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Abstract
The main goal of this paper was to analyse the hygienic properties of textile packages used 
for the construction of shoe uppers. Distance fabrics with varied hygienic properties were 
the basis of these packages. The discomfort indexes, which describe changes in footwear 
microclimate, were calculated according to the moisture absorbance capacity and tempera-
ture changes in the immediate surrounding of the foot skin surface. The experiment was 
done for a group of grain leather uppers, where the Grubbs test (α = 0.05) gave positive 
information about the outliers, describing such parameters as the water vapour permeabil-
ity and water vapour coefficient. The phase changes of the shoe microclimate were detected 
via temperature and relative humidity sensors during simulation of the shoes used via an 
elliptical trainer for a group of 7 men. Statistically significant differences between the pack-
ages upper – lining confirmed the possibility of monitoring the circulation of biophysical 
mediums inside a footwear volume. The appropriate choice of package materials could 
raise the comfort conditions for users. For certain material configurations the microclimate 
conditions described by the discomfort index were improved. 
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density [19-21] or the thickness and mass 
per square metre of the fabric [22]. 

For the  purposes of this paper, the  au-
thors conducted a study of textile and lin-
ing materials which are commonly used 
for footwear manufacture. To reduce 
the degrees of freedom, simulations were 
conducted in a limited group of footwear 
– with the use of only one insole mate-
rial – natural flank leather and rubber for 
the sole. 

The results of discomfort indexes are dif-
ferentiated according to the  upper and 
lining materials applied and their pack-
ages. 

On that basis it was possible to pick 
the best packages, from the user’s point 
of view, which were able to minimalise 
the discomfort sensation during the effort 
simulation. 

n	Materials and method
Experimental tests were carried out with 
use of three types of high – quality up-
per leathers (Table 1). Samples of leather 
materials were collected from a specific 
part of leather due to the  ISO standard 
[23]. All of upper leathers were grain 
types. The grain pattern of the leather is 
a part of the hide of an animal lying just 
below the  hair. It is called full – grain 
leather (SW1), which is the strongest and 
most durable leather. Top – grain leather 
(SW2, SW4) is similar to that previously 
mentioned, but imperfections are taken 

which was invented in Finland. Original-
ly this model consisted of 16 zones which 
simulated perspiration processes. It also 
gave a possibility to measure the heat flux 
in particular zones [11]. Now there are 
many thermal models of the human body 
fitted with individual characteristics like 
the temperature or perspiration rate [12]. 

On the  other hand, a  lot of literature 
sources show that thermal comfort con-
ditions may be predicted with fabric (and 
their packages) properties, like thermal 
insulation or biophysical medium buffer-
ing indexes [13]. For example, in paper 
[14] the  authors combined cotton and 
Angora rabbit fibres in order to produce 
knitted fabrics with better comfort prop-
erties. The  authors of [15] established 
that the  thermal properties of double – 
layered packages knitted from cotton or 
man – made bamboo yarns with polyam-
ide, polypropylene or polyester were im-
proved. The structure of fabrics is one of 
the most important determinants of some 
hygienic properties. For example, in pa-
pers [16-17] it was shown that the chan-
nel inlets of single fabrics can improve 
the air permeability, water vapour resist-
ance and thermal resistance indicators for 
flat textile products. In order to optimise 
thermal conditions in a  shoe volume, it 
is assumed that the material in the close 
foot skin neighbourhood should be water 
vapour permeable, and the  further layer 
must be a  good water vapour absorber. 
The  effectivity of this configuration de-
pends on the  principal physical charac-
teristics of textiles, like the porosity [18], 
geometry and position of loops, stitch 
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n	Introduction
The  comfort of footwear use is a  very 
complex problem, hence it is necessary 
to analyse this problem from several dif-
ferent points of view [1]. The comfort as-
pects are connected with right shape, size 
and material properties in combination 
with anthropometric features, which are 
individual for each user. 

The most effective methods to determine 
the quality of a shoe microclimate seem 
to be simulation models – i.e. a  human 
skin model [2], experiments with the use 
of effort simulators (i. e. treadmill [3], 
multifunctional tools like elliptical train-
ers [4 – 5], or virtual simulators [6]). This 
makes it possible to simulate real effort 
conditions with the  inclusion of several 
aspects: biomechanical, connected with 
gait patterns, and biophysical, concen-
trated around the sweat secretion mecha-
nism during the exercise duration. 

A lot of simulators are based on foot – 
ground reaction forces [7-9]. Few inves-
tigations have focused on the interactions 
between the  foot surface and the upper. 
This part of the  foot is exposed to inju-
ries during walking or running. The sig-
nificant aspect is that footwear should 
support the  foot muscles (in particular 
the extensors of toes and fingers, which 
lie along the dorsal plane), especially in 
the stance phase of gait [10]. 

