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Abstract
Automated detect detection in woven fabrics for quality control is still a challenging novelty 
detection problem. This work presents five novel fractal features based on the box-counting 
dimension to address the novelty detection of fabric defect. Making use of the formation of 
woven fabric, the fractal features are extracted in a one-dimension series obtained by pro-
jecting a fabric image along the warp and weft directions, where their complementarity in 
discriminating defects is taken into account. Furthermore a new novelty detector based on 
fuzzy c-means (FCM) is devised to deal with one-class classification of the features extracted. 
Finally, by jointly applying the features proposed and the FCM based novelty detector, we 
evaluate the method proposed for eight datasets with different defects and textures, where 
satisfying results are achieved with a low overall missing detection rate.
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tures [8]. With little taking into account 
of the complementarity of the features 
extracted, the aforementioned features or 
simple group of them generally result in 
performing well for certain types of fab-
ric or defects and poorly for others.

Associated with texture roughness, the 
use of fractal based features such as the 
fractal dimension is another important 
approach for texture analysis. Frac-
tal-based texture analysis was intro-
duced by Pentland [9] in 1984, whose 
experimental results showed that there 
was a high positive correlation between 
texture roughness and fractal dimension, 
i.e. the rougher the texture, the larger the 
fractal dimension, with similar results 
found in [10-11]. Since the fractal dimen-
sion offers a decent measurement for the 
roughness of a texture surface, it is intu-
itive to use the fractal dimension as the 
feature for discriminating between a nor-
mal fabric texture and defective texture. 
Typical works include the following: 
Conci and Proença utilised the differen-
tial box-counting dimension for fabric 
defect detection [12], and Wen adopted 
another fractal feature, namely the Hurst 
coefficient, for identifying defects [13]. It 
is noted that the fractal features used in 
[12-13] are too few and simple, and only 
one fractal feature is used, which usually 
leads to a high false detection rate, e.g. 
up to 28% [12]. In fact, the single fractal 
feature, especially the fractal dimension, 
has a drawback in characterising local 
details of the texture, which might pos-
sess an identical or quite close fractal di-
mension for different textures. Some re-
searchers were aware of the limitation of 
using a single feature, and different frac-

	 Introduction
In modern weaving mills, performing 
a visual examination of fabric products 
is a standard process before reaching 
customers, as defects can severely affect 
products’ visual quality. Currently visual 
inspection is still manually performed 
by well-trained human inspectors, a job 
whose efficiency is greatly limited by 
the human inspector’s experience. For 
this reason, the automation of fabric in-
spection based on computer vision and 
emerging artificial intelligence tech-
niques have drawn considerable atten-
tion, and numerous approaches have 
been proposed to address this issue in 
recent decades [1].

Generally images of normal fabrics are 
dominated by the texture, which always 
exhibits high periodicity among sub-pat-
terns. If there is a defect occurring in 
a fabric, the local regularity (periodicity) 
of the fabric will be disrupted, causing 
a local anomaly against its homogeneous 
texture background. Such anomalies al-
ways manifest in various ways, e.g. local 
structure or intensity change. Basically 
how to find versatile features that can 
robustly describe normal textures while 
sensitive to such anomalies (defects) is 
the basis for designing detection algo-
rithms. Typical features used include the 
parameters of the textured model [2-3], 
features based on the grey-level co-oc-
currence matrix [4], Fourier features [5], 
multi-scale wavelet decomposition co-
efficients [6-7], and Gabor filtering fea-

tal-based features were proposed in order 
to achieve better results. For example, 
Bu and Huang extracted four box-count-
ing dimensions calculated from different 
measuring scale ranges [14]. In addition, 
the use of multi-fractals or feature com-
bination can be seen in other applications 
[15-16].

In this paper, we introduce five new frac-
tal features for fabric defect detection. 
The features proposed integrate local and 
globe texture information, which is able 
to describe the inherence of the fabric 
texture deeply. There are two distinctive 
differences between the fractal features 
proposed and previous features: (1) the 
features proposed make use of the woven 
fabric’s horizontal and vertical details in 
projection operations; (2) the comple-
mentarity of the features extracted are 
taken into consideration in order to cap-
ture local and global details of the fabric 
texture. Besides this, all fractal features 
are extracted in a one-dimension series, 
rather than in two-dimension images. 
Considering fabric defect detection be-
longs to the category of one-classification 
or novelty detection problems, this paper 
also devises a new novelty detector based 
on fuzzy c-means clustering to handle the 
one-class or novelty classification of fea-
tures extracted.

