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Abstract
The Shearlet transform has been a burgeoning method applied in the area of image processing 
recently which, differing from the Wavelet transform, has excellent properties in processing 
singularities for multidimensional signals. Not only is it similar to the performance of the 
Curvelet transform, it also overcomes the disadvantage of the Curvelet transform with respect 
to discretization. In this paper, the Shearlet transform with segmented threshold de-nosing is 
proposed to segment a warp-knitted fabric defect. Firstly a warp-knitted fabric image of size 
512*512 is filtered by the Laplacian Pyramid transform and decomposed into low frequency 
and high frequency coefficients. Secondly the high frequency coefficients are operated with a 
pseudo-polar grid and then convoluted by the window function. Thirdly the shearlet coeffi-
cients will be obtained through redefining the Cartesian coordinates from the pseudo-polar 
grid coordinates and de-noised by the segmented threshold method. Then the coefficients 
which have high energy are selected for reconstruction in an inverse way using the previous 
steps. Finally the iterative threshold method and object operation based on morphology are 
applied to segment out the defect profile. The experiment’s result states that the Shearlet 
transform shows excellent performance in segmenting a common warp-knitted fabric defect, 
indicating that the segment results can be applied for further defect automatic recognition.

Key words: warp-knitted fabric defect, Shearlet transform, Fourier transform, segmented 
threshold de-nosing.
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The method named the Shearlet trans-
form is a flexible operator which com-
bines geometry and multiscale analysis. 
It has excellent directional sensitivity 
and overcomes the shortcomings of deal-
ing with distributed discontinuities such 
as edges in high-dimensional signals. 
Therefore it will have promising perfor-
mance in the segmentation of the defect 
profile and is also widely applied in some 
applications like the extraction of texture 
features [27]. By using the Shearlet trans-
form with segmented threshold de-nos-
ing, this work segments some common 
defects in warp-knitted fabric, such as 
broken warp, oil and holes. The result 
shown in our work demonstrates that the 
Shearlet transform is an effective way of 
warp-knitted fabric defect partition, and 
the defect profile is distinct enough for 
further defect recognition.

	 Shearlet transform
The traditional Wavelet transform has the 
promising property of processing point-
wise singularities for 1-D signals. But 
recently it is widely acknowledged that 
this property can be ineffective in dis-
tributing discontinuities, such as edges 
in high-dimensional signals. Therefore 
many methods for settling this matter 
have been proposed over the years, such 
as the complex Wavelet transform [16], 
Brushlet transform [17], Ridgelet trans-
form [18], Curvelet transform [19], Con-
tourlet transform [20] and Shearlet trans-
form [21-22]. These methods have high 

	 Introduction
Warp-knitted fabric, being a more and 
more extensively used material in so-
cial production and life, makes the yarn 
bend in a loop and draw it through the 
old loop [1]. With fiercer market compe-
tition, fabric quality is the pivotal issue to 
guarantee optimized benefits from fabric 
production. Fabric defect detection is an 
important part of quality assurance. In 
spite of the existence of artificial detec-
tion of fabric defects in small and mid-
size companies, automated fabric defect 
detection is is a much talked about appli-
cation in most districts. Traditionally the 
methods for fabric defect detection are 
divided into two approaches: the spatial 
domain method and frequency domain 
method. But in review [2], they are clas-
sified widely into seven types: statistical 
(Auto-correlation function [3], co-occur-
rence matrix [4], mathematical morphol-
ogy [5], the fractal method [6]), the spec-
tral wavelet transform [7], the Fourier 
transform [8], the Gabor transform [9]), 
the autoregressive model [10], Markov 
random fields [11]), learning neural net-
works [12], and structural [13], hybrid 
[14] and motif-based [15].

 Most of the methods mentioned above 
are applied for woven fabric defect de-
tection, but research on warp-knitted fab-
ric defect detection is scarce. In order to 
meet the demand for warp-knitted fabric 
quality control, the burgeoning meth-
od of image processing is introduced. 

direction sensitivity and are excellent for 
the representation of distributed disconti-
nuities such as edges; however, for some 
of them it is difficult to implement the 
discretization of the transforms, which 
makes them not suitable for high-dimen-
sional signals theoretically. However, the 
Shearlet transform overcomes this draw-
back and has more flexible decomposi-
tion for multiscale geometric analysis.

Theory of Shearlet transform
The Shearlet transform is constructed for 
multiscale geometric analysis by affine 
systems. In the dimension d = 2, the af-
fine systems ξ with composite dilations 
can be defined as follows.
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When        , equation 2 is written as follows: 

Where ψ is a collection of the basis func-
tion; T denotes the anisotropy matrix for 
multi-scale partitions, S is a shear matrix 
for directional analysis; l, n and k are the 
scale, direction and translation param-
eters, respectively; Tl is used for scale 
transformation; Sn relates to geometrical 
transformation, and T & S are both 2 × 2 
invertible matrices and |B| = 1. For both 
a > 0 and b ∈ R, the matrices of T and S 
are represented as:
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When a = 2, b = 1, Equation (2) is writ-
ten as follows:
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Figure 1 shows he partition graph of the frequency plane by shearlets. The white region is illustrated as 
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ˇ

, ,l n k

should be defined to construct above cones, which is the result of Fourier transform to , ,l n k .

