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Abstract
In this paper the problem of modelling  graded materials in the form of a fibre composite 
with varying fibre diameter is considered. The aim of modelling was to determine the micro 
and macroscopic thermal properties of this type of material, in which the average thermal 
conductivity in relation to fibre saturation changes was calculated at any point of fibre 
FGM, and then the effective thermal conductivity of a whole layer of the material was de-
termined. To do that, a unit cell of the material of given structure was isolated and the one-
dimensional heat flux passing through it was considered. As an effect of the investigation, 
the procedure of  effective thermal conductivities calculation was presented and illustrated 
with a numerical example. Additionally the discrete and continuous approach to the effec-
tive thermal conductivities calculations were analysed and compared.
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effective thermal conductivity.

adapted to the type, shape and size of ma-
terial, as well as to the value of the gra-
dient of material variations or the micro-
structure of gradient components [15]. 
Functionally graded materials are always 
manufactured by mixing two different 
material phases, for example metal and 
ceramic or fibres and resin. The concept 
is to make a composite material by vary-
ing the microstructure from one material 
to another with a specific gradient. This 
enables the material to have varying, de-
signed properties. The reasonably low 
thermal stresses allow us to create high 
thermal resistance materials which can 
work in changing environmental condi-
tions. 

The most commonly used gradient mate-
rials made of fibre composites are those 
in which fibres have a constant diam-
eter, but their saturation can be differ-
ent. Graded materials can be also created 
from regularly arranged fibres of variable 
diameter.

Glass and carbon fibres are the most pop-
ular classes of filling fibres. Glass fibres 
are commonly used due to their low cost 
and excellent properties. Carbon fibres 
are one of the most important classes 
of filling fibres because of their proper-
ties, such as high stiffness, high tensile 
strength, low weight, high temperature 
tolerance and low thermal expansion. 
These features make them very popular 
in many engineering applications. How-
ever, carbon fibres are relatively expen-
sive in comparison to filling fibres, such 
as glass or plastic fibres [16, 17]. By con-
trolling the density of the arrangement 
of fibres or their diameter, it is possible 

Functionally graded materials (FGM) are 
a new class of composite materials where 
the composition of components gener-
ates continuous and smooth gradation 
of properties of a composite. Multiphase 
composites with a continuously varying 
volume of fractions are characterised by 
smoothly changing mechanical and ther-
mal properties. The concept of function-
ally graded materials was proposed in the 
early 1980s by materials scientists in Ja-
pan as a means of preparing thermal bar-
rier materials [10]. 

The new generation of functionally grad-
ed fibre materials has dynamic, effective 
thermal properties and the volume frac-
tion of the materials changes gradiently. 
The non-homogeneous, variable micro-
structures of these materials cause con-
tinuously graded macroscopic properties, 
such as the thermal conductivity, specific 
heat, mass density and elastic modulus. 
These materials have been developed as 
super-resistant materials in order to de-
crease thermal stresses and increase the 
effect of protection from heat [11, 12].

According to manufacturing techniques, 
FGM may exhibit orthotropic or aniso-
tropic material properties due to practi-
cal engineering requirements. Apart from 
their main advantage of good heat resist-
ance, they are characterised by very low 
density, resulting in lightweight structures 
with very good thermo-mechanical prop-
erties and small operating costs [13, 14].

There are different kinds of fabrication 
processes for producing functionally 
graded materials. Each of the manufac-
turing processes of gradient materials is 
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n	 Introduction
Heat transfer problems are widely con-
sidered in many areas of engineering. 
For example, the human need for ther-
mal comfort leads to constructing proper 
building materials [1, 2] and parts of 
clothing [3, 4]; knowledge of the be-
haviour of structures under an applied 
thermal load can lead to identification of 
their material or structural features [5, 6]; 
the  manufacturing process can require 
strictly designed thermal conditions to 
perform a technological process cor-
rectly [7, 8]; the operating conditions of 
machine parts can force engineers to cre-
ate a material structure highly resistant to 
thermal stresses [9].

