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Abstract
The aim of this study was to establish a mathematical model of the relationship between  
fiber displacement and strain in the twisting process; the cross-section of yarn was taken at 
random. Based on the differential method, the plane stress was analysed mathematically,   
then stress and strain balance equations of the yarn cross-section were obtained. Then a 
geometry model of the cross-section was established using ANSYS10.0, which is a kind of 
Finite Element Analysis Software. Changes in the displacement can be simulated by this 
model, which reflects the relationship between the displacement and stress. The results 
showed that there are some relationships between the strain and displacement.
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n	 Introduction 
The fracture of yarn always occurs in the 
weakest cross-section [1]. In the twisting 
process prestresses are produced [2, 3], 
and the stresses decrease from the yarn 
outer layer to the inner one. In previous 
literature, this conclusion has been pre-
sented through specific experiments and 
corresponding images [4 - 7]. In this pa-
per, this conclusion will be verified again 
using the Finite element method.

The finite element method was devel-
oped on the basis of physical analysis of 
structural mechanics and has been used 
effectively in many fields [8], such as 
computational mathematics [9, 10], com-
putational mechanics [11] and so on. It 
can deal with a wide variety of physical 
issues such as linear elastic mechanics, 
non-linear stress-strain relations, fluid 
dynamics, etc. Especially, due to its pow-
erful computing function, the Finite ele-
ment method has been used in textile re-
search in recent years [12 - 16].

Motivated by all these works, this paper 
attempts to study the relationships be-
tween fibre displacement and strain using 
the Finite Element Method. Firstly, the 
stress of the yarn cross-section was ana-
lysed mathematically, and plane stress 
and strain balance equations were ob-
tained by using the differential method. 
Then, a geometry model of the cross-sec-
tion was established using ANSYS10.0, 
which is regarded as one of the most 
professional types of software. Finally, a 
displacement-strain curve of the fibre and 
stress nephogram was obtained by com-
puter simulation.

and its increment from arc ad to arc bc is 
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According to the internal force equilib-
rium, the radial force in the yarn cross-
section (that is, r-axis) is zero. Then the 
Equation 1 can be given by Equation 2. 
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then Equation 2 can be simplified as 
Equation 3.
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Similarly, we can get the hoop balance 
equation of the yarn cross-section as fol-
lows:

    (4)

Hence Equations 3 and 4 present balance 
equations of the stress and volume force 
at the polar coordinates. 

	 Theoretical analysis of fibre 
displacement and strain

Stress analysis 
Mostly, an elastic body has an arc-shaped 
boundary, such as disc, cylinder, etc. 
For these objects, it is more suitable to 
use polar coordinates to describe their 
boundary shapes. Normal yarn can be 
treated as a cylindrical elastic body, and 
its shape of cross-section can be consid-
ered as round. At the polar coordinates, 
the location of any point in the plane is 
determined by the distance (r) from the 
point to the coordinate origin (O), as well 
as by the angle (θ) between the direction 
of r and the x-axis. 

As shown in Figure 1, in a certain cross-
section of yarn, the micro-unit abcd is 
shaped by two arcs (ad, bc) and two ra-
dial lines (ab, cd). The distance between 
ad and bc is dr, and the angle between ab 
and cd is dθ. On the micro-unit, normal 
stress in the direction of r is called radial 
stress, which is expressed by σr. Normal 
stress in the direction of θ is called tan-
gential stress, which is expressed by σθ. 
Shear stress is expressed by τrθ or τθr. 
R denotes the radial volume force, and 
S stands for the circumferential volume 
force.

In order to obtain balance equations for 
the polar coordinates, two balanced rela-
tionships are set up along two directions 
of the coordinate axes, respectively. Be-
cause of the interaction of the internal 
stress and volume force, the micro-unit is 
in balance. Firstly, we discuss the balance 
of radial stresses of the yarn cross-sec-
tion. As shown in Figure 1, the normal 
stress on arc ad changes along the radial 
direction (r-axis at polar coordinates), Figure 1. Stress of cross-section.
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Theoretical analysis  
of the displacement and strain of fibre 
Generally, the path of the displacement 
of fibre looks like a cylindrical helix, and 
strain will appear in both the radial and 
circumferential directions. In order to es-
tablish differential equations effectively, 
we solve the problem of displacement in 
the radial direction first, and then solve 
that in the circumferential direction. Fi-
nally, the total strain is obtained. In this 
paper, the cross-section of yarn is simpli-
fied as a two-dimensional plane. In the 
twisting process, fibres are transferred 
from one layer to another, which can be 
interpreted as a radial displacement, or in 
the same layer, which is interpreted as a 
circumferential displacement, assuming 
the direction of twist is counter-clock-
wise. 

At the polar coordinates, the displace-
ment of each point is determined by two 
parts: radial displacement ur and circum-
ferential displacement uθ. Correspond-
ingly, there is radial strain εr and circum-
ferential strain εθ.
 