   
ˇ /2 2

, ,

n ll n l ixS T k
l n k x detT S T x e  

                            (4) 

In addition, the horizontal cone D0 and the vertical cone D1 is associated to the frequency elements 
 0ˇ

, ,l n k

and
 1ˇ

, ,l n k  respectively. 
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Figure 1 shows a partition graph of the 
frequency plane by means of shearlets. 
The white region is illustrated as an hori-
zontal cone D0 and the blue region is 
considered as a vertical cone D1. The fre-
quency elements 
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Figure 1 shows he partition graph of the frequency plane by shearlets. The white region is illustrated as 

horizontal cone D0 and the blue region is considered as vertical cone D1. The frequency elements 
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, ,l n k

should be defined to construct above cones, which is the result of Fourier transform to , ,l n k .
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Then the collection of shearlets at the horizontal cone D0 can be illustrated as following equation. 
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Equations (8), (9), (10), (11) and (12).
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Then the collection of shearlets at the horizontal cone D0 can be illustrated as following equation. 
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Similarly, the collection of shearlets at the vertical cone D1 is implied as the follow. 
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Finally, the Shearlet transform of  2 2f L R can be expressed as the equation (12).  
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In general, the shearlets construct a tight support flame at different scales and directions. And an optimal 

representation for the distributed discontinuities like edges in images can be archived as well. Moreover, the 

approximate error of shearlets satisfies the equation (13) to reach the best approximation. Where 2C  is 

defined as 2-D continuous differentiable function space and N is illustrated as the N largest coefficients in the 

shearlets expression. 
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2.2 The implementation of discrete Shearlet transform at frequency domain 

Traditionally, the information of the images is discontinuous and the collection of shearlets presented above is 

not appropriate to achieve the promising representation for the images. Thus, the implementation of the 

discretization for shearlets is essential. Theoretically the implementation of discretization for shearlets can be 

classified into two methods: the frequency domain and the time domain. The frequency domain method is 

intuitionistic enough for the procedures of discretization and is adopted in this paper to implement the 

discretization of shearlets. 
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operation. The results demonstrate that the segmented defect profile is quite distinct and verisimilar compared 

with the original fabric defect images. It can be applied in  further automatic warp-knitted fabric defect 

identification.  
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 In order to realize the discretization for shearlets, a window function  
,
D

l nW  for decomposing the frequency 

plane is defined.  
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Naturally, the Fourier transform of shearlets , ,l n k  in the discretization form can be obtained by equation 

(17), where the  L  is used for the acquirement of high frequency signal and 
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Eventually the Shearlet transform of  2 2f L R can be illustrated as equation (18). 
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Let the input signal is a 2-D image f of size N*N, and the discrete Fourier transform of the image is

 
ˇ

1 2 ,f   , the decomposition procedure of the image by Shearlet transform can be implemented as below 

   (16)

Naturally the Fourier transform of shear-
lets ψl,n,k in a discretization form can be 
obtained by Equation (17), where L(γ) 
is used for the acquistion of a high fre-
quency signal and 

 

 

 In order to realize the discretization for shearlets, a window function  
,
D

l nW  for decomposing the frequency 

plane is defined.  
,
D

l nW  is localized on a pair of trapezoids and defined in terms of function 2 , as follows:  

   

   

   

0 1

0 1

ˇ ˇ
2 1

22
1 2

ˇ ˇ
0 2 1

2 2,
1 2

ˇ
2

2
1

2 2 1 , 2

    2 2 1 , 2 1

2 ,

l l l
D D

l l l
l n D D

l

n n if n

W n n if n

n otherwise

 
   

 

 
    

 






    
         

   
              

   
      

H H

H H                 (14)

   

   

   

0 1

0 1

ˇ ˇ
2 1

22
1 2

ˇ ˇ
1 2 1

2 2,
1 2

ˇ
1

2
2

2 1 2 , 2

    2 1 2 , 2 1

2 ,

l l l
D D

l l l
l n D D

l

n n if n

W n n if n

n otherwise

 
   

 

 
    

 






    
         

   
              

   
      

H H

H H                 (15) 

Where   2
1 2

ˆ, R    , 1 0  , l=0,1,2,… , Z and 2 , ,2 1l ln     , DH is the indicator function of set D. 

and  
,
d

l nW  satisfies the below condition illustrated as equation (16). 

   
1 2 1 2

, 1 2
0 2

, 1
l

l

E
l n

E n

W  


 

                                        

(16) 

Naturally, the Fourier transform of shearlets , ,l n k  in the discretization form can be obtained by equation 

(17), where the  L  is used for the acquirement of high frequency signal and 

           
0 1

ˇ ˇ

1 11 2 1 1 2 2 1 2, , ,D D            L L H H .

 
       

ˇ
23 /2 2

, , ,2 2 1, ,2
n l

E E

E
E i S T kl l

l n k l nW e E    
  L                                    

(17) 

Eventually the Shearlet transform of  2 2f L R can be illustrated as equation (18). 

         
ˇ

23 /2 2
, , ,, 2 2 , 1,0

n l
E EE E i S T kl l

l n k l nf f W e d E     
   L                      (18) 

Let the input signal is a 2-D image f of size N*N, and the discrete Fourier transform of the image is

 
ˇ

1 2 ,f   , the decomposition procedure of the image by Shearlet transform can be implemented as below 

 

 

 In order to realize the discretization for shearlets, a window function  
,
D

l nW  for decomposing the frequency 

plane is defined.  
,
D

l nW  is localized on a pair of trapezoids and defined in terms of function 2 , as follows:  

   

   

   

0 1

0 1

ˇ ˇ
2 1

22
1 2

ˇ ˇ
0 2 1

2 2,
1 2

ˇ
2

2
1

2 2 1 , 2

    2 2 1 , 2 1

2 ,

l l l
D D

l l l
l n D D

l

n n if n

W n n if n

n otherwise

 
   

 

 
    

 






    
         

   
              

   
      

H H

H H                 (14)

   

   

   

0 1

0 1

ˇ ˇ
2 1

22
1 2

ˇ ˇ
1 2 1

2 2,
1 2

ˇ
1

2
2

2 1 2 , 2

    2 1 2 , 2 1

2 ,

l l l
D D

l l l
l n D D

l

n n if n

W n n if n

n otherwise

 
   

 

 
    

 






    
         

   
              

   
      

H H

H H                 (15) 

Where   2
1 2

ˆ, R    , 1 0  , l=0,1,2,… , Z and 2 , ,2 1l ln     , DH is the indicator function of set D. 

and  
,
d

l nW  satisfies the below condition illustrated as equation (16). 