In many areas of engineering, thermal 
stresses play an important role. In some 
engineering structures like simple and 
complicated elements of machines, car 
engines, turbine blades, aerospace struc-
tures and energy conversion systems, 
which work at high and non-uniform 
temperature fields, the main importance 
is to design thermal resistant structures. 
The necessity of designing material for 
a longer lifetime implies the application 
of new technologically advanced materi-
als. In addition to well-known and com-
monly used classic materials of uniform 
mechanical and thermal properties, func-
tionally graded materials are also utilised.
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to influence the durability of some struc-
tural parts. An example of such usage of 
gradient material can be a beam structure 
made of composite material filled with fi-
bres of constant diameter but with differ-
ent saturation of the matrix or beam filled 
with fibres of variable diameter. In this 
case the reinforcing fibres can be more 
densely arranged in parts more distant 
from the neutral axis. Proper arrange-
ment of filling fibres enables better us-
age of their components, which means a 
more expensive and usually more resist-
ant fraction can have greater saturation at 
points of higher stresses. Generally, this 
type of construction material can be used 
as structural elements of buildings, such 
as beams, plates or shell elements In ad-
dition to the mechanical properties of fi-
bre FGM, its thermal properties can also 
be important when considering thermal 
comfort inside buildings.

In this paper the effective thermal con-
ductivity of a layer of given thickness 
built from fibre FGM in relation to vary-
ing fibre saturation was determined. To 
do that, the average thermal conductiv-
ity at an arbitrary point of the structure 
was considered. In the investigations it 
was assumed that long parallelly-placed 
fibres of variable diameter are arranged 
in a regular hexagonal microstructure. 
With respect to the real, discrete structure 
of fibre FGM (built with many layers of 
composite material), the thermal behav-
iour of a discrete material structure was 
compared with that of the gradient mate-
rial considered as a continuum. 

n	 Problem formulation
Let us consider two-dimensional steady 
state heat transfer for a body built with 
orthotropic fibre FGM material. To de-
scribe the behaviour of the body at each 
point, we can use typical relations de-
scribed by a heat equation and Fourier’s 
law [18]:

divq + f = 0, q = - λe 

∆

T in Ω     (1)

Where, q and f denote the heat flux inten-
sity and heat source, respectively, λe - the 
matrix of average thermal conductivity 
coefficients (following from properties 
of the matrix and fibre materials), and ∆

Τ denotes the gradient of the tempera-
ture field. The main problem for FGM is 
the knowledge of elements of the matrix 
λe at each point of the body domain. In 
the  Cartesian coordinate system for or-
thotropic axes of the material, we have 

to know elements λex and λey of the main 
diagonal of the λe matrix. Additionally to 
be able to solve the problem, we have to 
know proper boundary conditions char-
acteristic for environmental conditions 
of the structure analysed describing, for 
example, the temperature, heat flux in-
tensity or convection in proper parts of 
the boundary (Figure 1). The conditions 
mentioned can be written in the form:

T = T0 on GT, 
qn = qn = qn0 on Gq,                (2)
qn = h(T - T∞) on Gc

where, T0 & qn0 denote prescribed values 
of the temperature and heat flux, h – the 
convection coefficient, T∞ - the environ-
mental temperature, and n is the normal 
unit vector of the boundary line at a cho-
sen point.

In many practical applications we should 
know the effective thermal conductivity 
for an element of given thickness t in re-
lation to fibre saturation changes, which 
characterises the total thermal resistance 
of a layer built from fibre FGM. In this 
case we are interested, in fact, in one-
dimensional heat flux (as shown in Fig-
ure 2) of prescribed temperature T0 and 
effective temperature Tt, for instance. 
Knowledge of this coefficient gives us 
the possibility to consider the thermal 
properties of fibre FGM as constant in 
relation to fibre saturation changes, and 
leads to the simplification of typical prac-
tical calculations.

