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Abstract
A new model of compressing distance knitted fabrics was developed based on Euler-Leaf 
theory. The model differs from those previously presented, which can be solved by an integro-
differential equation of the first order. The solution of the equation, which at the same time 
determines the shape of the bent rod, takes the form of elliptic integrals, which is in contrast to 
previous models of the trigonometric function form. Calculation algorithms were elaborated 
to determine the functional dependencies between the compression force and deflection, as 
well as an algorithm describing curves that represent the shape of the rod compressed. An 
experimental stand was built to verify the measuring method.
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process of distance knitted fabrics based 
on Euler’s theory of the buckling process 
(with so called elastic slender rods) have 
already been described. The solution of 
Euler’s differential equation is a combi-
nation of trigonometric functions and, at 
the same time, an image of the longitudi-
nal axis of the monofilament compressed 
[3, 4]. This article presents a model of 
the compression of distance knitted fab-
rics based on Euler-Leaf’s theory [5, 6], 
where the solution of Euler’s equation 
is introduced by elliptic integrals. The 
object compressed, which is a distance 
knitted fabric, is considered as two rigid 
planes connected by a network of rods 
forming an elastic space truss. The shape 
of the truss depends on the knitted struc-
ture of the stitches, as well as on the me-
chanical properties of the threads form-
ing the structure. 

Research into the compression process of 
3D distance knitted fabric is carried out 
in two ways: the shape analysis of a bent 
monofilament and mechanical analysis of 
a single monofilament forming the struc-
ture of the internal layer of a 3D distance 
knitted fabric. The final stage of our re-
search work is the verification of the 
results obtained by theoretical methods 
with those obtained in experiments. 

	 Mathematical model to analyse 
the compression process  
of the monofilament 
connectors of the internal 
layer of a knitted fabric

As already mentioned in the introduc-
tion, the model of compressing distance 
knitted fabrics is based on the mechani-
cal analysis of the process of bending a 
single element of the knitted fabric (a 

connector creating the internal layer of 
the distance knitted fabric).
Leaf studied a similar problem, in which 
he attempted to find a mathematical mod-
el of a plain knitted loop. The principal 
on which Leaf’s assumptions are based 
results from the shape analysis of a ho-
mogenous elastic bent rod. A perfectly 
straight rod buckled by equal and op-
posite forces applied at its ends takes a 
shape called ‘elastica’ [5]. The model of 
compressing distance knitted fabrics is 
based on the following assumptions:
n	 The bent object is considered as a 

slender rod made of a homogenous 
and elastic material.

n	 The rod is fastened at both ends to the 
external surfaces of the distance knit-
ted fabric by an articulated joint.

n	 A straight line, led along the initial 
axis of the bent rod, goes through the 
ends of the rod. A force P also acts 
along this straight line.

n	 The process of compression is consid-
ered in the static mode.

n	 The rod is assumed to be a weightless 
body.

n	 The bending of the rod occurs only in 
a single plane.

Figure 1. Shape of the bent elastic rod ana-
lysed by Leaf.

n	 Introduction
In recent years one can notice growing 
interest in the technical application of 
distance knitted fabrics. Apart from the 
shape of distance knitted fabrics, de-
scribed by their geometry, they should 
meet application requirements, includ-
ing the mechanical properties, especial-
ly their load strength and compression 
susceptibility. One can wonder why the 
modelling of the compression process of 
distance knitted fabrics is so important. 
The answer is simple: in order to learn 
the phenomena of compressing distance 
knitted fabrics. Along with the compres-
sion process of these fabrics comes a 
series of physical, in particular mechani-
cal, phenomena, such as the deflection of 
connectors forming the structure of knit-
ted fabrics and the mutual interaction of 
the friction between adjacent connectors 
[1, 2]. While conducting experiments, 
one can notice the phenomenon of vari-
ous forms of the deflections of single 
monofilament threads comprising the 
middle layer of the fabrics. The cognition 
of this phenomenon allows us to attempt 
to describe it mathematically, not verbal-
ly, bringing us closer to an understanding 
of this phenomenon. 