   
1 2 1 2

, 1 2
0 2

, 1
l

l

E
l n

E n

W  


 

                                        

(16) 

Naturally, the Fourier transform of shearlets , ,l n k  in the discretization form can be obtained by equation 

(17), where the  L  is used for the acquirement of high frequency signal and 

           
0 1

ˇ ˇ

1 11 2 1 1 2 2 1 2, , ,D D            L L H H .

 
       

ˇ
23 /2 2

, , ,2 2 1, ,2
n l

E E

E
E i S T kl l

l n k l nW e E    
  L                                    

(17) 

Eventually the Shearlet transform of  2 2f L R can be illustrated as equation (18). 

         
ˇ

23 /2 2
, , ,, 2 2 , 1,0

n l
E EE E i S T kl l

l n k l nf f W e d E     
   L                      (18) 

Let the input signal is a 2-D image f of size N*N, and the discrete Fourier transform of the image is

 
ˇ

1 2 ,f   , the decomposition procedure of the image by Shearlet transform can be implemented as below 

 
Eventually the Shearlet transform of  
f ∈ L2 (R2) can be illustrated as Equa-
tion (18).

Let the input signal be a 2-D image f 
of size N*N, and the discrete Fourier 
transform of the image 

 

 

 In order to realize the discretization for shearlets, a window function  
,
D

l nW  for decomposing the frequency 

plane is defined.  
,
D

l nW  is localized on a pair of trapezoids and defined in terms of function 2 , as follows:  

   

   

   

0 1

0 1

ˇ ˇ
2 1

22
1 2

ˇ ˇ
0 2 1

2 2,
1 2

ˇ
2

2
1

2 2 1 , 2

    2 2 1 , 2 1

2 ,

l l l
D D

l l l
l n D D

l

n n if n

W n n if n

n otherwise

 
   

 

 
    

 






    
         

   
              

   
      

H H

H H                 (14)

   

   

   

0 1

0 1

ˇ ˇ
2 1

22
1 2

ˇ ˇ
1 2 1

2 2,
1 2

ˇ
1

2
2

2 1 2 , 2

    2 1 2 , 2 1

2 ,

l l l
D D

l l l
l n D D

l

n n if n

W n n if n

n otherwise

 
   

 

 
    

 






    
         

   
              

   
      

H H

H H                 (15) 

Where   2
1 2

ˆ, R    , 1 0  , l=0,1,2,… , Z and 2 , ,2 1l ln     , DH is the indicator function of set D. 

and  
,
d

l nW  satisfies the below condition illustrated as equation (16). 

   
1 2 1 2

, 1 2
0 2

, 1
l

l

E
l n

E n

W  


 

                                        

(16) 

Naturally, the Fourier transform of shearlets , ,l n k  in the discretization form can be obtained by equation 

(17), where the  L  is used for the acquirement of high frequency signal and 

           
0 1

ˇ ˇ

1 11 2 1 1 2 2 1 2, , ,D D            L L H H .

 
       

ˇ
23 /2 2

, , ,2 2 1, ,2
n l

E E

E
E i S T kl l

l n k l nW e E    
  L                                    

(17) 

Eventually the Shearlet transform of  2 2f L R can be illustrated as equation (18). 

         
ˇ

23 /2 2
, , ,, 2 2 , 1,0

n l
E EE E i S T kl l

l n k l nf f W e d E     
   L                      (18) 

Let the input signal is a 2-D image f of size N*N, and the discrete Fourier transform of the image is

 
ˇ

1 2 ,f   , the decomposition procedure of the image by Shearlet transform can be implemented as below , the de-
composition procedure of the image by 
Shearlet transform can be implemented 
by the steps below. The first step of the 
discrete Shearlet transform is to obtain 
high frequency coefficients of the image 
by using the Laplacian Pyramid trans-
form (LPT).

The LPT decomposes the image into 
a low frequency coefficient contain-
ing essential information of the origi-
nal image and a high frequency coeffi-
cient containing the image details [24]. 
The decomposition procedure of LPT is 
illustrated in Figure 3, where D is the de-
composition filter, C the synthesis filter, 
and M the sample matrix. In this decom-
position procedure, the low frequency 
coefficient is obtained by processing the 
original image f with the decomposition 
filter and down-sampled matrix and then 
processed sequentially by the up-sampled 
matrix, synthesis filter and a prediction 
coefficient like the original one acquired. 
While the high frequency coefficient b is 
the D-value between the original image 
and prediction coefficient. Mathemati-
cally the decomposition can be simply 
expressed as Equation (19). Here the no-
tation is same as that mentioned above.

 

 

steps. The first step of discrete Shearlet transform is to obtain the high frequency coefficients of the image by

using the Laplacian Pyramid transform (LPT).    

The LPT decomposes the image into the low frequency coefficient containing the essential information of 

the original image and the high frequency coefficient containing the image details [24]. The decomposition 

procedure of LPT is illustrated in Figure 3, where D is the decomposition filter, C is the synthesis filter and M

is the sample matrix. In this decomposition procedure, the low frequency coefficient  is obtained by 

processing the original image f  with the decomposition filter and the down-sampled matrix and then 

processed sequentially by the up-sampled matrix, synthesis filter and a prediction coefficient like the original 

one acquired. While the high frequency coefficient   is the D-value between the original image and 

prediction coefficient. Mathematically, the decomposition can be simply expressed as equation (19). Here the 

notation is same as mentioned above. 

     
ˇ ˇ

2 2
1 2 1 2 1 2,  ,  2 ,2

l
l l

df f       L                       (19) 

The high frequency coefficient  
ˇ

1 2,
l

df    will be processed on the pseudo-polar grid which describes the 

samples in frequency domain as along lines across the origin at different slopes [22]. And the pseudo-polar 

coordinates  ,z c  is defined as follows. 