	 Average thermal conductivities 
for fibre FGM

Fibre FGM is a mixture of matrix and 
fibres. To determine the average ther-
mal conductivity of this type of material 
we should know how to determine the 
thermal resistance of composite mate-
rial when heat flux passes through their 
components arranged in parallel or in a 
serial manner, and how to take into ac-
count the shape of intrusions. The fibre 
arrangement, cross section shapes and 
fibre saturation in the matrix play a sig-
nificant role for thermal properties of the 
whole material.

Parallel and serial arrangement  
of components 
The goal now is to determine the effec-
tive thermal conductivities for one-di-
mensional heat flow for composites built 
with many layers of different, thermally 
isotropic materials. The problem is well 

known and was solved many years ago, 
but its awareness is really important for 
further investigations carried out in this 
paper. 

Let us consider steady state heat trans-
fer through a multilayer structure of unit 
length, built with n layers of different 
thicknesses ti and thermal conductivities 
λi, as shown in Figure 3.a (see page 70).

First we consider the one-dimensional 
heat flow perpendicular to the layer di-
rection, Figure 3.b. Taking into account 
that the flux conducted through lay-
ers is the same in each layer of the dis-
crete structure and should be the same 
in homogenised material, we can write:

            
(3)

where, ∆Tij denotes the temperature 
jump between i-th and j-th surfaces, and 
λsx - the effective thermal conductivity of 
the composite in the y direction. Noting 
that

n

n

=i
ii T=T 0

1
1 ∆∆∑ −               (4)

we can rearrange relationships (3) to ob-
tain the effective thermal conductivity 
and write it in the form:

Figure 1. FGM structure subjected to 
service loading.

Figure 2. One-dimensional heat flow 
through FGM structure.
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ure 5.b) a matrix material layer exists be-
tween fibres (r > r1 + r2).

In the first case, similar to what was done 
in [19], the average thermal conductivity 
coefficient at the y (cf. Figure 4) coordi-
nate point can be calculated as a parallel 
connection of three parts of the cell: mf, 
fmf & fm (Figure 5.a). Using the proper 
notation in (7) characteristic for our unit 
cell, we can write:

r
rrλ+rr+rλ+rrλ

=yλ fm12fmfmf
y

)()()(
)( 1121

1

−−−

                     (8)

r
rrλ+rr+rλ+rrλ

=yλ fm12fmfmf
y

)()()(
)( 1121

1

−−−

where, λmf1, λfmf, λfm1 denote the effec-
tive thermal conductivity of mf, fmf & fm 
parts, respectively.

All effective thermal conductivities men-
tioned in Equation 8 can be calculated in 
a similar way. Let us consider the proce-
dure of calculation of the λfmf coefficient. 
To calculate it, we can write the total heat 
balance for the infinitesimal section dξ, 
shown in Figure 6, or simply use Equa-
tion 5 applying the proper notation. 
Adapting Equation 5, we can write:

	 Average thermal conductivities 
at an arbitrary point of fibre 
FGM

Let us take into account a repeatable 
structure of functionally graded material 
filled with long fibres of changing diam-
eter and arranged in a hexagonal struc-
ture, as shown in Figure 4. The main 
goal is to determine the average thermal 
conductivity coefficient of FGM in the y 
direction. To do that, we have to define its 
value at each point of the structure.

To determine the average thermal con-
ductivity coefficient at an arbitrary point, 
we isolate the repeatable unit cell, shown 
in the Figure 4, and we connect it to 
the local coordinate system ξ − η. With 
respect to symmetricity of the cell, we 
consider only one-forth of the cell (Fig-
ure 4).