The rest of this paper is organised as 
follows: a brief introduction to the 
box-counting dimension and fuzzy 
c-means is firstly presented. The meth-
odology appears in the next section, and 
the following is the experimental results 
and discussion. Conclusions are in the 
last section.
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	 Background 
Box-counting dimension
In fractal geometry, there are many meth-
ods that can be used to define the fractal 
dimension, such as the box-counting di-
mension (or box dimension), Hausdorff 
dimension and correlation dimension 
etc. In this work, the box-counting di-
mension, also known as the Minkowski 
dimension, is used to calculate the frac-
tal dimension of a fabric image, as it can 
deal with non-self-similar fractals and be 
simply implemented with a computer. 
The key idea of the box-counting dimen-
sion is about covering with boxes, i.e. to 
count how many boxes are required to 
cover a set in different scales, Suppose 
that N(δ) is the number of boxes of side 
length δ required to cover a set S, the 
box-counting dimension is defined as:

calculate the fractal dimension of a fabric image, as it can deal with non-self-similar 
fractals and be simply implemented with a computer. The key idea of the
box-counting dimension is about covering with boxes, i.e. to count how many boxes 
are required to cover a set in different scales, Suppose that N(δ) is the number of 
boxes of side length δ required to cover a set S, the box-counting dimension is defined 
as:
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Here the box dimensions are based on one-dimension sequences, and an example of 
a one-dimension curve is presented to demonstrate the procedures of calculating the
box dimension. Let us denote the curve as S(x), x = 1, 2,…, M and N(δ) is the minimal
number of δ×δ squares needed to cover S(x). According to Equation (1), there is
log(N(δ)) ∞ D(S)log(1/δ), and the D(S) can be estimated by the slope of the linear 
portion of  log(N(δ)) against log(1/δ). Specifically let T be any sub-sequences of
length δ in S(x), and then the minimal number of δ×δ squares needed to cover S(x) is
given by,
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where, Int[] is the integer rounding operator, and  max(T) and min(T) are the largest 
and smallest values in the sequence T, respectively. Then N(δ) can be obtained by
calculating the mean of every sub-sequence in T with Equation (2), which is given by,
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where, E() is the expectation operator. Having obtained a different N(δ) by changing 
the value of δ, the slope of the linear portion of  log(N(δ)) against log(1/δ) can be 
estimated by means of fitting those points in the least-squares sense. Figure 1 depicts 
the fitting result of a data sequence of length 32 with δ = 2, 3, 4, 5, 6, and the fitting
equation is y = 1.28x + 5.33, i.e. the box dimension D(S) is 1.28.

Figure 1. Fitting result for calculating box dimension.
Fuzzy c-means model

In machine learning, cluster analysis or clustering is one of the most important 
unsupervised learning methods of partitioning a set of unlabelled data into different 
groups according to a certain similarity. Different from supervised methods, the 
clustering techniques do not need any prior knowledge of the labels of data,
potentially allowing to reveal the underlying structures within data. The clustering 

.   (1)

Here the box dimensions are based on 
one-dimension sequences, and an exam-
ple of a one-dimension curve is presented 
to demonstrate the procedures of calculat-
ing the box dimension. Let us denote the 
curve as S(x), x = 1, 2,…, M and N(δ) is the 
minimal number of δ × δ squares needed 
to cover S(x). According to Equation (1), 
there is log(N(δ)) ∞ D(S)log(1/δ), 
and the D(S) can be estimated by the 
slope of the linear portion of log(N(δ)) 
against log(1/δ). Specifically let T be any 
sub-sequences of length δ in S(x), and 
then the minimal number of δ × δ squares 
needed to cover S(x) is given by,

calculate the fractal dimension of a fabric image, as it can deal with non-self-similar 
fractals and be simply implemented with a computer. The key idea of the 
box-counting dimension is about covering with boxes, i.e. to count how many boxes 
are required to cover a set in different scales, Suppose that N(δ) is the number of 
boxes of side length δ required to cover a set S, the box-counting dimension is defined 
as: 
  

0

log ( )( ) lim
log(1/ )

ND S





 . (1) 

Here the box dimensions are based on one-dimension sequences, and an example of 
a one-dimension curve is presented to demonstrate the procedures of calculating the 
box dimension. Let us denote the curve as S(x), x = 1, 2,…, M and N(δ) is the minimal 
number of δ×δ squares needed to cover S(x). According to Equation (1), there is 
log(N(δ)) ∞ D(S)log(1/δ), and the D(S) can be estimated by the slope of the linear 
portion of  log(N(δ)) against log(1/δ). Specifically let T be  any sub-sequences of 
length δ in S(x), and then the minimal number of δ×δ squares needed to cover S(x) is 
given by, 
  max( ) min( )( ) Int 1T Tn 


    

, (2) 

where, Int[] is the integer rounding operator, and  max(T) and min(T) are the largest 
and smallest values in the sequence T, respectively. Then  N(δ) can be obtained by 
calculating the mean of every sub-sequence in T with Equation (2), which is given by, 

  ( ( ))( ) E n MN 



 , (3) 

where, E() is the expectation operator. Having obtained a different N(δ) by changing 
the value of δ, the slope of the linear portion of  log(N(δ)) against log(1/δ) can be 
estimated by means of fitting those points in the least-squares sense. Figure 1 depicts 
the fitting result of a data sequence of length 32 with δ = 2, 3, 4, 5, 6, and the fitting 
equation is y = 1.28x + 5.33, i.e. the box dimension D(S) is 1.28. 