   2
1 1 2 0

1

, , , ,z c if D
  


 

  
 

                        

(20) 

   1
2 1 2 1

2

, , , ,z c if D
  


 

  
 

                        

(21) 

Therefore, the high frequency coefficient  
ˇ

1 2,
l

df    can be redefined as

       
ˇ ˇ

2 2
1 2 1 2 1 2, , ,  2 ,2

l
l l

l dg z c f f        L .  ,lg z c will be filtered by 1-D band-pass filter along the 

 (19)

The high frequency coefficient 

 

 

steps. The first step of discrete Shearlet transform is to obtain the high frequency coefficients of the image by

using the Laplacian Pyramid transform (LPT).    

The LPT decomposes the image into the low frequency coefficient containing the essential information of 

the original image and the high frequency coefficient containing the image details [24]. The decomposition 

procedure of LPT is illustrated in Figure 3, where D is the decomposition filter, C is the synthesis filter and M

is the sample matrix. In this decomposition procedure, the low frequency coefficient  is obtained by 

processing the original image f  with the decomposition filter and the down-sampled matrix and then 

processed sequentially by the up-sampled matrix, synthesis filter and a prediction coefficient like the original 

one acquired. While the high frequency coefficient   is the D-value between the original image and 

prediction coefficient. Mathematically, the decomposition can be simply expressed as equation (19). Here the 

notation is same as mentioned above. 

     
ˇ ˇ

2 2
1 2 1 2 1 2,  ,  2 ,2

l
l l

df f       L                       (19) 

The high frequency coefficient  
ˇ

1 2,
l

df    will be processed on the pseudo-polar grid which describes the 

samples in frequency domain as along lines across the origin at different slopes [22]. And the pseudo-polar 

coordinates  ,z c  is defined as follows. 

   2
1 1 2 0

1

, , , ,z c if D
  


 

  
 

                        

(20) 

   1
2 1 2 1

2

, , , ,z c if D
  


 

  
 

                        

(21) 

Therefore, the high frequency coefficient  
ˇ

1 2,
l

df    can be redefined as

       
ˇ ˇ

2 2
1 2 1 2 1 2, , ,  2 ,2

l
l l

l dg z c f f        L .  ,lg z c will be filtered by 1-D band-pass filter along the 

 
will be processed on a pseudo-polar grid 
which describes the samples in the fre-
quency domain as along lines across the 
origin at different slopes [22]. And the 
pseudo-polar coordinates (z, c) are de-
fined as follows:

 

 

steps. The first step of discrete Shearlet transform is to obtain the high frequency coefficients of the image by

using the Laplacian Pyramid transform (LPT).    

The LPT decomposes the image into the low frequency coefficient containing the essential information of 

the original image and the high frequency coefficient containing the image details [24]. The decomposition 

procedure of LPT is illustrated in Figure 3, where D is the decomposition filter, C is the synthesis filter and M

is the sample matrix. In this decomposition procedure, the low frequency coefficient  is obtained by 

processing the original image f  with the decomposition filter and the down-sampled matrix and then 

processed sequentially by the up-sampled matrix, synthesis filter and a prediction coefficient like the original 

one acquired. While the high frequency coefficient   is the D-value between the original image and 

prediction coefficient. Mathematically, the decomposition can be simply expressed as equation (19). Here the 

notation is same as mentioned above. 

     
ˇ ˇ

2 2
1 2 1 2 1 2,  ,  2 ,2

l
l l

df f       L                       (19) 

The high frequency coefficient  
ˇ

1 2,
l

df    will be processed on the pseudo-polar grid which describes the 

samples in frequency domain as along lines across the origin at different slopes [22]. And the pseudo-polar 

coordinates  ,z c  is defined as follows. 

   2
1 1 2 0

1

, , , ,z c if D
  


 

  
 

                        

(20) 

   1
2 1 2 1

2

, , , ,z c if D
  


 

  
 

                        

(21) 

Therefore, the high frequency coefficient  
ˇ

1 2,
l

df    can be redefined as

       
ˇ ˇ

2 2
1 2 1 2 1 2, , ,  2 ,2

l
l l

l dg z c f f        L .  ,lg z c will be filtered by 1-D band-pass filter along the 

 (20)

 

 

steps. The first step of discrete Shearlet transform is to obtain the high frequency coefficients of the image by

using the Laplacian Pyramid transform (LPT).    

The LPT decomposes the image into the low frequency coefficient containing the essential information of 

the original image and the high frequency coefficient containing the image details [24]. The decomposition 

procedure of LPT is illustrated in Figure 3, where D is the decomposition filter, C is the synthesis filter and M

is the sample matrix. In this decomposition procedure, the low frequency coefficient  is obtained by 

processing the original image f  with the decomposition filter and the down-sampled matrix and then 

processed sequentially by the up-sampled matrix, synthesis filter and a prediction coefficient like the original 

one acquired. While the high frequency coefficient   is the D-value between the original image and 

prediction coefficient. Mathematically, the decomposition can be simply expressed as equation (19). Here the 

notation is same as mentioned above. 

     
ˇ ˇ

2 2
1 2 1 2 1 2,  ,  2 ,2

l
l l

df f       L                       (19) 

The high frequency coefficient  
ˇ

1 2,
l

df    will be processed on the pseudo-polar grid which describes the 

samples in frequency domain as along lines across the origin at different slopes [22]. And the pseudo-polar 

coordinates  ,z c  is defined as follows. 

   2
1 1 2 0

1

, , , ,z c if D
  


 

  
 

                        

(20) 

   1
2 1 2 1

2

, , , ,z c if D
  


 

  
 

                        

(21) 

Therefore, the high frequency coefficient  
ˇ

1 2,
l

df    can be redefined as

       
ˇ ˇ

2 2
1 2 1 2 1 2, , ,  2 ,2

l
l l

l dg z c f f        L .  ,lg z c will be filtered by 1-D band-pass filter along the 

 (21)

Therefore the high frequency coefficient

 

 

steps. The first step of discrete Shearlet transform is to obtain the high frequency coefficients of the image by

using the Laplacian Pyramid transform (LPT).    