Because of the different possible diam-
eters of filling fibres, we can observe two 
different arrangements of the element 
considered. In the first case (Figure 5.a) 
we can observe the overlapping of fibres 
(r < r1 + r2), and in the second case (Fig-

                  

  (5)

In the case of one-dimensional heat flow 
parallel to the layers (Figure 3.c), the 
total flux passing through the structure 
is equal to the sum of fluxes passing 
through all layers, and should be equal 
to the flux passing through the homog-
enised material. Consequently assuming 
an additionally constant temperature at 
each boundary, we can write: 

∑∑
n

=i
isx

n

=i
ii tΔTλ=tλΔT

11
           (6)

to finally obtain the effective thermal 
conductivity in the y direction in the 
form:

∑

∑
n

=i
i

n

=i
ii

sx

t

tλ
=λ

1

1                  (7)

a) b) c)

Figure 3. a) sandwich structure, b)  heat flow through elements connected in series,  c) heat flow through elements connected in parallel.

Figure 4. Hexagonal repeatable arrangement of fibers in FGM 
and unite cell.

Figure 5. The one forth of the unit cell; a) with overlapping fibers, 
r < r1 + r2,b)  with not overlapping fibers, r > r1 + r2.
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( ) BC
λ

+AB+CD
λ

AD=ξλ

mf

ξfmf 11
)(    (9)

In this way we obtain the substituting 
thermal conductivity coefficient for el-
ement dξ as a function of the proper 
lengths of the element considered as 
well the thermal conductivities of ma-
trix λm and fibre materials λf. Noting 
that 22

1 ξr=CD − , ( )22
2 ξrr=BA −−  and 

3r=AB+BC+CD=AD , relation (9) can 
be rewritten in the form:

( )
mmf

ξfmf

λ
r+ξrr+ξr

λλ

r=ξλ
311

3)(
22

2
22

1 




 −−−









−

                   
(10)

( )
mmf

ξfmf

λ
r+ξrr+ξr

λλ

r=ξλ
311

3)(
22

2
22

1 




 −−−









−

Knowing that the total heat flux passing 
through the part of the cell considered is 
the same in real and homogenised mate-
rial, we can write Equation 11:	

( )rr+r
AD
ΔTλ=

r
dξ

AD
ΔTλ 2fmf

rr
ξfmf −∫

−
1

1

2

 ,(11)

where, ∆T is the jump in temperature 
between points A and D of the unit cell, 
which is assumed to be constant along 
the ξ axis in the cell considered. Conse-
quently we can write:

∫
−−

1

21

1
r

dξλ
rr+r

=λ
rr

ξfmf
2

fmf
     (12)

The missing coefficients in (8) can be 
obtained in a similar way. Consequently 
substituting the thermal conductivity in 
the infinitesimal section dξ for parts mf 
and fm can be expressed as follows:

( )
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ξfm
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(13)

and effective thermal conductivities re-
quired have the form:

  ∫∫ −−
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Generally the integrals in Equation 12 
and Equation 14 have to be calculated in 
a numerical manner.

In the second case (Figure 5.b), the aver-
age thermal conductivity coefficient can 

be calculated similarly and can be written 
in the form:

r
rλ+rrrλ+rλ

=yλ fm2mmf
y

22112
2

)(
)(

−−  (15)

Where, λmf2 and λfm2 are determined as 
follows:
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The average thermal conductivity coef-
ficient for the whole cell (at an arbitrary 
point of FGM for a y coordinate) is eas-
ily determined from Equation 5 in the 
serial connection of the upper and lower 
one‑fourth of cell parts (cf. Figure 4):

yjyi

yjyi
ay λλ

λ+λ
=yλ )(              (17)

where, i and j are equal to 1 or 2 accord-
ing to the character of the upper and low-
er one-fourth of the cell.

If necessary, we can obtain the average 
thermal conductivity λax for an arbitrary 
y coordinate in the same manner. It is 
worth noting that with respect to the fi-
bre material arrangement, coefficients 
λax and λay for the chosen y are constant 
along the x direction. 