The present article is a continuation of 
our previous research work. A number of 
mathematical models of the compression 
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The model of compressing distance knit-
ted fabrics is based on Equation (1) – 
Euler’s theory. The equation of the bent 
rod may be written as:

1EJ Py
r

= −                        (1)

where:
EJ 	- bending rigidity,
1/r	- curvature of the rod at point T (Fig-

ure 1),
P 	 - forces acting on the ends of the rod,
Y 	 - distance between the force P (ap-

plied at end points of the rod) and 
point T, 

E 	 - Young modulus, 
J 	 - moment of inertia of the bent rod’s 

cross-section.

With the geometrical relations presented 
in Figure 1, Equation (1) can be ex-
pressed in a integro-differential form: 
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where 
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Differentiating Equation (1) with respect 
to s, we finally obtain a differential equa-
tion of first order for the deflection line:

2
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ds EJ
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Introducing the auxiliary function
d
ds
b

W ≡ , we multiply both sides of 

Equation (3) by W:
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bbW
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Multiplying by ds, we obtain:
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After integrating relation (5) and extract-
ing the root, we get:
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We determine integration constant C 
from the following set of boundary con-
ditions: for s = (lp = L)/2, angle b = a, 
and y = 0, 
therefore 1 0

r
= , that is 0,d

ds
b

=  we get:
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Putting C in the equation for W, we find:

( ) 2 22 4cos cos sin sin
2 2

d P P
ds EJ EJ
b a bb a  = − = − 

 
     

(8)
( ) 2 22 4cos cos sin sin

2 2
d P P
ds EJ EJ
b a bb a  = − = − 

 

And using Equation (8), we get a separa-
ble variable equation: 
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Double integration with respect to the 
half length of the rod leads to:
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Where, half of the length of the rod is 
considered as a function, while the other 
half is a mirror image of the first half with 
respect to the Y-axis.

To bring the integral to a Legendare ca-
nonical form, first we substitute:
 sin

2sin sin sin , sin
2 2 sin

2
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b
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sin
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Which gives:	

2 2sin sin sin sin
2 2 2
a b a y− =    (11)

For the element of integration (10), we 
have s = lp/2, y = p/2 in point A, where 
b = a, whereas in point B, when b = p, 
y = 0, we obtain:

 (12)

therefore        

where      

Function F(p/2, m) is a complete elliptic 
integral of the first kind, 
lP	- length of the deflected monofilament, 
P 	- compression force. 

The complete elliptic integral of the first 
kind is defined as:

2

2
0

( , )
2 1 sin

dF m
m

p

p y

y
=

−
∫        (13)

Where ’m’ is a modulus, taking val-
ues from <0, 1>, therefore function  
F(p/2, m) takes values of 1.57079, )< ∞ . 
In order to determine the theoretical char-
acteristic of monofilament compression, 
one has to determine the Young modulus 
’E’, evaluate the modulus of inertia “J” 
of the cross-section of the monofilament 
perpendicular to the longitudinal axis of 
the rod, and take any value of force P 
from the range <1.57079,∞), for which 
one has to determine the deflection ∆g. 
Using the values of ‘E’, ‘J’, ‘P’ and the 
length of the monofilament lP, we can 
calculate the right side of Equation (12). 
With modulus ‘m’ already defined, we 
can now determine the deflection of the 
rod Dg and the deflection curve of the rod 
using the following formulas [2, 7, 8]:
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Where x and y are the coordinates of any 
point of the bent rod’s axis, F(y, m) is 
an incomplete elliptic integral of the first 
kind
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while F(y, m) is an incomplete elliptic 
integral of the second kind

2
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If we assume that for non-deformed fab-
ric (P = 0) the rod tested is a line segment 
of length lP = g, where ’g’ is the thick-
ness of the non-deformed fabric, then  
∆g = g - 2x.

This results from the fact that the formu-
las present a parametric equation of the 
curve, which is the right side (the positive 
side of the X-axis) of the curve presented 
in Figure 1; the left side of the curve is 
a mirror image of the right side of the 
curve with respect to the Y-axis. There-
fore, when calculating the deflection ∆g, 
we double the value of the coordinates 
of the monofilament’s ends ‘x’ (point A). 
The value of parameter y for point A – 
the end of the rod for which the deflec-
tion ∆g is calculated – equals y = p/2, as 
in point A a = b. In point A, therefore, the 
upper limit of integrating (15) and (16) 
equals y = p/2 , and the integrals may be 
written as F(p/2, m) and E(p/2, m).
 