The LPT decomposes the image into the low frequency coefficient containing the essential information of 

the original image and the high frequency coefficient containing the image details [24]. The decomposition 

procedure of LPT is illustrated in Figure 3, where D is the decomposition filter, C is the synthesis filter and M

is the sample matrix. In this decomposition procedure, the low frequency coefficient  is obtained by 

processing the original image f  with the decomposition filter and the down-sampled matrix and then 

processed sequentially by the up-sampled matrix, synthesis filter and a prediction coefficient like the original 

one acquired. While the high frequency coefficient   is the D-value between the original image and 

prediction coefficient. Mathematically, the decomposition can be simply expressed as equation (19). Here the 

notation is same as mentioned above. 

     
ˇ ˇ

2 2
1 2 1 2 1 2,  ,  2 ,2

l
l l

df f       L                       (19) 

The high frequency coefficient  
ˇ

1 2,
l

df    will be processed on the pseudo-polar grid which describes the 

samples in frequency domain as along lines across the origin at different slopes [22]. And the pseudo-polar 

coordinates  ,z c  is defined as follows. 

   2
1 1 2 0

1

, , , ,z c if D
  


 

  
 

                        

(20) 

   1
2 1 2 1

2

, , , ,z c if D
  


 

  
 

                        

(21) 

Therefore, the high frequency coefficient  
ˇ

1 2,
l

df    can be redefined as

       
ˇ ˇ

2 2
1 2 1 2 1 2, , ,  2 ,2

l
l l

l dg z c f f        L .  ,lg z c will be filtered by 1-D band-pass filter along the 

 can be redefined as 

 

 

steps. The first step of discrete Shearlet transform is to obtain the high frequency coefficients of the image by

using the Laplacian Pyramid transform (LPT).    

The LPT decomposes the image into the low frequency coefficient containing the essential information of 

the original image and the high frequency coefficient containing the image details [24]. The decomposition 

procedure of LPT is illustrated in Figure 3, where D is the decomposition filter, C is the synthesis filter and M

is the sample matrix. In this decomposition procedure, the low frequency coefficient  is obtained by 

processing the original image f  with the decomposition filter and the down-sampled matrix and then 

processed sequentially by the up-sampled matrix, synthesis filter and a prediction coefficient like the original 

one acquired. While the high frequency coefficient   is the D-value between the original image and 

prediction coefficient. Mathematically, the decomposition can be simply expressed as equation (19). Here the 

notation is same as mentioned above. 

     
ˇ ˇ

2 2
1 2 1 2 1 2,  ,  2 ,2

l
l l

df f       L                       (19) 

The high frequency coefficient  
ˇ

1 2,
l

df    will be processed on the pseudo-polar grid which describes the 

samples in frequency domain as along lines across the origin at different slopes [22]. And the pseudo-polar 

coordinates  ,z c  is defined as follows. 

   2
1 1 2 0

1

, , , ,z c if D
  


 

  
 

                        

(20) 

   1
2 1 2 1

2

, , , ,z c if D
  


 

  
 

                        

(21) 

Therefore, the high frequency coefficient  
ˇ

1 2,
l

df    can be redefined as

       
ˇ ˇ

2 2
1 2 1 2 1 2, , ,  2 ,2

l
l l

l dg z c f f        L .  ,lg z c will be filtered by 1-D band-pass filter along the 

 

 

steps. The first step of discrete Shearlet transform is to obtain the high frequency coefficients of the image by

using the Laplacian Pyramid transform (LPT).    

The LPT decomposes the image into the low frequency coefficient containing the essential information of 

the original image and the high frequency coefficient containing the image details [24]. The decomposition 

procedure of LPT is illustrated in Figure 3, where D is the decomposition filter, C is the synthesis filter and M

is the sample matrix. In this decomposition procedure, the low frequency coefficient  is obtained by 

processing the original image f  with the decomposition filter and the down-sampled matrix and then 

processed sequentially by the up-sampled matrix, synthesis filter and a prediction coefficient like the original 

one acquired. While the high frequency coefficient   is the D-value between the original image and 

prediction coefficient. Mathematically, the decomposition can be simply expressed as equation (19). Here the 

notation is same as mentioned above. 

     
ˇ ˇ

2 2
1 2 1 2 1 2,  ,  2 ,2

l
l l

df f       L                       (19) 

The high frequency coefficient  
ˇ

1 2,
l

df    will be processed on the pseudo-polar grid which describes the 

samples in frequency domain as along lines across the origin at different slopes [22]. And the pseudo-polar 

coordinates  ,z c  is defined as follows. 

   2
1 1 2 0

1

, , , ,z c if D
  


 

  
 

                        

(20) 

   1
2 1 2 1

2

, , , ,z c if D
  


 

  
 

                        

(21) 

Therefore, the high frequency coefficient  
ˇ

1 2,
l

df    can be redefined as

       
ˇ ˇ

2 2
1 2 1 2 1 2, , ,  2 ,2

l
l l

l dg z c f f        L .  ,lg z c will be filtered by 1-D band-pass filter along the  

 

 

steps. The first step of discrete Shearlet transform is to obtain the high frequency coefficients of the image by

using the Laplacian Pyramid transform (LPT).    

The LPT decomposes the image into the low frequency coefficient containing the essential information of 

the original image and the high frequency coefficient containing the image details [24]. The decomposition 

procedure of LPT is illustrated in Figure 3, where D is the decomposition filter, C is the synthesis filter and M

is the sample matrix. In this decomposition procedure, the low frequency coefficient  is obtained by 

processing the original image f  with the decomposition filter and the down-sampled matrix and then 

processed sequentially by the up-sampled matrix, synthesis filter and a prediction coefficient like the original 

one acquired. While the high frequency coefficient   is the D-value between the original image and 

prediction coefficient. Mathematically, the decomposition can be simply expressed as equation (19). Here the 

notation is same as mentioned above. 

     
ˇ ˇ

2 2
1 2 1 2 1 2,  ,  2 ,2

l
l l

df f       L                       (19) 

The high frequency coefficient  
ˇ

1 2,
l

df    will be processed on the pseudo-polar grid which describes the 

samples in frequency domain as along lines across the origin at different slopes [22]. And the pseudo-polar 

coordinates  ,z c  is defined as follows. 