	 Effective thermal conductivity 
for a layer of fibre FGM 

Having determined the average thermal 
conductivity coefficients at each point of 
the material, we can determine the effec-
tive thermal conductivity coefficient of 
the whole layer. Let us assume that the 
layer of the material has thickness t (as 
shown in Figure 2) and we know func-
tion λey(y). According to Fourier’s law, 
the intensity of heat flux in the y direc-
tion is equal to:

 
dy
dTyλ=q ayy )(                  (18)

Separating the variables and integrating 
both sides with limits 0 ≤ y ≤ t , we ob-
tain:

∫ −

−
t

ay

t
y

dyλ

TT=q

0

1

0 ,                 (19)

where, T0 and Tt denote the temperatures 
on the upper and lower surface of the lay-
er, respectively. Comparing the heat flux 
passing in the y direction through section 
dx in real and homogenised material, we 
can write:

dx
t

TTλ=dx
dyλ

TT t
eyt

ay

t 0

0

1

0 −−

∫ −
,      (20)

where, λey denotes the effective thermal 
conductivity in the y direction of the 
FGM layer analysed, which can be easily 
determined as:

∫ −
t

ay

ey

dyλ

t=λ

0

1
                (21)

The expression Equation 21 can be used 
when we treat the material structure as 
continuous. The FGM material structure 
is in fact discrete. Consequently instead 
of Equation 21, knowing the real struc-
ture of FGM connected with the manu-
facturing process (diameters of fibres, the 
number of fibre layers, etc.), we can also 
use Equation 5 to determine the effective 
thermal conductivity required.

	 Numerical examples 
The main goal of this section is to illus-
trate the approach to effective thermal 
conductivity calculations proposed and 
next to compare the discrete and continu-
ous approach for their calculation. 

Numerical example of calculation  
of the effective thermal conductivity 
for a layer of FGM 
To show the ability of the method of ef-
fective thermal conductivity calculation 
proposed (according to Equation 21), 
a numerical example was realised. It 
was assumed that the radius of fibres is 
known at any point of the material and 
can by described by the function R(y). 
In our case this function was assumed in 
the linear form:

0
0)( r+y

t
rr=yR t −              (22)

where, rt and r0 denote the radius of fibre 
at points y = t and y = 0 - which means on 
external boundaries of lamina of thick-
ness t. Calculations were performed for 
changing ratio r0/rt assuming the maxi-
mal possible size rt = r (cf. Figure 6). In 
particular, it was assumed: r = 0.5 mm, 

Figure 6. The one-forth of the unit cell with 
singled infinitesimal section dy.
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Numerical tests were carried out for lam-
ina composed of 3 to 100 layers. Each 
layer had a constant thickness resulting 
from the assumed dimension r = 0.5 mm. 
Additionally it was assumed in Equa-
tion  22 that rt = r and r0 = 0. This as-
sumption causes a change in fibre satura-
tion in the matrix from the maximum to 
minimum possible value. During numeri-
cal integration in Equation 21 the num-
ber of Gauss points was assumed to be 
equal to 2, which means that the integral 
in Equation 21 was calculated as a result 
of calculation λy at two points, and func-
tion course λy(y) was approximated with 
a third order polynomial. Plots of the ef-
fective thermal conductivities versus the 
number of layers for the discrete and 
continuous approaches are shown in Fig-
ure  8. The relative difference between 
the coefficients obtained using both ap-
proaches is depicted in Figure 9.

The continuous approach gives a really 
small relative error in comparison to 
the discrete one. For a number of layers 
equal to 3 the error is smaller than 1.5%, 
and for a material built from more than 
15 layers it is always smaller than 0.2%. 
The greater the number of Gauss points 
used in numerical calculations, the bet-
ter the accuracy that can be achieved; 

Equation 21). The question now is how 
many layers are needed to treat a discrete 
structure as a continuous one.

To examine this, we can do numerical 
tests using Equation 5 or Equation 21, 
where the effective thermal conductivity 
coefficient at an arbitrary point is calcu-
lated in the same manner using Equa-
tion 17.