In the twisting process, for convenience 
of analysis, we make the following as-
sumption:
n	 Assumption 1. Besides circumferen-

tial displacement, there is only radial 
displacement. 

Firstly, we will discuss the radial dis-
placement, which is shown in Figure 2. 
If the radial line segment (PA) is moved 
to (P’A’) and the circumferential line 
segment (PB) is moved to (P’B’), the dis-
placements of the three points P, A, B are 
given as follows:
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Because of the spinning tension and 
twisting effect, the outer fibres are trans-
ferred from the external layer to the in-
ternal one, and the fibres in the center are 
squeezed out. According to the strain def-

layer, the radial distance is fixed, that is, 
the radial strain is zero, shown as (11). 
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As shown in Figure 3, if point (P) is 
moved to (P’’) and point B is moved to 
B’’, the corresponding torsional angle a 
owing to the transfer is as presented in 
[12]. When the fibres are displaced in 
the circumferential direction, radial re-
sistance b appears, given as u

r
θb = − . 

Hence, the total shear strain e′′rθ  gener-
ated by reversing should be expressed as 
follows:
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inition, partial differential expression can 
be presented in Equation 6, which is the 
radial strain. In Figure 2, point P is trans-
ferred to P’, and point B is transferred 
to B’, hence the length of curve PB in-
creases, which causes an increase in yarn 
diameter in the actual spinning process. 
Now, the fibres edged out are suffer-
ing more spinning tension, the strain of 
which is expressed in Equation 7.
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Because the rotating angle will appear 
when the fibres in the yarn body move 
along the radial direction, the corre-
sponding shear strain g’rθ is equal to the 
rotating angle of the circumferential, pre-
sented as follows:

g’rθ ' ' 1ã'
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Secondly we will discuss the circumfer-
ential displacement, which is shown in 
Figure 3. If point (P) is moved to (P’’) 
and point (B) is moved to (B’’) corre-
spondingly in the circumferential direc-
tion, the displacements of the three points 
P, A, B are presented as follows:
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In this paper, we only analyse the coun-
ter-clockwise displacement. The circum-
ferential strain is presented in [10] taking 
into account Equations 8 and 9. Since the 
displacement occurred in the same yarn Figure 3. Circumferential displacement.
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Finally, we obtain the relationship be-
tween the fibre displacement and strain 
as follow:

       (14)

	 Simulation of displacement 
– strain by using ANSYS

In this section, a simulation of the rela-
tionship between the fibre displacement 
and strain, as presented in [14], will be 
given using the Finite element method. 
ANSYS is one of the most professional 
types of software and can efficiently 
evaluate static types of structure, dynam-
ics and vibration, as well as solve linear 
and nonlinear problems. Therefore, we 
chose ANSYS10.0 in this paper.

Finite element model 
Definition of element properties
Taking into account computational ac-
curacy and efficiency, we chose the 
element “Plane 2”. The parameters of 
the yarn selected are as follows: met-
ric number 48.6  tex, volume weight  
0.75  g/cm3. According to the formula, 
we can calculate the diameter of the yarn, 
which is 0.28 mm.

Meshing
Because the yarn is a relatively simple 
physical model, we adopt free meshing. 
This method generally does not need to 
define the number and size of segments, 
since ANSYS will provide intelligent 
control. The size of the element is subject 
to the yarn cross-section. We set the mesh 
size at 0.05 mm, the number of elements 
is 138, and the number of nodes is 305. 
Figure 4 shows the state after meshing.

Figure 6. Strain distribution of the yarn cross-section. Figure 7. Curve of displacement- strain.

Figure 4. Mesh of the yarn cross-section. Figure 5. Stress of the displacement of the cross-section.

Results 
The loads include the degrees of free-
dom constraints, and the displacement. 
In this paper, the yarn cross-section will 
be regarded as an ideal plane, and only 
the outer stress and strain of the surface 
layer will be studied; the central axis of 
the yarn is assumed to be fixed. We can 
obtain all variations of the displacement, 
as shown in Figure 5.

All loads are defined by the SOLU 
processor, and corresponding simula-
tion parameters are selected as follows: 
the analysis method is static mechani-
cal analysis, the analysis type is linear, 
and the solver is automatically solved. 
Finally, we can obtain the distribution 
of the stress located in the external layer, 
as shown in Figure 6, where the shade 
stands for the size of the stress. From 
Figure 6, we can see that the stress is 
gradually reduced from the outer layer 
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to the inner one, which is consistent with 
that presented in previous work.

Analysis of result
Actually, the displacement of the points 
can be seen in the transfer of fibres in 
the yarn. Generally, fibres are transferred 
along the path of the cylindrical helix. 
In order to more clearly describe the 
relationship of the displacement-strain 
of fibres, we chose some points from 
the inner to the outer layer, following 
the counter-clockwise principles. Using 
the mapping capabilities of the ANSYS 
Program, the curve of the displacement-
strain is obtained, as shown in Figure 7, 
where the abscissa represents Fibre Dis-
placement, and the ordinate represents 
the Fibre Strain.

