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Abstract
The strength and elongation at break of a seam are very important characteristics of com-
fort clothing. Optimum seam strength must be durable enough to do our daily activities 
easily. Some parameters such as the type and  count of the sewing yarn, the seam density, 
the size of the sewing needle, and type of  stitch affecting the strength and elongation at 
break of the seam. In this study two kinds of fabrics (gabardine and poplin) were chosen for 
experiments. As sewing parameters, two different types of stitches (plain and chain stitch), 
five seam densities (3, 4, 5, 6 and 7 seams/cm), two kinds of sewing needles (SPI and SES), 
and three kinds of sewing yarns (cotton, core-spun, and PBT yarns) were used in experi-
ments. With these materials 120 different seam variations were developed. Each sampless 
seam strength was tested according to the ISO 13935-1[1] standard  using an Instron 4411 
instrument. After the testing process, an artificial neural network model was developed 
to predict the seam strength and elongation at break values. The test results were applied 
to multi layer perceptron and radial basis function neural network modeling. These two 
neural network types were compared in terms of the accuracy of the modeling system. The 
results show that the artificial neural network model produces reliable estimates of seam 
strength and elongation at break (R=1, MSE=3.33E-05).
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ation of seam puckering in garments etc 
[4 - 22]. 

According to the literature review, ANN 
applications in the clothing industry have 
been used to predict the seam strength of 
notched webbings for parachute assem-
blies [23], the seam performance of com-
mercial woven fabrics based on seam 
puckering, seam flotation and seam effi-
ciency [24]. Additionally another aspect 
of these studies was to examine whether 
ANN could be used to predict the seam 
strength and elongation at break in poplin 
and gabardine woven fabrics, and if so, to 
suggest an appropriate sewing structure 
design (input variables, number of ANN 
neurons, training algorithms etc.) for a 
successful ANN model. For this purpose 
four sewing parameters (stitch type, seam 
density, sewing needle type, and sewing 
yarn type) were chosen for the sewing 
process. Then the sewed samples’ seam 
strengths were tested by the Instron 4411 
instrument. In order to find an average re-
sult, every test was repeated five times to 
model non-linear test results of the textile 
processes using two kinds of ANN types. 
With the help of the test results, the ANN 
models were trained and finally high 
performance predictions were made for 
different parameter values. Feed forward 
and generalised regression neural net-
work types were used for the modeling 
of the sewing process. The efficiency of 
the models was evaluated using the mean 
square error (MSE) and correlation coef-
ficient (R).

just a few data points by integrating with 
the input variable selection method [4]. 

In literature an ANN model has been 
adopted to optimise wastewater treat-
ment. Results indicated that ANN mod-
els can predict precisely the colour and 
chemical oxygen demand removal effi-
ciencies for synthetic textile wastewaters 
[5]. ANN has also been used to predict 
the bulk density and tensile properties of 
needle punched nonwoven structures by 
relating them with the main process pa-
rameters [6]. Another example of ANN 
usage is that the production of a database 
with four acid dyes was firstly described, 
along with the large number of mixture 
dyeings carried out. Then these data were 
used to construct a network connecting 
reflectance values with concentrations 
in formulations. Results indicated that 
this approach is viable and accurate [7]. 
The other fields that ANN can be used 
in are as follows: determination of the 
structure-property relations of nonwoven 
fabrics, web density control in carding, 
prediction of yarn strength, ring and ro-
tor yarn hairiness, total hand evaluation 
of knitted fabrics, classification of fabric 
and dyeing defects, tensile properties of 
needle punched nonwovens, quality as-
sessment of carpets, dye concentrations 
in multiple dye mixtures, predicting the 
dyeing time, modeling of the H2O2/UV 
decoloration process, automated quality 
control of textile seams, fabric process-
ability in garment making, and the evalu-

n	 Introduction
A seam is the assembly method that joins 
fabric pieces together to form parts or the 
whole of a garment. Seam assembly is 
the method most typically used on gar-
ments. In order to create a seam, a fabric 
is cut into pieces and sewn together with 
stitches. Various seams can be obtained 
by combining different fabric cutting, 
joining and stitching parameters, and 
these will lead to substantial variation in 
fabric drape performance [2]. The seam 
performance and parameters of a seam 
are highly related to its structural char-
acteristics. Therefore investigating the 
performance-parameter relations will not 
only be beneficial to better understand 
the sewing process but also give the pos-
sible of achieving a computer-aided de-
sign of the seam. There are five factors 
that determine the strength of a seam: the 
fabric type and weight, thread fibre type, 
construction and size, stitch and seam 
construction, stitches per cm, and stitch 
balance [3]. 