In the case of the discrete approach, we 
have to calculate the effective thermal 
conductivity coefficient in each layer ac-
cording to Equation 5. 

In the case of the continuous approach, 
we have to calculate, in a numerical 
manner, the integral appearing in Equa-
tion 21. In this case we forget about the 
real material structure, but we are inter-
ested in the thermal conductivity coef-
ficient at some points according to the 
method of numerical calculations chosen 
– in our case Gauss points. The structure 
of the unit cell (the diameters of fibres) 
results from the assumed function R(y) of 
fibre diameter variability, and can be de-
scribed at any point and not only in real 
fibre positions. This approach creates vir-
tual (not existing) fibres which are used 
in the calculation process.

number of layers 20, λm = 1 W/(mK), and 
λf = 25 W/(mK). A plot of the effective 
thermal conductivity obtained is shown 
in Figure 7. 

From geometrical investigations of the 
unit cell proposed, we can see that the 
maximal saturation of fibre material 
in the matrix (for r0/rt = 1 and rt = r) is 
equal to p/( 0.9069)32/( ≈ð , which al-
lows to create a composite with effective 
thermal conductivity approximately two 
times lower than for pure fibre material.

Comparison of discrete and 
continuous approaches to calculation 
of effective thermal conductivity 
coefficients
Even if we know the real discrete struc-
ture of a fibre FGM, we treat it as con-
tinuous material. The question is how 
good this approximation is and when we 
can treat a discrete material as continu-
ous. The question is similar to that when 
we treat fibre composites as uniform ho-
mogenised material forgetting about their 
inner structure.

In the case of fibre FGM considered, the 
effective thermal conductivity coefficient 
can be obtained using the discrete (cf. 
Equation 5) or continuous approach (cf. 

Figure 7. The effective thermal conductivity vs. changes 
of fibers’ radius along lamina thickness.  

Figure 8. The effective thermal conductivities for fiber 
FGM.

Figure 9. The relative error of calculation of the effective  
thermal conductivity obtained as a result of discrete 
approach vs. continuous approach. 

Figure 7. Figure 8.

Figure 9.
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however, it seems not to be necessary 
with respect to satisfactory precision of 
calculations for a number of Gauss points 
equal to 2.

n	 Conclusion remark
In the paper, a simple way of average 
thermal conductivity calculation of FGM 
filled with long parallely-arranged fibres 
was presented. Next the effective thermal 
conductivity for a layer of fibre FGM 
was determined in the gradient direction 
of fibre diameter changes. Numerical cal-
culations were carried out for a material 
of linear variability of fibre diameter, as-
suming different velocity of fibre radius 
changes across the thickness of the mate-
rial sample. 

Additionally it was shown that in the case 
of thermal properties, lamina consisting 
of three or more layers can be treated as 
continuous with good accuracy. Conse-
quently there is no need to consider all 
layers of lamina because we can homog-
enise them in one structure with the pre-
scribed function defining the variability 
of the fibre diameter, and then treat it as 
continuous.
 
The effectiveness of the proposed meth-
od of calculation of effective thermal 
conductivities of fibre FGM is defined by 
the number of elementary mathematical 
operations which have to be done to cal-
culate proper integrals. Assuming numer-
ical integration using five Gauss points to 
calculate the average thermal conductiv-
ity at a given point and two Gauss points 
to calculate the effective thermal coef-
ficient of the whole layer of fibre FGM, 
we need a little more then one hundred 
elementary mathematical operations. In 
the real world of numerical calculations, 
the time of execution of this number of 
calculations is negligibly small. 

To verify the accuracy of this approach we 
need practical tests. In the case of insuffi-
cient compatibility of practical test results 
with numerical calculations, the  meth-
od proposed should be revised taking 
into account the stochastic approach 
to fibre arrangements in the unit cell. 
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