   2
1 1 2 0

1

, , , ,z c if D
  


 

  
 

                        

(20) 

   1
2 1 2 1

2

, , , ,z c if D
  


 

  
 

                        

(21) 

Therefore, the high frequency coefficient  
ˇ

1 2,
l

df    can be redefined as

       
ˇ ˇ

2 2
1 2 1 2 1 2, , ,  2 ,2

l
l l

l dg z c f f        L .  ,lg z c will be filtered by 1-D band-pass filter along the  will be filtered by the 1-D band-
pass filter along axis c. The 1-D band-pass 
filter here is the discrete Fourier trans-
form of window function 

 

 

axis c. The 1-D band-pass filter here is the discrete Fourier transform of the window function  
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 2lW v n , where 2 , ,2 1l ln     .

Then the Shearlet coefficients  0
, ,, l n kf   can be simply expressed as below based on equation (18). It 

redefines the Cartesian coordinates from the pseudo-polar grid coordinates and k1, k2 is the coordinate point of 

discrete samples of the high frequency coefficient. Similarly, the Shearlet coefficients at 1D  can be obtained 

in this way. 
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The sketch graph of decomposition procedure of the Shearlet transform introduced above is also shown in 

Figure 4, where fa and fd is the low frequency coefficient and high frequency coefficient respectively, and W is 

the window functions. 

3. Defect segmentation 

3.1 Decomposition with segmented threshold de-noising 

Figure 5 shows a warp-knitted fabric defect gray image of size 512*512. By using the implementation of 

discrete Shearlet transform described in Section 2.2, the high frequency coefficient at every level can be

divided into a number of shearlet coefficients. The key point to decompose the fabric image is the 

decomposition level.    

In order to determine the level of decomposition, the edge information of the image should be taken into 

consideration. The sum of the energy of the shearlet coefficients at lth level is computed and then divided by 

the last level, as shown in equation (23), if lR >1, the image should be decomposed again, otherwise the 

current level is the best. In our implementation, the best level is 4.
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 In order to realize the discretization for shearlets, a window function  
,
D
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Naturally, the Fourier transform of shearlets , ,l n k  in the discretization form can be obtained by equation 

(17), where the  L  is used for the acquirement of high frequency signal and 
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Eventually the Shearlet transform of  2 2f L R can be illustrated as equation (18). 
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Let the input signal is a 2-D image f of size N*N, and the discrete Fourier transform of the image is
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Naturally, the Fourier transform of shearlets , ,l n k  in the discretization form can be obtained by equation 

(17), where the  L  is used for the acquirement of high frequency signal and 
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Eventually the Shearlet transform of  2 2f L R can be illustrated as equation (18). 
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Let the input signal is a 2-D image f of size N*N, and the discrete Fourier transform of the image is

 
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1 2 ,f   , the decomposition procedure of the image by Shearlet transform can be implemented as below 
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Figure 3. Decomposition of the Laplacian Pyramid transform.
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axis c. The 1-D band-pass filter here is the discrete Fourier transform of the window function  
,
D

l nW  and set as 

 2lW v n , where 2 , ,2 1l ln     .

Then the Shearlet coefficients  0
, ,, l n kf   can be simply expressed as below based on equation (18). It 

redefines the Cartesian coordinates from the pseudo-polar grid coordinates and k1, k2 is the coordinate point of 

discrete samples of the high frequency coefficient. Similarly, the Shearlet coefficients at 1D  can be obtained 

in this way. 
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The sketch graph of decomposition procedure of the Shearlet transform introduced above is also shown in 

Figure 4, where fa and fd is the low frequency coefficient and high frequency coefficient respectively, and W is 

the window functions. 

3. Defect segmentation 

3.1 Decomposition with segmented threshold de-noising 

Figure 5 shows a warp-knitted fabric defect gray image of size 512*512. By using the implementation of 

discrete Shearlet transform described in Section 2.2, the high frequency coefficient at every level can be

divided into a number of shearlet coefficients. The key point to decompose the fabric image is the 

decomposition level.    

In order to determine the level of decomposition, the edge information of the image should be taken into 

consideration. The sum of the energy of the shearlet coefficients at lth level is computed and then divided by 

the last level, as shown in equation (23), if lR >1, the image should be decomposed again, otherwise the 

current level is the best. In our implementation, the best level is 4.
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In above equation, the n
lE  is the energy of the nth shearlet coefficient at the lth level and calculated as the 

square of the norm of the coefficient matrix  n
lcoef , as shown in equation (24). 

2 , 0,1,2,3; 1,2,3n n
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 During the decomposition of the image by the Shearlet transform, the shearlet coefficients at every level is 

freewill and this makes the Shearlet transform can provide more meticulous decomposition for the high 

frequency coefficient. In our work, the number of the shearlet coefficients at every level is set as 10, 10, 18 and 

18 respectively. Figure 6 to Figure 9 shows the shearlet coefficients of the image at level 1 to level 4. Generally, 

this meticulous decomposition means that much more directional information can be achieved in this 

procedure. However, not all the shearlet coefficients contain effective directional information, and most of 

them are distributed with noise and need to be processed for the reconstruction. Such that the segmented 

threshold de-nosing method is applied in this paper. 

The coefficients acquired is classified into signal noise coefficient, transition coefficient and signal 

coefficient based on the energy computed in equation (24). These four shearlet coefficients that have the least 

energy at every level are identified as the noise coefficients in our work. The threshold de-noising method used 

is called as Sqtwolog rule. The threshold lT  applied in Sqtwolog rule is computed as equation (25), where n

is the number of total shearlt coefficients at the operated level and   is the noise signal deviation. This 

method has the powerful property of de-noising and can get rid of most noise in shearlet coefficients. 
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Then the rest shearlet coefficients should be operated by other methods. And the average value AE  of the 

four shearlet coefficients mentioned above is computed. In this work, when anyone of rest shearlet coefficients 

is larger than   2ABE B  , it will be defined as the signal coefficient and operated with Rigrsure threshold 
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During the decomposition of the image 
by the Shearlet transform, the shearlet 
coefficients at every level are freewill, 

enabling the Shearlet transform to pro-
vide a more meticulous decomposition 
for the high frequency coefficient. In 
our work, the number of shearlet coeffi-
cients at every level is set as 10, 10, 18 
and 18, respectively. Figures 6 to 9 show 
the shearlet coefficients of the image at 
levels 1 to 4. Generally this meticulous 
decomposition means that much more 
directional information can be achieved 
in this procedure. However, not all the 
shearlet coefficients contain effective di-
rectional information, most of which are 
distributed with noise and need to be pro-
cessed for the reconstruction, for which 
the segmented threshold de-nosing meth-
od is applied in this paper.