 
Figure 1. Fitting result for calculating box dimension. 

Fuzzy c-means model 
In machine learning, cluster analysis or clustering is one of the most important 

unsupervised learning methods of partitioning a set of unlabelled data into different 
groups according to a certain similarity. Different from supervised methods, the 
clustering techniques do not need any prior knowledge of the labels of data, 
potentially allowing to reveal the underlying structures within data. The clustering 

, (2)

where, Int[] is the integer rounding oper-
ator, and max(T) and min(T) are the larg-
est and smallest values in the sequence T, 
respectively. Then N(δ) can be obtained 
by calculating the mean of every sub-se-
quence in T with Equation (2), which is 
given by,

calculate the fractal dimension of a fabric image, as it can deal with non-self-similar 
fractals and be simply implemented with a computer. The key idea of the 
box-counting dimension is about covering with boxes, i.e. to count how many boxes 
are required to cover a set in different scales, Suppose that N(δ) is the number of 
boxes of side length δ required to cover a set S, the box-counting dimension is defined 
as: 
  

0

log ( )( ) lim
log(1/ )

ND S





 . (1) 

Here the box dimensions are based on one-dimension sequences, and an example of 
a one-dimension curve is presented to demonstrate the procedures of calculating the 
box dimension. Let us denote the curve as S(x), x = 1, 2,…, M and N(δ) is the minimal 
number of δ×δ squares needed to cover S(x). According to Equation (1), there is 
log(N(δ)) ∞ D(S)log(1/δ), and the D(S) can be estimated by the slope of the linear 
portion of  log(N(δ)) against log(1/δ). Specifically let T be  any sub-sequences of 
length δ in S(x), and then the minimal number of δ×δ squares needed to cover S(x) is 
given by, 
  max( ) min( )( ) Int 1T Tn 


    

, (2) 

where, Int[] is the integer rounding operator, and  max(T) and min(T) are the largest 
and smallest values in the sequence T, respectively. Then  N(δ) can be obtained by 
calculating the mean of every sub-sequence in T with Equation (2), which is given by, 

  ( ( ))( ) E n MN 



 , (3) 

where, E() is the expectation operator. Having obtained a different N(δ) by changing 
the value of δ, the slope of the linear portion of  log(N(δ)) against log(1/δ) can be 
estimated by means of fitting those points in the least-squares sense. Figure 1 depicts 
the fitting result of a data sequence of length 32 with δ = 2, 3, 4, 5, 6, and the fitting 
equation is y = 1.28x + 5.33, i.e. the box dimension D(S) is 1.28. 

 
Figure 1. Fitting result for calculating box dimension. 

Fuzzy c-means model 
In machine learning, cluster analysis or clustering is one of the most important 

unsupervised learning methods of partitioning a set of unlabelled data into different 
groups according to a certain similarity. Different from supervised methods, the 
clustering techniques do not need any prior knowledge of the labels of data, 
potentially allowing to reveal the underlying structures within data. The clustering 

,  (3)

where, E() is the expectation operator. 
Having obtained a different N(δ) by 
changing the value of δ, the slope of 
the linear portion of log(N(δ)) against 
log(1/δ) can be estimated by means of 
fitting those points in the least-squares 
sense. Figure 1 depicts the fitting result 
of a data sequence of length 32 with  
δ = 2, 3, 4, 5, 6, and the fitting equation is 
y = 1.28x + 5.33, i.e. the box dimension 
D(S) is 1.28.

Fuzzy c-means model
In machine learning, cluster analysis or 
clustering is one of the most important 
unsupervised learning methods of par-
titioning a set of unlabelled data into 
different groups according to a certain 
similarity. Different from supervised 
methods, the clustering techniques do not 
need any prior knowledge of the labels 
of data, potentially allowing to reveal 
the underlying structures within data. 
The clustering methods can be loosely 
classified into two categories: hard and 
soft clustering. In hard clustering, the 
data is grouped into hard-assigned clus-
ters, where each data point completely 
belongs to one cluster, e.g. a k-means 
clustering algorithm. Rather than make 
a hard decision for each data point, soft 
clustering allows a data element to be-
long to more than one cluster, where the 
soft decision is made according to their 
degrees of belonging (quantified by the 
membership function). One of the most 
commonly used soft clustering is the 
fuzzy c-means (FCM) algorithm [17], 
which has been successfully applied to 
many applications, such as image seg-
mentation [18] and fault diagnosis [19].