Artificial neural networks (ANN) can be 
used in textile technology because most of 
the textile processes are non-linear. ANNs 
applications have been tried in many 
fields of textile technology. For instance, 
a soft computing system has been devel-
oped to model the relationship between 
yarn properties, fabric parameters, and 
shear stiffness using the ANN technique. 
It was found that an accurate and quite 
good ANN model can be achieved with 
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layer computes the sum of its inputs x 
and passes this sum through an activation 
function (f). The output of the two layer 
MLP network (o) is defined in a matrix 
form; 

2 1 1 1 1 2( ( ) )f f= + +o W W x b b       (1)

Where W(i,j) is weight matrices 
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f is the activation functions (f 1logistic, f 2 
linear).

Where W(i,j) is the weight between (i) the 
output and (j) input, and the superscript 
defines the layer number. MLP networks 
can learn to adjust the weight using the 
back propagation approach. 

The back propagation algorithm for the 
MLP is the generalisation of the least 
mean square (LMS) algorithm, which 
should adjust the network parameters in 
order to minimise the mean square error;
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Where, t is the target, o the MLP output, 
and m is the sample instant of q size.

The steepest descent algorithm for the 
approximate mean square error at the  
k th iteration;
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Where h is the learning rate [29, 30].

The MLP architecture realized is shown 
in Figure 1. Four inputs of the ANN were 
the stitch type, seam density per cm, sew-
ing needle type, and sewing yarn type. 
The ANN had one hidden layer and one 
output. The value of the output indicated 
the seam strength and seam elongation 
at break, respectively. Four MLP mod-
els were developed: ANN1-ANN2 and 
ANN3-ANN4 indicate the seam strength 
and seam elongation model for gabardine 
and poplin fabrics, respectively.

n	 Experimental
Materials and method
Gabardine fabric (weight: 275 g/m2, 
thickness: 1.55 mm) and poplin fabric 
(weight: 245 g/m2, thickness: 1.25 mm) 
were purchased from Tavsanli Textile Co. 
All sewing yarns were 30 tex and pur-
chased from Coats. The fabric samples 
were cut according to the ISO 13935-1 
[1] standard and then sewed with the pa-
rameters that are given in Table 1. In or-
der to make the needle point compatible 
with the fabric type, the SPI needle type 
was used just in gabardine fabric and the 
SUK type in poplin fabrics. The sewing 
needle properties can be seen below.
n	 SPI: Schmetz, 12.5 tex/12, very acute 

round point.
n	 SES: Schmetz, 12.5 tex/12, light ball 

point.
n	 SUK: Schmetz, 12.5 tex/12, medium 

ball point.

Pfaff 5488 and Pfaff 481 sewing ma-
chines were used in chain and plain 
stitches, respectively.

Sewing and testing process
By using two fabric types (poplin, gab-
ardine), three kinds of sewing needles 
(SPI, SES, and SUK), five kinds of seam 
densities (3, 4, 5, 6, 7 stitches/cm), two 
kinds of stitch types (chain and plain) and 
three kinds of sewing yarns, 120 different 
sewing combinations were designed. In 
this paper, to fill the input variable space 
better for modelling of the seam strength 
and elongation at break by ANN, the ex-
periments were repeated five times. The 
results of 120 experiments were divided 
for training (80%) and generalisation 
(20%). ANN is adjusted according to its 
error with 96 experimental results. The 
performance of the trained ANN was 
tested by feeding 24 experimental data, 
which was not previously used. After the 
sewing process, each sample was tested 
for the tensile strength and elongation at 
break of the seam according to the ISO 
13935-1 [1] standard by the Instron 4411 
instrument. Five tests were repeated for 
each variation in order to ensure the reli-
ability of the test results.

ANN software
ANNs are parallel computational models 
which are able, at least in principle, to 
map any nonlinear functional relation-
ship between an input and output hy-
perspace to the accuracy desired. From 
a mathematical point of view ANN is a 
complex non-linear structure with many 
parameters that are adjusted (calibrated, 
or trained) in such a way that the ANN 
output becomes similar to that of the 
output measured for a known data set. 
ANN typically consists of interconnected 
‘units’ which serve as model neurons. 
The function of the synapse is modelled 
by an adjustable weight, which is asso-
ciated with each connection. Each unit 
converts the pattern of incoming activi-
ties in such a way that it reacts with a 
single outgoing activity and then broad-
casts it to the other units. It performs this 
conversion in two stages: first multiply-
ing each incoming activity called ‘total 
input’, then transforming the total input 
to an outgoing activity [25, 26].