With modulus “m” known and functions 
F(y, m) and E(y, m) taking the shape 
of definite integrals of known limits of 
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integration, we can now determine co-
ordinate ‘x’ using the first formula from 
(14). Putting the value ‘x’ in the follow-
ing equation: Dg = g - 2x, we obtain the 
deflection Dg that corresponds with force 
P. With modulus ‘m’ known, we can also 
determine the deflection curve of the rod 
using formulas (14), which define the par-
ametric curve, where y is the parameter, 
changing within the range y ∈ (0, p/2). 
In order to determine the deflection 
curve of the rod, one should identify a 
sequence of points (x, y) for parameter 
y from equation (14). The deflection 
curve of a monofilament compressed 
by force P is presented in Figure 2 as a 
theoretical curve for 10 analytical points. 
To verify the real shapes of the bent rod 
obtained by theoretical methods, experi-
mental tests were carried out in order to 
determine its shape. As a result of the 
experimental research, we obtained the 

theoretical and experimental characteris-
tics of the bent rod, presented as a set of 
points. Figure 3 presents a photograph of 
a stand for the shape registration of bent 
polyamide monofilament, while Figure 2 
presents a photograph of the real shape of 
the compressed rod as well as a diagram-
matic presentation of the photograph 
(curve 1), and theoretical curve (curve 2). 

	 Mechanical characteristics 
of a single monofilament

In order to use Leaf theory for model-
ling the compression process of the rod 
as a single monofilament of 3D distance 
knitted fabric, one has to assume that the 
compressed rod is placed between two 
rigid planes and fastened at both ends by 
articulated joints. Therefore, the theory 
mentioned above might be used till α, the 
angle between the tangent to the deflec-
tion curve at point A (Figure 1) and the 
X-axis, reaches the value of a =  p/2 (the 
deflection Dg2). Further compression of 
the fabric does not cause a change in an-
gle a =  p/2 (deflections Dg3 and Dg4). 
The deflection of the rod causes changes 
in its length lP. The mechanical model of 
the bent rod based on Euler-Leaf theory 
is presented in Figure 4.

The parallel displacement of the applica-
tion point of force P is an effect of the 
phenomenon (the part of the rod contigu-
ous to the external surfaces of the fabric 
does not participate in the compression 
process. The ends of the monofilament 
undergo a parallel displacement). In or-
der to create a further part of the com-
pressed rod characteristic (which is the 
internal layer element of 3D distance 
knitted fabric) for the values of forces, 
where angle α would exceed the value  

a =  p/2, we put this value into the fol-
lowing formula:

2 2 1(sin ) (sin )
2 4 2

m a p
= = =

     
(17)

determining modulus ’m’ and conse-
quently integral (13), whose value from 
now on is known and constant. Equa-
tion (12) may be written as P = f(lP) as 
the other values (E, J and F(π/2, m)) are 
known and constant. The equation may 
be written as:
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Value lP is treated as an independent vari-
able whose value is reduced below the in-
itial one. We divide the range (0,lP) into 
9 parts and obtain the following sequence 
of values: 

lP = lP/9, 2lP/9, 3lP/9, 4lP/9, 5lP/9, 6lP/9, 
7lP/9, 8lP/9, lP, which determines the 
sequence of values of force Pi, where 
i = 1, 2, 3, 4, 5, 6, 7, 8, 9. With modulus 
“m” defined, we can now determine the 
deflection of the rod, ∆g, and the deflec-
tion curve of the rod for modulus ’m’ 
for each value of force Pi. The method 
of determining the deflection of the rod, 
∆g, and the deflection curve of the rod 
has already been presented, taking the 
value of force Pi instead of P in formulas 
(14). The theory described helps to de-
termine the theoretical characteristic of 
compressing a rod fastened at both ends 
by articulated joints. The parameters of 
the compression process are the follow-
ing: EJ = 67 N.mm2 - rigidity of the 
polyamide rod compressed, lP = 100 mm 

Figure 3. Photograph of a stand for the 
shape registration of bent monofilament:  
1 – monofilament, 2 – graph paper, 3 – digi-
tal camera.