From Figure 7, we can see that the curve 
is smooth in the beginning, but it sud-
denly decreases at a certain position, and 
volatilities then follow. This may be due 
to changes in the stress state of the dif-
ferent layers. When fibre is extruded , the 
stress load in the fibre increases, then the 
strain is greater than that at the origin. 
With this extrusion, fibres suffer gradu-
ally increasing stress, even beyond yield 
strength, which results in an increase in 
fibre fracture probability . Once the origi-
nal fibre fracture occurs, another fibre 
fills it immediately, which leads to vola-
tilities, as shown in Figure 7.

n	 Conclusion
The relationship between the displace-
ment and strain of yarn was investigated 
mathematically, and corresponding sim-
ulations were presented using the Finite 
element method. The simulation results 
show that the displacement of fibres has 
a great connection with the stress of yarn, 
where stresses are gradually reduced 
from the outer to the inner layer of the 
yarn. Finally, a displacement-strain curve 

was obtained by using the mapping ca-
pabilities of the ANSYS Program, es-
tablishing the relationship between the 
displacement and strain theoretically. 
However, in the actual production proc-
ess, there are some other factors such as 
the friction between fibres, which can af-
fect the discussions. These need further 
studies.

Acknowledgments
This work was supported by the Innovation 
projects of Science and technology enter-
prises in Northern Jiangsu SBC201060102.

Reference
1.	 R. Z. Chen. The mechanical problems 

of yarn [M].Textile Industry Press, 1991.
2.	 B. Pascal, N. N. Cyril. Nonlinear model 

of a fabric warp and weft [J]. Advances 
in Complex Systems, 9(1): 99-120, 2006.

3.	 I. Ivelin, T. Ala. Flexible Woven Fabric 
Micromechanical Material Model with 
Fiber Reorientation [J]. Mechanics of 
Advanced Materials and Structures, 9(1): 
37–51, 2002.

4.	 D. Monaenkova, K. G. Kornev. Elastoca-
pillarity: stress transfer through fibrous 
probes in wicking experiments [J]. Jo-
urnal of Colloid and Interface Science, 
348(1):240-249, 2010.

5.	 R. A. Abuzade, A. A. Gharehaghaji, S. 
Sadri. Study on the yarn compressive 
stresses at balloon control ring by signal 
processing [J]. Mechatronics, 19(7):1152-
1157, 2009.

6.	 S. Sihn, E. V. Iarve, A. K. Roy. Three-
dimensional stress analysis of textile 
composites: Part I. Numerical analysis 
[J]. International Journal of Solids and 
Structures, 41(5-6):1377-1393, 2004.

7.	 S. Sihn, E. V. Iarve, A. K. Roy. Three-
dimensional stress analysis of textile 
composites. Part II: Asymptotic analysis 
[J]. International Journal of Solids and 
Structures, 41(5-6):1395-1410, 2004.

8.	 L. X. Yang. Elasticity and Finite element 
method [M]. Zhengjiang University Press, 
2002.

9.	 L. Lai. The plane analysis of elasticity 
with finite element method [J]. Journal 
of Liaoning Teachers College, 3(3):19-
20, 2001.

10.	Y. Xiu. A finite element automatical 
segmental algorithm of plane region [J]. 
Journal of Beijing Institute of Clothing 
Technology (Physical Science Edition), 
21(2):54-56, 2001.

11.	 W. Szyszkowski, E.Sharbati. On the FEM 
modeling of mechanical systems con-
trolled by relative motion of a member: A 
pendulum–mass interaction test case [J]. 
Finite Elements in Analysis and Design, 
45(10):730-74, 2009.

12.	N. M. Mehrabad, M. S. Johari, M. M. 
Aghdam. Finite-element and multivariate 
analyses of tension distribution and spin-
ning parameter effects on a ring-spinning 
balloon [J]. Proceedings of the Institution 
of Mechanical Engineers - Part C: Jour-
nal of Mechanical Engineering Science, 
224(C2):253-258, 2010.

13.	M. Tarfaoui, S. Akesbi. A finite element 
model of mechanical properties of plain 
weave [J]. Colloids and Surfaces A: Phy-
sicochemical and Engineering Aspects, 
187:439-448, 2001.

14.	H. Chiristine. Finite element analysis of 
melt spun yarn [J]. Journal of materials 
processing technology, 118(1-3):454-
459, 2001.

15.	S. Y. Li, B. G. Xu, X. M. Tao. Theoretical 
Study on the Geometric and Dynamic 
Performance of Ring Spinning Triangle 
with Finite Element Method [C]. AIP 
Conference Proceedings, 1233: 1011-
1016, 2010.

16.	S. Y. Li, B. G. Xu, X. M. Tao. Nu-
merical Analysis on Mechanical Be-
havior of a Ring-Spinning Triangle 
Using the Finite Element Method [J]. 
Textile Research Journal, January 
26, 2011 0040517510395998, doi: 
10.1177/0040517510395998, 2011.