Given a set of interest {xi}1 ≤ i ≤ N, the 
FCM algorithm attempts to partition the 
data set into C different groups with clus-
ter centres {cj}1 ≤ j ≤ C. Thus the objective 
function Jm for finding those centres is 
defined as:
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where, uij is the degree of belonging of xi to the cluster j, and m ≥ 1 is the weight 
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S5: Repeat steps S3 and S4 until ||U(t+1) - U(t)||F < ε is achieved, where U = [uij] is 
the membership matrix. 
Methodology 
Fractal feature extraction 

Due to the fact that most real-world image textures do not exhibit stringent 
self-similarity, instead an approximate or statistical self-similarity, the fractal 
dimension calculated by the box-counting method does not possess the quality of 
scale invariance, which was also pointed out by Pruess [20], namely that  limited 
observation resolution made the estimated box dimension vary with box scales. In our 
preliminary experiments, we noted that there was a positive association between the 
box dimension and box scales. Thus in order to alleviate the drawback of instability in 
estimating the box dimension with a fixed box scale, this work attempts to calculate 
the box dimension in a range of box scales,  meanwhile addressing the 
complementariness of the fractal features extracted . Moreover all the features 
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where, uij is the degree of belonging of xi to the cluster j, and m ≥ 1 is the weight 
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S5: Repeat steps S3 and S4 until ||U(t+1) - U(t)||F < ε is achieved, where U = [uij] is 
the membership matrix. 
Methodology 
Fractal feature extraction 

Due to the fact that most real-world image textures do not exhibit stringent 
self-similarity, instead an approximate or statistical self-similarity, the fractal 
dimension calculated by the box-counting method does not possess the quality of 
scale invariance, which was also pointed out by Pruess [20], namely that  limited 
observation resolution made the estimated box dimension vary with box scales. In our 
preliminary experiments, we noted that there was a positive association between the 
box dimension and box scales. Thus in order to alleviate the drawback of instability in 
estimating the box dimension with a fixed box scale, this work attempts to calculate 
the box dimension in a range of box scales,  meanwhile addressing the 
complementariness of the fractal features extracted . Moreover all the features 
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	 Methodology
Fractal feature extraction
Due to the fact that most real-world image 
textures do not exhibit stringent self-sim-
ilarity, instead an approximate or statisti-
cal self-similarity, the fractal dimension 
calculated by the box-counting method 
does not possess the quality of scale in-
variance, which was also pointed out by 
Pruess [20], namely that limited observa-
tion resolution made the estimated box 
dimension vary with box scales. In our 
preliminary experiments, we noted that 
there was a positive association between 
the box dimension and box scales. Thus 
in order to alleviate the drawback of in-
stability in estimating the box dimension 
with a fixed box scale, this work attempts 
to calculate the box dimension in a range 
of box scales, meanwhile addressing the 

calculate the fractal dimension of a fabric image, as it can deal with non-self-similar 
fractals and be simply implemented with a computer. The key idea of the
box-counting dimension is about covering with boxes, i.e. to count how many boxes 
are required to cover a set in different scales, Suppose that N(δ) is the number of 
boxes of side length δ required to cover a set S, the box-counting dimension is defined 
as:
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Here the box dimensions are based on one-dimension sequences, and an example of 
a one-dimension curve is presented to demonstrate the procedures of calculating the
box dimension. Let us denote the curve as S(x), x = 1, 2,…, M and N(δ) is the minimal
number of δ×δ squares needed to cover S(x). According to Equation (1), there is
log(N(δ)) ∞ D(S)log(1/δ), and the D(S) can be estimated by the slope of the linear 
portion of  log(N(δ)) against log(1/δ). Specifically let T be any sub-sequences of
length δ in S(x), and then the minimal number of δ×δ squares needed to cover S(x) is
given by,
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where, Int[] is the integer rounding operator, and  max(T) and min(T) are the largest 
and smallest values in the sequence T, respectively. Then N(δ) can be obtained by
calculating the mean of every sub-sequence in T with Equation (2), which is given by,
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where, E() is the expectation operator. Having obtained a different N(δ) by changing 
the value of δ, the slope of the linear portion of  log(N(δ)) against log(1/δ) can be 
estimated by means of fitting those points in the least-squares sense. Figure 1 depicts 
the fitting result of a data sequence of length 32 with δ = 2, 3, 4, 5, 6, and the fitting
equation is y = 1.28x + 5.33, i.e. the box dimension D(S) is 1.28.

Figure 1. Fitting result for calculating box dimension.
Fuzzy c-means model

In machine learning, cluster analysis or clustering is one of the most important 
unsupervised learning methods of partitioning a set of unlabelled data into different 
groups according to a certain similarity. Different from supervised methods, the 
clustering techniques do not need any prior knowledge of the labels of data,
potentially allowing to reveal the underlying structures within data. The clustering 
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complementariness of the fractal features 
extracted. Moreover all the features pro-
posed are extracted in one-dimension se-
quences by taking advantage of the for-
mation of the fabric (interlaced with two 
mutually perpendicular yarn systems).
Without loss of generality, we illustrate 
the feature extraction scheme with a rec-
tangle window ABCD, which is illustrat-
ed in Figure 2. Let us denote an image 
patch of size L1 × L2 (AB × AD) as W, 
a sub-window A1B1C1D1 of size P1 × L2 as 
W1, and a sub-window A2B2C2D2 of size 
L1 × P2 as W2. With the definition, the box 
dimension features are extracted based 
on W, given as follows:
n	 Fractal feature 1: Perform projec-

tion operation along AD and AB, i.e. 
compute the mean grey-level values 
along AD and AB, and denote the 
resultant two sequences as Sv and Sh 
with a length of L1 and L2, respective-
ly, combine Sv and Sh into a new se-
quence with a total length of L1 + L2, 
and calculate the box dimension of the 
new sequence using Equation (1), de-
noting fractal feature 1 as D1.