Figure 2. Photographs and shapes of the 
bent rod obtained by theoretical and ex-
perimental methods; for a) P = 0.142 N,  
b)  P = 0.2 N, 1 – experimental curve,  
2 – theoretical curve.

a)

b)

Figure 4. Mechanical model of the bent rod based on Euler-Leaf theory. 1 – deflected 
monofilament, 2 – top layer (movable), 3 – bottom layer (immovable).

1 2

3

a = p/2

a = p/2
a = p/2

a < p/2
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- length of the rod, Ø = 1 mm - diameter 
of the rod. 

An algorithm determining the character-
istic of compression and one determining 
the theoretical shape, in order to compare 
it with the real shape, were elaborated us-
ing “Mathematica” software. Figure 5. 
presents characteristics of the rod com-
pressed. We also conducted a research 
study in order to verify the method of 
determining the mechanical characteris-
tics of the compressed rod in 3D distance 
knitted fabric (Figure 6). 

The measuring stand for determining 
the mechanical characteristics of bent 
monofilament is adapted for testing the 
polyamide threads in articulated joints. 
The force bending the monofilament 
thread is measured by the strain gauge. 
The voltage related to the bending force 
is measured by the sensitive voltmeter. In 
order to visualise the measuring process, 
the measuring stand is equipped with a 

monofilament compression of a fab-
ric’s internal layer. The model elabo-
rated is just an introduction to further 
simulative research into compressing 
3D distance knitted fabrics, taking 
into consideration the mechanical pa-
rameters of monofilaments, the struc-
tural parameters of knitted fabrics, 
and weave parameters. 

2.	 In the aspect of determining the de-
flection curves of the rod, the model 
of the compression process was em-
pirically verified by the real shapes 
measured using digital image analysis 
techniques. The theoretical and ex-
perimental curves of the bent rod (for 
different aspects of deflection) have 
a high shape compatability. The dis-
crepancy of measurements are simply 
the errors of the measurements and 
methods used.

3.	 Simulation of the compression proc-
ess of distance knitted fabric was car-
ried out and the results compared with 
real compression characteristics. The 
experimental research was conducted 
on a measuring stand, using a strain 
gauge force meter. The differences 
between the values of theoretical and 
experimental forces do not reach the 
limit of 18%, which may be explained 
by the contracted program of experi-
mental research as well as by the er-
rors of the methods.
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digital camera. Graph paper is used as 
the background of the sample in the de-
flection measurement of monofilament 
thread.

The comparative analysis of a single rod 
compression shows the differences be-
tween the calculated and experimental 
values, which do not exceed 18%. The 
differences between the results obtained 
from the mathematical model of the 
compression process and those obtained 
from the experimental model occur 
till the deflection values do not exceed  
∆g = 62 mm. Within the range of deflec-
tion values established, there is a linear 
dependence between the deflections and 
deflecting forces; however, after the val-
ue mentioned is reached comes a strong 
non-linear increase in the deflecting forc-
es. The results obtained, referring to both 
the model shapes of the rod compressed 
as well as the mechanical characteristics 
of the compression process, allow for 
a more optimistic attitude towards the 
model of the compression process pre-
sented above. 

n	 Conclusions
1.	 A model of the compression of dis-

tance knitted fabrics was developed 
based on the theory of compressing 
an elastic slender rod according to 
Euler-Leaf theory, the assumptions of 
which are presented. The mathemati-
cal model is described by an integro-
differential equation of the first order, 
with a function of bending the rod’s 
shape in the form of an elliptic inte-
gral as its solution. The model helps 
to elaborate the characteristics of the 

Figure 6. Photograph of a experimental 
stand for the determination of the mechani-
cal characteristics of bent monofilament:  
1 – stand/support, 2 – strain gauge, 3 - 
monofilament, 4 – graph paper, 5 – ampli-
fier and voltmeter.

Figure 5. Mechanical characteristics of the bent rod: 1 – empirical, 2 – theoretical.
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