The other model which can successfully 
describe the  qualitative aspects of foot-
wear comfort is the thermal foot model, 
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away by sanding and buffing processes. 
The strength and durability of this leather 
are weaker than for full – grain. As linings 
leathers and textiles were used (Tables 2 
and 3). In order to minimise the degrees 
of freedom, the same insole material was 
used, which was natural flank leather of 
2 mm thickness. The model of shoe used 
represents the  class of laced outdoor 
footwear (work or sport shoe) with an 
integral ankle support with an adjustable  
stoutness level [24]. Phase changes of 
the shoe microclimate were detected dur-
ing simulation of the  shoes used via an 
elliptical trainer for a group of 7 men at 
the  age of 59.4 ± 1.9 who have a  BMI 
equal to 24.9 ± 3.7. For each upper mate-
rial, the basic hygienic parameters were 
measured [25]: water vapour perme-
ability (WVP), water vapour coefficient 
(WVC) and indirectly – water vapour 
absorption (WVA). The relation between 
the water vapour permeability and water 
vapour absorption is given as Equation 1:

WVC = 8 . WVP + WVA             (1)

For the upper materials the water vapour 
absorption coefficient was also calcu- 
lated. This aspect depends on the kind of 
retaining, type of fat liquor used and fin-
ishing, and has a great influence on ther-
mal comfort, especially in wet conditions. 
From the user’s point of view, important 
is also the softness of the leather, which 
corresponds to the leather structure. In pa-
per [26] the authors showed that a strong 
relationship between softness and water 
vapour permeability exists.

Changes in the microclimate in the shoe 
volume interior were recorded during ef-
fort simulation using an elliptical trainer. 
The  effort cycle was divided into three 
periods: rest (30 min), exertion (30 min) 
and relaxation (30 min). By using T/RH 
sensors, the effective changes in humid-
ity and temperature were continuously 
recorded. The  experiments were done 
in an air – conditioned room, where 

the  temperature and relative humidity 
were equal to 21 ± 0.5 °C and 45 ± 2%, 
respectively. The T/RH sensors were lo-
cated in two sectors where sweat secre-
tion was the highest; first between the toe 
cap and forefoot in front of the arch and 
second – inside the filler [27, 28]. 

n	Results and discussion
Analysis of the  impact of the  combina-
tion of materials on the  discomfort in-
dex values was carried out with the use 
of one – way statistical variance analysis 
– ANOVA. Independent variables used 
in this test were visualisation of the dis-
comfort index means, obtained during 
physical effort and based on temperature 
and relative humidity values. The aggre-
gation of experimental results in depend-
ence on the type of material is shown in 
Table 4. 

On the basis of literature sources [29, 30], 
the range between 70 and 85% for rela-
tive humidity inside the footwear during 
physical effort was considered a  partial 
discomfort zone, and over 85% – a total 
discomfort zone. Thus the following in-
dicators are true:

TRH>70% = T70%/T,             (2)

where, T70% is the time when the relative 
humidity is higher than 70%, and T is 
the total effort duration.

Therefore the discomfort index for rela-
tive humidity higher than 70% is defined 
as Equation 3: 

DIRH>70% =
 (AVGRH>70% – 70%) 

          30% 
(3)  

where, AVGRH>70% is the  approximate 
value of the  relative humidity result for 
a set of values exceeding 70%. 

Hence the  generalised discomfort index 
is defined by the Equation 4: 

DI = TRH>70% · DIRH>70%      (4)

Table 1. Types of upper materials used in study. 

Type of upper materials Symbol Thickness, 
mm

Softness, 
mm 

Water vapour 
permeability, 

mg/cm2h (acc. to [25]) 

Water vapour 
coefficient, 

mg/cm2 (acc. to [25]) 

Water absorption in 
dynamical conditions, 
mg/cm2 (acc. to [25])

Calfskin full – grain leather SW1 1.21 ± 0.06 4.12 ± 0.16 5.7 ± 0.5 52.9 ± 3.1 103.9 ± 1.0
Calfskin top – grain leather SW2 1.38 ± 0.06 2.71 ± 0.20 10.1 ± 0.4 87.6 ± 2.5 6.9 ± 0.6

Grain leather type ‘soft’ SW4 1.11 ± 0.08 2.97 ± 0.15 8.6 ± 0.9 75.3 ± 3.6 98.1 ± 2.8

Table 2. Types of lining textile materials used in study.

Type of lining textile materials Symbol
Water vapour 
permeability

[mg/cm2h] (acc. to [25])

Water vapour 
coefficient, 

mg/cm2 (acc. to [25])

3D knitted fabric with PA fibres MP1 30.5 ± 4.2 245.0 ± 17.5

3D knitted ‘a-jours’ fabric with PA MP2 45.8 ± 0.9 367.4 ± 6.1

Trevira MP8 21.5 ± 1.7 173.3 ± 11.5

Knitted fabric PE (small loop) MP39 37.7 ± 2.2 301.3 ± 3.2

Microfibre PE MP41 21.3 ± 3.2 170.7 ± 7.1

Knitted fabric PE (bigger loop) MP42 42.6 ± 5.2 341.7 ± 8.2

Table 3. Types of lining leather materials used in study.