ANN is a typical non-mechanical model 
for modelling complex information and 
is known to have 2 intrinsic advantages. 
The first advantage is its flexible capac-
ity for apprehending the data used for 
training. Being intrinsically nonlinear, 
a trained ANN can grasp certain subtle 
patterns that tend to be overlooked by 
common statistical methods. The second 
advantage is its high predictive accuracy, 
i.e., the predictive capability for ‘‘new’’ 
data (untrained data) [27, 28]. 

All ANN calculations were carried out 
using Matlab 7 software with an ANN 
toolbox on a PC with an Intel Core2 
Duo E8300 3.0 GHz processor and 3 GB 
RAM. MATLAB provided a platform for 
numeric calculation, analysis, and visu-
alisation. The ANN toolbox was used 
to model the system designed with the 
radial basis function (RBF) and multi 
layered perceptron (MLP) types of ANN 
architecture and then trained in the simu-
lation phase. 

Multi Layered Perception (MLP) 
neural network modelling
A typical MLP network is settled in lay-
ers of neurons, where every neuron in a 

Table 1. Parameters of sewing.

Fabric type Stitch type Seam density, seams/cm Sewing needle type Sewing yarn type

Gabardine
Poplin

Plain
Chain 3, 4, 5, 6, 7

SUK Mercerized cotton
SPI PBT
SES PES/cotton core spun

h

h
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Radial Basis Function (RBF) neural 
network modeling
The RBF network is a three-layer feed-
forward network that generally uses a 
linear transfer function for the output 
units and a nonlinear transfer func-
tion (Gaussian function) for the hidden 
units. Its input layer simply consists of 
the source nodes connected by weighted 
connections to the hidden layer and the 
net input to a hidden unit is the distance 
measured between the input presented at 
the input layer and the point represented 
by the hidden unit. The nonlinear trans-
fer function is applied to the net input to 
produce a radial function of the distance. 
The output units implement a weighted 
sum of the hidden unit outputs [31].
Some parameters affect the performance 
of RBF: the number and location of the 
centers, the structure of the RBF func-
tions at the hidden units, and the deter-
mination method of the network weights. 
RBFs can be used for classification, con-
trol, discrete pattern classification, func-
tion approximation, signal processing or 
any other application which requires the 
mapping of an input to an output [32].

The RBF architecture designed is pre-
sented in Figure 2. The ANN model de-
signed has four inputs (stitch type, seam 
density/cm, sewing needle type, and sew-
ing yarn type), one hidden layer and one 
output (seam strength and elongation at 
break). 

n	 Results and discussion
Modelling of the sewing process using 
MLP
The performance of an MLP model de-
pends on the number of neurons in the 
hidden layer. Determination of the op-
timal value of neuron numbers has no 
common rule, instead a trial and error 
approach can be used in this process, as 
we have already used. As can be seen in 
Tables 2 and 3, the performance of MLP 

Figure 1. Schematic diagram of MLP network realized (n = num-
ber of the neurons).

Figure 2. RBF type ANN structure designed for modelling the sew-
ing process.

Table 3. MSE and R values of different ANN models for poplin fabric.

 
  Model

Hidden 
Layer 

Neuron 
Number

Mean Square Error (MSE) Correlation Coefficient (R)

Learning Generaliza-
tion All Learning Generaliza-

tion All

S
ea

m
 s

tre
ng

th
, k

gF

ANN1-5 5 1.0464E-01 2.2099 0.5257 0.9987 0.9768 0.9934
ANN1-10 10 1.3699E-13 0.2032 0.0406

1.0000

0.9977 0.9995
ANN1-15 15 4.6835E-19 0.8931 0.1786 0.9852 0.9977
ANN1-20 20 1.1668E-19 2.0654 0.4131 0.9808 0.9950
ANN1-25 25 2.8711E-24 2.4961 0.4992 0.9835 0.9941
ANN1-30 30 8.3985E-20 2.3910 0.4782 0.9728 0.9940
ANN1-35 35 2.2304E-18 0.7218 0.1444 0.9898 0.9982
ANN1-40 40 5.5516E-28 3.2998 0.6600 0.9377 0.9913
ANN1-45 45 1.9562E-17 6.1497 1.2299 0.8860 0.9837
ANN1-50 50 9.9108E-24 19.3807 3.8761 0.9006 0.9573