n	 Fractal features 2 and 3: For W1, 
perform a projection operation along 
A1D1, i.e. compute the mean grey-lev-
el values along A1D1, calculate the box 
dimension of the resultant sequence, 
transverse W1 through the whole win-
dow W along the horizontal direction, 
obtaining L1 – P1 + 1 box dimensions, 
and extract the maximum and mini-
mum box dimensions among them, 
denoting fractal features 2 and 3 as D2 
and D3.

n	 Fractal features 4 and 5: For W2, 
perform a projection operation along 
the A2B2 direction, i.e. compute the 
mean grey-level values along the A2B2 

Figure 2. Illustration of feature extraction.

direction, calculate the box dimen-
sion of the resultant sequence, trans-
verse W2 through the whole window 
W along the vertical direction, obtain-
ing L2 – P2 + 1 box dimensions, and 
extract the maximum and minimum 
box dimension among them, denoting 
fractal features 4 and 5 as D4 and D5.

Conveniently we combine the five fractal 
features extracted into a hybrid feature 
vector D = [D1 D2 D3 D4 D5]. In particular, 
D1 mainly reflects the global information 
of fabric textures, which is more robust 
than the other four features, crucial for 
characterising the texture in most cases; 
D2~D5 are sensitive to local changes, 
capable of compensating for D1 in char-
actering details. Furthermore our pre-
liminary experiments demonstrated that 
D2 and D3 are particularly sensitive to 
weft-wise defects, as the local abrupt of 
weft-wise defects can be well revealed; 
similarly, D4 and D5 are capable of find-
ing the warp-wise defects. Note that all 
aforementioned features are calculated in 
a measuring scale range of 2~6 pixels.

Feasibility validation of features
In this section, we take two real-world 
fabric samples as examples to demon-
strate the validation of the fractal features 
proposed. Here we hypothesise about the 
features from normal and defective sam-
ples obeying normal distribution, and 
the statistical hypothesis test, namely 
the t-test, is applied to objectively eval-
uate the effectiveness of the features 
proposed in differentiating between nor-
mal and defective fabric textures. It is 
notable that the t-test is not only able to 
judge the significance of the validation of 
a feature, but can tell the degree of effec-

tiveness of the various features, i.e. the 
larger a statistic, the more effective and 
discriminative the power. Suppose that 
there are two sets of feature samples, {xi} 
and {yi}, calculated from normal and de-
fective samples, and the T-statistic to test 
whether the means of the two groups are 
statistically different from each other is 
given by,

hypothesis test, namely the t-test, is applied to objectively evaluate the effectiveness
of the features proposed in differentiating between normal and defective fabric 
textures. It is notable that the t-test is not only able to judge the significance of the
validation of a feature, but can tell the degree of effectiveness of the various features,
i.e. the larger a statistic, the more effective and discriminative the power. Suppose that 
there are two sets of feature samples, {xi} and {yi}, calculated from normal and 
defective samples, and the T-statistic to test whether the means of the two groups 
are statistically different from each other is given by,

1 2
2 2
1 2

1 2

T

n n

 

 






(5)

where 1 and 2 are the means of samples {xi} and {yi}, 2
1 and 2

2 the standard 

deviation samples {xi} and {yi}, and n1 & n2 are the total number of  samples {xi}
and {yi}. Here the T-statistic obeys the t-distribution with n1+n2-2 degrees of freedom
and the significance level α=0.01 is used. Thus if |T|>t0.99, the feature is considered to 
be valid (significance).

(a)                  (b)          (c)
Figure 3. Fabric image samples: (a) normal fabric image, (b) defective image, (c) 

illustration of patch division.
Example 1: Figure 3 presents a typical coarse weft image, where Figure 3(a) is a 

normal fabric image, Figure 3(b) a defective image, and Figure 3(c) has been
divided into 64 patches of size  32×32. As shown in Figure 1(c), there are 8 patches
containing defects in the last row. The total numbers of normal and defective samples 
are 64 and 8. Thus the associated statistics are computed as follows: The degree of
freedom is equal to 70 (64+8-2), t0.99=2.38 (one-tailed), and the statistic |T| of the five 
fractal features D1~D5 are 6.99, 13.59, 10.77, 0.2125 and 8.03. Therefore, in this case, 
the four features (besides D4) are all valid with a high significance, especially for D2.
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 the standard de-
viation samples {xi} and {yi}, and n1 & n2 
are the total number of samples {xi} and 
{yi}. Here the T-statistic obeys the t-dis-
tribution with n1 + n2 – 2 degrees of free-
dom and the significance level α = 0.01 is 
used. Thus if |T | > t0.99, the feature is con-
sidered to be valid (significance).

