison of proposed method with experimental data and Zapas-Phillips method using the power law 
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different curves, predictive models allow 
a better smoothing of the master curve. 
Tables 1, 2 and 3 summarise the values 
of estimated parameters of the predic-
tive models. These are yielded from the 
non-linear regression based on the Lev-
enberg-Marquardt algorithm for different 
values of the relaxation modulus.

The average values of β = 0.40 and 0.44 
respectively obtained by the method pro-
posed and by the Zapas-Phillips method 
are close to that obtained by experiment. 
These β values are significantly higher 
than those of dental polymers (β = 0.33) 
at 37 °C [33]. In addition, these high β 
values are noticeable, and the average re-
laxation times are high (τ = 101.7, 107.07 
and 99.8 s), indicating a significant 
contribution of viscosity. Although such 
a model is accurate to within 2.73%, it 

35

30

25

20

15

10

5

0
1     10     100 1000 10000

Times, s

R
el

ax
at

io
n 

m
od

ul
us

, G
P

a

34	

32	

30	

28	

26	

24	

22	

20	

18	

16
1     10 100

Times, s

R
el

ax
at

io
n 

m
od

ul
us

, G
P

a
40

35

30

25

20

15

10

5

0
1     10     100 1000 10000

Times, s

R
el

ax
at

io
n 

m
od

ul
us

, G
P

a

36
34	
32	
30	
28	
26	
24	
22	
20	
18	
16
14

1   10 100
Times, s

R
el

ax
at

io
n 

m
od

ul
us

, G
P

a



FIBRES & TEXTILES in Eastern Europe  2021, Vol. 29,  3(147)24

Figure 11. Comparison of proposed method with experimental data 
and Zapas-Phillips method using the power law.

does not provide accurate predictions at 
short times.

However, the Nutting inverse power law 
applied to the different methods of ex-
traction of the modulus presents a quite 
low exponent value of m = 0.12. This 
value, close to that of an elastic solid 
(m = 0), would indicate a less important 
contribution of the viscoelasticity of ke-
naf fibre to stress relaxation. The values 
of coefficient K0 are of the same order 
of magnitude as the value of the short-
term modulus. Although this law allows 
to accurately represent the master curve, 
it remains insensitive to the response dur-
ing strain under stress. In addition, it is 
obvious that the equation is useful only 
at times greater than 100 s.

However, the model based on the prony 
series (Figure 9) shows the fitting be-
tween experimental data and the differ-
ent methods. For all three branches, the 
model shows increasing relaxation times 
(Table 2). This also implies the evolution 
of the viscosity modulus, as defined by 
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, from the first branch to the 
third. This would also justify a signifi-
cant part of the viscoelastic behaviour of 
kenaf fibre. 

Nevertheless, for all the curves obtained 
by the predictive models, the factor of ten 
rule holds quite well.

As suggested by Flory and McKenna [8], 
errors seem to be negligible for times 
t ≥ 100 s. In addition, simulations, as 
plotted in Figures 8, 10 and 12, allow 
to visualise not only the difference be-
tween experimental data and the method 
proposed for t ≤ 100 s, but also a good 

agreement at times t ≥ 100 s. The results 
show a good correlation of the method 
proposed with long-term experimental 
data. While at short times, a slight dis-
persion is observed.

	 Conclusions
In this work, the delayed behaviour 
of kenaf fibres was investigated. To 
this end, stress relaxation experiments 
were carried out. The average values of 
the instantaneous modulus (E0) and of 
the relaxed modulus (Er) are equal to 
35.37 GPa and 12.25 GPa, respective-
ly. Experimental normalised deferred 
stress-time curves were plotted to rep-
resent the stress relaxation behaviour of 
kenaf fibres. A mathematical method for 
extracting the relaxation modulus from 
relaxation experimental data was pro-
posed. The said method was compared 
to the Zapas-Phillips method and three 
other predictive models by means of the 
prony series and power law. As reported 
above, results for the relaxation modu-
lus show good agreement between the 
experimental data and the different the-
oretical methods in the delayed range. 
Material parameters estimated (β = 0.4) 
from the KWW function and prony series 
(τ = 507.8 s) are particularly important to 
be accounted for in studying the delayed 
behaviour of plant fibres. Eventually, 
an error estimate shows that the errors 
obtained with the method proposed are 
merely the same as with the Zapas-Phil-
lips method. The method proposed could 
serve for the extraction of the relaxation 
modulus over the entire deferred area of 
a viscoelastic material.
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