S
ea

m
 e

lo
ng

at
io

n 
at

 b
re

ak
, %

ANN2-5 5 3.3305E-05 0.0062 0.0013

1.0000

0.9985 0.9996
ANN2-10 10 2.2586E-09 0.0148 0.0030 0.9959 0.9990
ANN2-15 15 4.2601E-13 0.0495 0.0099 0.9885 0.9969
ANN2-20 20 2.0684E-18 0.1598 0.0320 0.9684 0.9900
ANN2-25 25 7.6856E-22 0.1841 0.0368 0.9597 0.9883
ANN2-30 30 2.7244E-18 0.2700 0.0540 0.9624 0.9846
ANN2-35 35 4.4000E-12 0.3576 0.0715 0.9489 0.9787
ANN2-40 40 2.8376E-16 0.6183 0.1237 0.9247 0.9670
ANN2-45 45 4.7435E-22 1.2801 0.2560 0.7986 0.9250
ANN2-50 50 4.9560E-12 0.9014 0.1803 0.8443 0.9472

Table 2. MSE and R values of different ANN models for gabardine fabric.

 
  Model

Hidden 
Layer 

Neuron 
Number

Mean Square Error (MSE) Correlation Coefficient (R)

Learning Generaliza-
tion All Learning Generaliza-

tion All

S
ea

m
 s

tre
ng

th
, k

gF

ANN1-5   5 4.0415E-01 4.7679 1.2769 0.9946 0.9641 0.9845
ANN1-10 10 3.4519E-16 11.1315 2.2263

1.0000

0.9087 0.9731
ANN1-15 15 5.4711E-23 4.2109 0.8422 0.9580 0.9895
ANN1-20 20 3.8970E-19 1.2214 0.2443 0.9863 0.9969
ANN1-25 25 1.0929E-18 7.6199 1.5240 0.9507 0.9822
ANN1-30 30 1.4188E-25 27.8748 5.5750 0.9104 0.9448
ANN1-35 35 2.7635E-19 9.8476 1.9695 0.9354 0.9770
ANN1-40 40 1.3034E-15 11.0615 2.2123 0.9609 0.9765
ANN1-45 45 1.6980E-25 37.4820 7.4964 0.8369 0.9206
ANN1-50 50 4.4019E-24 14.0592 2.8118 0.9028 0.9686

S
ea

m
 e

lo
ng

at
io

n 
at

 b
re

ak
, %

ANN2-5   5 1.6106E-01 0.8306 0.2950 0.9225 0.7281 0.8695
ANN2-10 10 1.2098E-18 0.0545 0.0109

1.0000

0.9887 0.9958
ANN2-15 15 4.3189E-13 0.3012 0.0602 0.9417 0.9761
ANN2-20 20 2.6296E-15 0.6223 0.1245 0.8468 0.9501
ANN2-25 25 6.8741E-17 0.3777 0.0755 0.8871 0.9683
ANN2-30 30 1.1089E-12 0.3364 0.0673 0.9201 0.9733
ANN2-35 35 1.5848E-18 0.3468 0.0694 0.9232 0.9725
ANN2-40 40 1.8928E-20 0.3773 0.0755 0.8888 0.9685
ANN2-45 45 1.1394E-14 0.2897 0.0579 0.9074 0.9755
ANN2-50 50 1.8864E-25 1.1894 0.2379 0.5679 0.8965
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with 5, 10, 15, 20, 25, 30, 35, 40, 45 and 
50 neurons in the one hidden layer was 
evaluated according the mean square 
error (MSE) and correlation coefficient 
(R). In order to show the ANN perfor-
mance clearly, the MLP type for gabar-
dine ANN1-20 and ANN2-10, ANN1-10 

for poplin and ANN2-5 were chosen for 
the seam strength and seam elongation at 
break, respectively. 

The ANN model was trained by the 
steepest descent algorithm. The mo-
mentum constant and learning rate were 

0.842 and 0.485, respectively. The results 
of 96 experiments were used for training 
the ANN. The training performances of 
the ANN1-20 and ANN2-10 for seam 
strength and elongation are presented in 
Figures 3.a & 3.b. The trained ANNs 
models were tested with 24 new experi-
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Figure 3. Training performances and R values of gabardine fabric;a) Seam strength training performance, b) Elongation at break training 
performance, c) R of training of seam strength, d) R of training of elongation at break, e) R of testing of seam strength, f) R of testing of 
elongation at break.