The coefficients acquired are classified 
into the signal noise coefficient, transition 
coefficient and signal coefficient based on 
the energy computed in Equation (24). 
The four shearlet coefficients that have 
the least energy at every level are identi-
fied as the noise coefficients in our work. 
The threshold de-noising method used is 
called as the Sqtwolog rule. The threshold 
Tl applied in the Sqtwolog rule is com-
puted as Equation (25), where n is the 
number of total Shearlet coefficients at the 
operated level, and σ is the noise signal 
deviation. This method has the powerful 
property of de-noising and can get rid of 
most noise in shearlet coefficients.
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Then the rest of the shearlet coefficients 
should be operated by other methods, and 
the average value EA of the four shearlet 
coefficients mentioned above is comput-

Figure 4. Sketch graph of decomposition of the Shearlet transform.
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Figure 4. The sketch graph of decomposition of the Shearlet transform 

Figure 5. The warp-knitted fabric with broken warp at front bar 

Figure 6.The shearlet coefficients of the broken warp image at level 1 

Figure 5. Warp-knitted fabric with broken 
warp at the front bar.

 

 

Figure 6.Shearlet coefficients of the broken warp image at level 1 

    

     

Figure 7. Shearlet coefficients of the broken warp image at level 2 

Figure 8. Shearlet coefficients of the broken warp image at level 3 

Figure 6. Shearlet coefficients of the broken warp image at level 1.
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ed. In this work, when any of the remain-
ing shearlet coefficients is larger than BEA 
(B ≥ 2), it will be defined as the signal co-
efficient and operated with the Rigrsure 
threshold rule. This method is relatively 
moderate. The calculation formulas of 
threshold TR is shown as follows, where 
Ri is the ith element of risk-vector R and  
Rs is the smallest risk value.
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The last step of the segmented threshold de-nosing method is Minimaxi threshold rule and it is applied for 

the rest transition coefficients. The threshold MT is illustrated as equation (28), where the notations have been 

explained before.  
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After the steps of the decomposition with segmented threshold de-nosing method is completed, most of 

noise in these shearlet coefficients are removed while keeping most of the edge information which is needed 

for reconstruction in the next procedure.  

3.2 Reconstruction based on energy 

The de-noised shearlet coefficients at every level are obtained after the decomposition of the Sheralet 

transform with the segmented threshold de-noising method. Although these coefficients have been de-noised, it 

doesn’t mean all of them is useful for the reconstruction of the high frequency at level, those unnecessary 

shearlets coefficients should be removed to reconstruct the promising high frequency coefficients. In this work, 

selects the valuable shearlet coefficients are selected by using the method of energy obtained based on 

equation (24). 

  (26)
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The last step of the segmented thresh-
old de-nosing method is the Minimaxi 
threshold rule, applied for the remaining 
transition coefficients. Threshold TM is il-
lustrated as Equation (28), for which the 
notations have been explained before.
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After the steps of the decomposition 
with the segmented threshold de-nosing 
method is completed, most of the noise 
in these shearlet coefficients is removed, 
while keeping most of the edge informa-

tion needed for reconstruction in the next 
procedure.

Reconstruction based on energy
De-noised shearlet coefficients at every 
level are obtained after the decomposi-
tion of the Sheralet transform with the 
segmented threshold de-noising method. 
Although these coefficients have been 
de-noised, it does not mean all of them 
are useful for the reconstruction of the 
high frequency at every level; those un-
necessary shearlets coefficients should 
be removed to reconstruct promising 

 

 

Figure 6.Shearlet coefficients of the broken warp image at level 1 

    

     

Figure 7. Shearlet coefficients of the broken warp image at level 2 

Figure 8. Shearlet coefficients of the broken warp image at level 3 

Figure 7. Shearlet coefficients of the broken warp image at level 2.
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Figure 7. Shearlet coefficients of the broken warp image at level 2 

Figure 8. Shearlet coefficients of the broken warp image at level 3 Figure 8. Shearlet coefficients of the broken warp image at level 3.
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Figure 9. The shearlet coefficients of the broken warp image at level 4 

Figure 10. The schematic graph of the shearlet coefficients selection 

Figure 11. The reconstructed image of warp-knitted fabric with broken warp 

 

Figure 9. Shearlet coefficients of the broken warp image at level 4.

 

 

       

     

      

Figure 9. Shearlet coefficients of the broken warp image at level 4 

Figure 10. Schematic graph of the shearlet coefficient selection 

Figure 11. Reconstructed image of warp-knitted fabric with broken warp 

Figure 10. Schematic graph of the shearlet 
coefficient selection.

 

 

       

     

      

Figure 9. Shearlet coefficients of the broken warp image at level 4 

Figure 10. Schematic graph of the shearlet coefficient selection 

Figure 11. Reconstructed image of warp-knitted fabric with broken warp Figure 11. Reconstructed image of warp-
knitted fabric with broken warp.

 

 

 

  
Figure 12. Loop structure of warp-knitted fabric 

Figure 13. Final result of the broken warp at the front bar 

   
(a) Original            (b) reconstructed            (c) result 

Figure 14. Results of the broken warp at the back bar 

   

Figure 12. Loop structure of warp-knitted fabric

high frequency coefficients. In this work, 
valuable shearlet coefficients are selected 
using an energy method obtained based 
on Equation (24).