Example 1: Figure 3 presents a typical 
coarse weft image, where Figure 3.a is 
a normal fabric image, Figure 3.b a de-
fective image, and Figure 3.c has been 
divided into 64 patches of size 32 × 32. 
As shown in Figure 3.c, there are 8 
patches containing defects in the last row. 
The total numbers of normal and defec-
tive samples are 64 and 8. Thus the asso-
ciated statistics are computed as follows: 
The degree of freedom is equal to 70 
(64 + 8 – 2), t0.99 = 2.38 (one-tailed), and 
the statistic |T | of the five fractal features 
D1~D5 are 6.99, 13.59, 10.77, 0.2125 and 
8.03. Therefore, in this case, the four 
features (besides D4) are all valid with 
a high significance, especially for D2.

Example 2: Figure 4 presents a typical 
double filling image, where Figure 4.a 
is a normal fabric, Figure 4.b a defec-
tive image, and Figure 4.c has been di-
vided into 64 patches of size 32 × 32. As 
shown in Figure 4.c, there are 8 patches 
containing defects in the second last col-
umn. The total numbers of normal and 
defective samples are also 64 and 8. Thus 
the associated statistics are computed as 
follows: the degree of freedom is equal to 
70 (64 + 8 – 2), t0.99 = 2.38 (one-tailed), and 
the statistic |T| of the five fractal features 
D1~D5 are 6.54, 1.84, 5.59, 12.93 and 
9.03. Therefore, in this case, the four fea-
tures (besides D2) are all valid with high 
significance, especially for feature D4.

As demonstrated above, although the 
extracted features have different discrim-
inative power for different defect types, 
the integration of them can ensure that at 
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least one feature is significant in defect 
detection practice.

Construction of novelty detector 
based on FCM
As mentioned in the preceding sec-
tion, fabric defect detection is a kind of 
novelty detection problem, rendering 
the conventional FCM model useless 
for straightforward defect detection, as 
the FCM is normally used for the data, 
whose number of clusters is specified. If 
one tries to cluster normal samples into 
a centre and cluster the defective samples 
into several centres with respect to defect 
types, then one must know whether the 
input data contain defects or how many 
defect types there are in it in advance, 
which is unknown in practice. On the 
other hand, if the input data do not con-
tain defects, a substantial false detection 
rate would be achieved, where clustering 
is conducted on it anyway; even though 
one tries to cluster the potential defective 
sample into one centre.

In this paper, we train the FCM with only 
normal samples, and more than one clus-
tering centre is utilised to describe the 
stochastic variations of normal samples. 
For the decision rule, given an unknown 
sample y, if the minimal Euclid distanc-
es of y to the clustering centres (obtained 
after training FCM) exceeds the pre-de-
fined threshold, then y is a defective sam-
ple, otherwise a normal one.

Parameter optimisation: There are two 
parameters: the number of clustering 
centres C and the fuzzy weight m. For 
C, a common way is to define a statis-
tic to measure the validity of clustering 
in order to find the optimum number of 
clusters. However, a related work re-
marked that the selection of the number 
of clusters was a task-specific problem, 
and it was not justified to use one validity 
measurement for all the cluster analysis 
due to the random distribution of data. 
Compared with different validity meas-
urements, we found that the validity 
measurement function proposed by Gao 
was suited to the clustering of normal 
fabric samples [21]. Given the number of 
cluster centres C, the fuzzy weight m and 
the total number of training samples N, 
the validity measurement is defined by,
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Thus, fixing m and calculating FP(C) with different C, the optimum C is the 
minimum one of set FP(C), where the searching range of C is from 2 to 2ln(N) (a 
commonly used upper boundary).
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Thus, fixing m and calculating FP(C) 
with different C, the optimum C is the 
minimum one of set FP(C), where the 
searching range of C is from 2 to 2ln(N) 
(a commonly used upper boundary).

In terms of m, there is no theoretical 
way of reference, and most researchers 
choose it empirically or experimentally. 
For example, Bezdek pointed out that the 
choice of m was an application specific 
problem, and suggested a range (1.1 5)  
for reference [17]; Pal and Bezedek 
found the range (1.5 2.5) is empirically 
best for most cases [22]. In this work, our 
primary experimental results showed that 
the suitable range of m for normal sample 
clustering is from 2 to 5. Considering the 
computing efficiency (a larger m needs 
less iteration times for the convergence 
of Equation (4)), here we select m em-
pirically according to the total number 
of training samples as well, i.e. when the 
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Where, x̄ and σ are the mean and standard 
derivation of x.

Having calculated the five normalised 
fractal features, the FCM classifier pro-
posed needs to be trained with a normal 
sample in order to find the optimal pa-
rameter for practical testing of unknown 
samples. Here, dataset 1 (see Table 1) is 
taken as an example to demonstrate the 
training process:

S1: Choose m = 4 as the total number of 
training samples larger than 3000;
S2: Calculate the search range of clusters 
C: 2 ≤ C ≤ 16 ( 2ln(4472) = 16.8);
S3: Calculate FP(C) in the range from 2 
to 16, which is listed in Table 2.