Figure 4. Training performances of MLP and R values of poplin fabric; a) Seam strength training performance, b) Elongation at break 
training performance, c) R of training of seam strength, d) R of training of elongation at break, e) R of testing of seam strength, f) R of 
testing of elongation at break.
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mental results. The correlation coeffi-
cient values of learning and generalisa-
tion ANN1-20 and ANN2-10 for gabar-
dine fabric are shown in Figures 3.c, 3.d, 
3.e & 3.f.

The training performances of the ANN1-
10 and ANN2-5 for seam strength and 
seam elongation are shown in Fig-
ures  4.a & 4.b. The correlation coeffi-
cient values of learning and generalsa-
tion ANN1-40 and ANN2-25 for poplin 
fabric are presented in Figures 4.c, 4.d, 
4.e and 4.f.

Modeling of the sewing process using 
RBF
We developed a seam performance esti-
mation model based on two independent 
variables: seam strength and elongation 
at break. The results of 96 experiments 
were used for training with a 0.5 spread, 
and 24 experiments were used for gen-
eralisation. The correlation coefficient 
values of learning and generalisation for 
gabardine and poplin fabrics are shown 
in Figures 5 and 6, respectively. 

Comparison of MLP and RBF output 
performances 
In this section, we compare the perfor-
mance of the MLP and RBF models in 
terms of the estimation accuracy of the 
sewing process. A comparison of MLP 
and RBF performances for gabardine and 
poplin fabric can be seen in Figures  7 
and 8 (see page 122), respectively. Ad-
ditionally MSE and R values of the MLP 
and RBF models for both poplin and gab-
ardine fabrics are shown in Table 4 (see 
page 123). 

According to Figures 7 & 8 and Table 4. 
the RBF model’s output performances 
(MSE and R) are better than the MLP 
model’s for both the training and testing 
processes. Except for poplin fabric, the 
MLP is better than the RBF regarding the 
elongation at break output in the testing 
process. 

n	 Conclusion 
In this paper, the performance of the 
MLP and RBF ANN models developed 
were evaluated in order to the modeling 
sewing process. A procedure is present-
ed for modelling using two ANN types 
(MLP and RBF) from the seam strength 
and elongation at break test results in or-
der to determine the relationship between 
the results and sewing parameters. The 
success of neuron numbers in the hid-

den layer of the modelling structure was 
studied. Higher values of correlation co-
efficients (R=1) and lower MSE (3.33E-
05) values show that the model and its 
values predicted are close for both MLP 
and RBF. By comparing the two ANN 
types, it is concluded that the best model-

ling results were obtained using MLP in 
the training process and RBF in the test-
ing process; however, in general there is 
a consistent similarity between the ANN 
models and test results. With the help of 
the ANN models sewing parameters can 
be chosen in order to form an optimum 
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Figure 5. R values of RBF training and testing of gabardine fabric; a) R of training of seam 
strength, b) R of training of elongation at break, c) R of testing of seam strength, d) R of 
testing of elongation at break.
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Figure 6. R values of RBF training and testing of poplin fabric; a) R of training of seam 
strength, b) R of training of elongation at break, c) R of testing of seam strength, d) R of 
testing of elongation at break.
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sewing process. Thus time and costs can 
be reduced. 
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Figure 7. Comparison of neural networks (MLP and RBF) for gabardine fabric; a) Train-
ing data of seam strength, b) Training data of elongation at break, c) Testing data of seam 
strength, d) Testing data of elongation at break.

Figure 8. Comparison of neural networks (MLP and RBF) for poplin fabric; a) training 
data of seam strength, b) training data of elongation at break, c) testing data of seam 
strength, d) testing data of elongation at break.
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Table 4. Comparison of MSE and R values of MLP and RBF models.

 
Fabric type

MLP RBF
Seam strength Elongation at break Seam strength Elongation at break

MSE R MSE R MSE R MSE R

Gabardine
Train 3.90E-19 1.0000 1.21E-18 1.0000 4.41E-01 0.9976 0.0164 0.9966
Test 1.22E+00 0.9863 0.0545 0.9887 1.94E+01 0.8065 0.5672 0.8540

Poplin
Train 1.37E-13 1.0000 0.2032 0.9977 1.57E-01 0.9987 0.0053 0.9988
Test 3.33E-05 1.0000 0.0062 0.9985 7.93E+00 0.9014 0.2153 0.9562
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