The selection rule for the values is il-
lustrated as Equation (29). Where Eal is 
the average energy value of the lth level 
and 

 

 

 The selection rule for the valuables is illustrated as equation (29). Where alE  is the average energy value 

of the lth level and n
lcoeff  is the nth shearlet coefficient of the the lth level. The coefficient which is smaller 

than the average energy value alE  is set as null coefficient matrix and the rest coefficient is kept intact. 
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The schematic graph of the shearlet coefficients selection is shown in Figure 10. The black regions are the 

selected coefficients and will be used to recompose the high frequency coefficient of every level. Then the 

warp-knitted fabric image with broken warp is reconstructed by using the inverse discrete Shearlet transform 

which is the inverse procedure of the decomposition. Figure 11 shows the final reconstructed image of Figure 

5, which keeps most of the effective information due to the excellent property of Shearlet transform. 

3.3 Iterative threshold segmentation and morphological operation 

After the reconstructed fabric image is obtained, the iterative threshold segmentation is needed for the next 

step. This method is conventional, but its segmentation ability is excellent if the input image is in a good 

quality. In the reconstructed image obtained above, the object is distinguished from the background and makes 

the image is suitable for the segmentation by the iterative threshold method. The theory of this method can be 

expressed as equation (30). Where T1, OT and BT  is the presupposed threshold, object threshold and 

background threshold respectively,  ,f i j  is the gray value of the input image f and  ,P i j  is the 
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However, the segmented result should be also processed by follow-up work in order to get a smoother result. 

In addition, the miscellaneous points generated by the loop structure of warp-knitted fabric should be 

eliminated. Figure 12 shows the loop structure graph of warp-knitted of Figure 5. These wispy loop holes will 
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A schematic graph of the shearlet coef-
ficient selection is shown in Figure 10. 
The black regions are the coefficients se-
lected, which will be used to recompose 
the high frequency coefficient of every 
level. Then the warp-knitted fabric im-
age with a broken warp is reconstructed 
using the inverse discrete Shearlet trans-
form, which is an inverse procedure of 
the decomposition. Figure 11 shows the 
final reconstructed image of Figure 5, 
which keeps most of the effective infor-
mation due to the excellent properties of 
the Shearlet transform.

Iterative threshold segmentation 
and morphological operation
After the reconstructed fabric image is 
obtained, iterative threshold segmen-
tation is needed for the next step. This 
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method is conventional, but its segmenta-
tion ability is excellent if the input image 
is of good quality. In the reconstructed 
image obtained above, the object is dis-
tinguished from the background, making 
the image suitable for segmentation by 
the iterative threshold method. The the-
ory of this method can be expressed as 
Equation (30). Where T1, TO and TB are 
the presupposed threshold, object thresh-
old and background threshold, respec-
tively; f(i, j) is the gray value of the input 
image f and P(i, j) is the probability of the 
gray value at point (i, j). When Tk+1 is un-
changed, the computation will be ended.
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However, the segmented result should 
also be processed by follow-up work in 
order to get a smoother result. In addition, 
the miscellaneous points generated by 
the loop structure of warp-knitted fabric 
should be eliminated. Figure 12 shows 
the loop structure graph of the warp-knit-
ted fabric of Figure 5. The wispy loop 
holes will induce a dramatic gray level 
change, as does the defect . Because of 
this, the segmented result is not promis-
ing enough, and a great deal of little points 
are filled up. The morphological opera-
tions [25-26] are used to get rid of these 
points. Those whose area is smaller than 
the presupposed value will be removed. 
The miscellaneous points induced by the 
loop structure is far smaller than this val-
ue and will be removed completely. Then 
the image will be processed by the mor-
phological opening to make the defect 
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object smooth. It is widely acknowledged 
that the theory of morphological opening 
is image erosion and dilation, which can 
make a large object smooth while erase 
tiny ones. Thus the final result is quite ex-
cellent; Figure 13 shows the final image 
of the broken warp at the front bar.

	 Results
In order to investigate the performance of 
the method proposed above, preliminary 
experiments were performed on two-di-
mensional warp-knitted fabric images 
which had broken warp at the back bar, 
as well as oil 1, oil 2, hole 1 and hole 2, 
as shown in Figures 14-18. The original, 
reconstructed and segmented result im-
ages are shown in each of these Figures, 
respectively.

By comparing each segmented result 
with the original image, a segmented de-
fect profile is obtained quite similar to the 
defect profile in the original image. These 
results maintain an accurate profile and 
demonstrates that the Shearlet transform 
with segmented threshold de-noising can 
keep most of directional information of 
the original images. Moreover from the 
results above we can also see that the 
final resultant image keeps most of the 
effective information of the warp-knitted 
fabric image and the defect in the fabric 
can be identified automatically, which 
demonstrates that it is an effective way 
to detect the defect in warp-fabric in the 
garment industry.

	 Conslusions
In this work we have introduced a bur-
geoning multiscale and geometric analy-
sis method to detect defects on warp-knit-
ted fabric, which are found based on 
the Shearlet transform. The method has 
a simpler discrete implementation than 
the Curvelet transform based on a rigor-
ous and simple mathematical framework. 
It can provide more flexible decompo-
sition on the basis of multiscale and ge-
ometric representation. Any number of 
shearlet coefficients can be obtained us-
ing this method.

After the acquisition of several groups of 
shearlet coefficients, these will be classi-
fied as the signal noise coefficient, tran-
sition coefficient and signal coefficient 
based on the energy and processed by the 
segmented threshold de-noising method. 
Then the promising shearlet coefficients 
are selected by energy selection to recon-
struct high frequency coefficients, and the 

reconstructed image will be formed by the 
inverse Shearlet transform. The final seg-
mented result is obtained through the iter-
ative threshold segmentation and morpho-
logical operation. The results demonstrate 
that the segmented defect profile is quite 
distinct and verisimilar compared with 
the original fabric defect images. It can be 
applied in further automatic warp-knitted 
fabric defect identification.
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