Figure 3. Fabric image samples: a) normal fabric image, b) defective image, c) illustration 
of patch division.

hypothesis test, namely the t-test, is applied to objectively evaluate the effectiveness 
of the features proposed in differentiating between normal and defective fabric 
textures. It is notable that the t-test is not only able to judge the significance of the 
validation of a feature, but can tell the degree of effectiveness of the various features, 
i.e. the larger a statistic, the more effective and discriminative the power. Suppose that 
there are two sets of feature samples, {xi} and {yi}, calculated from normal and 
defective samples, and the T-statistic to test whether the means of the two groups  
are statistically different from each other is given by, 
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deviation samples {xi} and {yi}, and n1 & n2 are the total number of  samples {xi} 
and {yi}. Here the T-statistic obeys the t-distribution with n1+n2-2 degrees of freedom 
and the significance level α=0.01 is used. Thus if |T|>t0.99, the feature is considered to 
be valid (significance). 
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Example 1: Figure 3 presents a typical coarse weft image, where Figure 3(a) is a 
normal fabric image, Figure 3(b)  a defective image, and Figure 3(c) has been 
divided into 64 patches of size  32×32. As shown in Figure 1(c), there are 8 patches 
containing defects in the last row. The total numbers of normal and defective samples 
are 64 and 8. Thus the associated statistics are computed as follows: The degree of 
freedom is equal to 70 (64+8-2), t0.99=2.38 (one-tailed), and the statistic |T| of the five 
fractal features D1~D5 are 6.99, 13.59, 10.77, 0.2125 and 8.03. Therefore, in this case, 
the four features (besides D4) are all valid with a high significance, especially for D2. 
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Table 1. Sample configuration of the eight datasets.

Dataset Fabric type Training samples
Testing

Normal samples Defective samples
1 Twill 4472 4472 302
2 Twill 2960 2960 84
3 Twill 1792 1792 256
4 Plain 1820 1820 170
5 Plain 5010 5010 320
6 Plain 1608 1608 216
7 Plain 1168 1168 101
8 Plain 1474 1474 76

Table 2. FP(C) for different C.

C 2 3 4 5 6 7 8 9
FP 0.433 -0.934 0.078 -0.229 -0.786 -0.134 -0.387 -0.190
C 10 11 12 13 14 15 16 /
FP -0.348 -0.288 -0.173 -0.258 -0.402 -0.320 -0.222 /

Table 3. Summary of detection results.

Dataset C EFDR,% AFDR,% MDR,%
1 3 8.12 8.23 5.63
2 4 2.97 3.17 1.19
3 3 5.64 5.64 1.56
4 7 7.78 9.04 10.0
5 3 4.73 4.39 5.94
6 5 4.98 5.29 3.24
7 12 7.71 6.33 7.92
8 3 6.11 5.77 2.63

Average 6.01 5.98 4.76

Figure 5. Trend curves of EFDR and AFDR under varying thresholds.
As shown in Figure 5, the values of EFDR and AFDR are quite close to each other 

at a specific threshold, whose trend curves exhibit good agreement under different 
thresholds. It indicates that EFDR can provide a good prediction for the AFDR, i.e. it 
is reasonable to use it for the selection of the threshold in practical detection. On the 
other hand, since the actual MDR is unknown, the threshold selected referring to the 
EFDR can only make sense in controlling the AFDR in some manner, leaving no
clues for actual MDR. Fortunately the FDR and MDR have a negative tendency
towards each other, i.e. the larger the FDR, the smaller the MDR. Thus, from the
application point of view, if a low MDR is important, it is recommended to choose a 
threshold with respect to a higher EFDR. Furthermore Table 3 summaries the 
detection results for all eight datasets.

By examining Table 3, it can be seen that:
(1) The number of clusters vary with the datasets, i.e. its optimal are specific to fabric 

textures. Explicitly the larger the variation of input features, the more clusters are
required to describe their loose distribution, i.e. a texture with lower regularity
would need more clusters than that of higher regularity. It can be observed from 
dataset 7 that there are 12 cluster centres for the fabric of low regularity (see 
Table 3). Moreover twill fabric always needs less centre than plain fabric, as it
generally has higher regularity than plain ones.
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Figure 5. Trend cu-
rves of EFDR and 
AFDR under varying 
thresholds.

From Table 2, it can be seen that FP(C) 
has the minimum when C = 3. Thus the 
optimal clustering numbers for datasets 
1 is 3 are (-0.0057, -0.0047, -0.0060, 
0.0011, -0.0031), (0.4532, 0.4246, 
0.4392, 0.1631, 0.1474) and (-0.4511, 
-0.4369, -0.4273, -0.1790, -0.1215). 
Since the features extracted have been 
normalised with a zero mean, the fea-
tures from normal samples should fluc-
tuate around zero. That is to say, the first 
cluster centre is almost located at the 

origin, and the other two clusterings are 
symmetrical with respect to the origin. 
Therefore with the three optimal cluster 
centres, unknown features will be classi-
fied into a defect if any of their distance 
to the three clusters exceeds the prede-
fined threshold.

Generally the choice of threshold is 
a non-trivial task due to the absence of 
negative samples for the estimation of 
the missing detection rate (MDR). Here 

we adopt a simple and effective way to 
determine this parameter, which is to col-
lect an additional sample set from normal 
samples as the validation set, and con-
duct a test on it by increasing the thresh-
old with a small step to obtain its false 
detection rate (FDR) with respect to the 
threshold used. Then the FDR obtained 
can be used as an estimated false de-
tection rate (EFDR) in favour of choos-
ing a threshold in practical detection. 
Figure 5 presents the trend curves of 
EFDR and the actual false detection rate 
(AFDR), where EFDR and AFDR are ob-
tained from training samples and testing 
samples of dataset 1.

As shown in Figure 5, the values of 
EFDR and AFDR are quite close to each 
other at a specific threshold, whose trend 
curves exhibit good agreement under dif-
ferent thresholds. It indicates that EFDR 
can provide a good prediction for the 
AFDR, i.e. it is reasonable to use it for 
the selection of the threshold in practical 
detection. On the other hand, since the 
actual MDR is unknown, the threshold 
selected referring to the EFDR can only 
make sense in controlling the AFDR in 
some manner, leaving no clues for actu-
al MDR. Fortunately the FDR and MDR 
have a negative tendency towards each 
other, i.e. the larger the FDR, the small-
er the MDR. Thus, from the application 
point of view, if a low MDR is important, 
it is recommended to choose a threshold 
with respect to a higher EFDR. Further-
more Table 3 summaries the detection 
results for all eight datasets.

By examining Table 3, it can be seen that:
The number of clusters vary with the da-
tasets, i.e. its optimal are specific to fab-
ric textures. Explicitly the larger the var-
iation of input features, the more clusters 
are required to describe their loose dis-
tribution, i.e. a texture with lower regu-
larity would need more clusters than that 
of higher regularity. It can be observed 
from dataset 7 that there are 12 cluster 
centres for the fabric of low regularity 
(see Table 3). Moreover twill fabric al-
ways needs less centre than plain fabric, 
as it generally has higher regularity than 
plain ones.

The average EFDR and AFDR for all 
datasets are quite close to each other, in-
dicating the robustness of the EFDR in 
forecasting the AFDR. The reasons for 
the poor agreement of datasets 4 and 7 are 
mainly due to the low texture regularity 
and too few training samples being used. 
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Overall the fractal features proposed 
and the FCM based novelty detector can 
achieve a 4.76% MDR with a low 5.98% 
FDR on average. And we also note that 
those missing detection regions are usu-
ally located in the margins or weakness 
regions of the defects. Undoubtedly the 
method proposed can successfully label 
the major regions of defects.

Some figurative examples of detection 
results are given in Figure 6, where Fig-
ure 6.a and 6.b are the normal and de-
fective images, and Figure 6.c presents 
the detection results of Figure 6.b. Note 
that the red squares represent 32 × 32 pix-
el sub-windows, which are identified as 
abnormal regions (defects). By viewing 
Figure 6, it can be found that the fea-
tures proposed exhibit a good discrimi-
nating power on defects of linear shape 
or structural changes (see the first three 
columns in Figure 6.c). For the defects in 
the last column of Figure 6.c, the meth-
od proposed is able to detect the majority 
of defective regions, and the reasons for 
the missing regions are because they are 
located at the margins between detecting 
patches, providing not enough abnormal 
regions to identify them. Hence, in prac-
tical applications, we recommend using 
smaller patch sizes or overlapping patch 
division depending on specific process 
requirements.

	 Conslusions
In this work, five fractal features have 
been extracted in a one-dimension pro-
jection series of fabric images by making 
use of the formation of fabric for defect 
detection. To better discriminate defects 
from the normal texture, the complemen-
tarity of fractal features extracted are 
fully taken into account, where the pre-
liminary feasibility of those features in 
finding defects is verified via the t-test. In 
feature classification, a new FCM based 
novelty detector has been constructed to 
conduct an efficient novelty classification 
of features extracted, which has shown 
its effectiveness in handling the random 
distribution of normal samples. The ex-
perimental results for eight fabric data-
sets show that the method proposed can 
achieve a 4.76% MDR with a low 5.98% 
FDR on average, which further confirms 
the usefulness of the fractal features pro-
posed for the FCM based novelty detec-
tor.
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The Laboratory of Biodegradation as-
sesses the susceptibility of polymeric and 
textile materials to biological degradation 
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natural environment (soil, compost and wa-
ter medium). The testing of biodegradation 
is carried out in oxygen  using innovative 
methods like respirometric testing with the 
continuous reading of the  CO2 delivered. 
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