Type of lining leather 
materials Symbol Water vapour permeability,

mg/cm2h (acc. to [25])
Water vapour coefficient, 

mg/cm2 (acc. to [25])

Cow split grinded leather SP1 15.8 ± 0.8 136.0 ± 4.5
Cow leather SP2 13.6 ± 1.1 128.3 ± 8.2

Pig grain leather SP3 15.3 ± 0.6 113.6 ± 1.8

Table 4. Set of materials analysed.

Group I
(materials compiled with MP41)

Group II
(materials compiled with MP39)

Group III
(leather lining materials)

MP8 + MP41 MP8 + MP39 SP1
MP42 + MP41 MP42 + MP39 SP2
MP2 + MP41 MP2 + MP39 SP3
MP1 + MP41 MP1 + MP39



87FIBRES & TEXTILES in Eastern Europe  2019, Vol. 27,  3(135)

In order to implement the ANOVA proce-
dure, the following assumptions, H0 and 
H1, were made: 

H0 – means of values of discomfort 
indexes are equal,

H1 – some differences between values of 
discomfort indexes exist.

To determine which groups of materials 
differ from each other, a Tukey single – 
step multiple comparison was performed. 
The  confidence interval was computed 
and fixed at 95%. The results obtained 
are listed in Tables 5-7. 

Comparison between SW1 and SW2
According to the  ANOVA analysis of 
pairs of materials, it was shown that 
between the  following material pack-
ages: MP8 + MP41 versus MP1 + MP41, 
MP42 + MP41 versus MP1 + MP41, 
and MP2 + MP41 versus MP1 + MP41, 
a  statistically significant interference of 
the discomfort index exists. The test sta-
tistic (Test F) of the  treatment means is 
equal to 6.59 and is larger than the criti-
cal value of the F distribution (105.48). 
Hence this fact implies a  qualitative 
variation between discomfort indexes in 
this group of materials (upper and lin-
ings) (Table 5). Following confirmation 
of where the differences between groups 
occurred, the HSD for each pair of means 
was calculated.

In the  case where material MP41 was 
substituted by MP39, statistically sig-
nificant differences were also observed. 
The Test F – value was equal to 6.59 as 
compared to the  F – value, which was 
equal to 67.05. With regard to the Tukey 
post-hoc analysis, it can be noticed that 
statistically significant interference oc-
curred between the  following material 
packages: MP8+MP39 vs MP1+MP39, 
MP42+MP39 vs MP1+MP39, MP2+MP39 
vs MP1+MP39 (Table 6). 

For lining leathers SP1, SP2, SP3 con-
nected to SW1 and SW2 uppers, when 
statistic F is not within the  range of 
the  confidence interval (Test F – value 
(9.55) larger than the F – value (5.14)), 
there is no reason for rejection of the null 
hypothesis regarding the lack of diversi-
fication between comfort indexes. 

Comparison between SW2 and SW4
When a comparison was made within 
the SW2 and SW4 groups,  significant 
differences occurred because of the 
presence of the following materials: 
MP8, MP1, MP2 and MP42 in packages 
composed of MP41 and MP39. The post- 
-hoc significances are given as follows 
(Table 6).

For lining leathers connected to SW2 and 
SW4 uppers, when statistic F is not within  
the range of the confidence interval and 
Test F (9.55) is larger than F (3.23), there 
is no reason for rejection of the null hy-
pothesis regarding the lack of diversifica-
tion between comfort indexes. This is the 
same situation as when SW1 and SW2 
were used. 

Comparison between SW1 and SW4
As in the previous cases, we can observe 
the influence of MP8, MP1, MP42 and 
MP2 on the diversity level of the com-
fort index  for both MP39 (Test F is equal 

to 6.59, F – 86.53) and MP41 (Test F is 
equal to 6.59, F – 70.67). In contrast to  
the previous pairs analysed (SW1 versus 
SW2 and SW2 versus SW4), for this case  
significant differences were observed for 
all possible combinations of leather lin-
ings i. e. SP1, SP2, SP3 (Test F – 9.55, 
F – 79.17) (Table 7). 

Statistical analysis of groups of lining 
– upper sets provided information that 
the discomfort index is different because 
of the materials applied in the combina-
tions with uppers.

Thus the material combinations are very 
important in inducing optimal tempera-
ture and humidity conditions for users 
during physical effort. When the uppers 
SW1 and SW2 are applied, statistically 
significant differences were obtained 
between MP8 – MP2, MP1 – MP42 and 
MP1 – MP2 in combination with MP41 
(pvalue = 0.001). Maximum values of dis-
comfort indexes (between 0.15 – 0.19) 
were recorded for MP42 connected with 

Table 5. Comparison of Tukey post-hoc analysis values for given materials mixed with SW1 
and SW2 uppers. 

Treatment pair Tukey HSD  
Q statistic

Tukey HSD  
p-value

Tukey HSD  
interference

MP8 + MP41 vs MP1 + MP41 19.50

0.001
significant (p < 0.01)

MP42 + MP41 vs MP1 + MP41 17.76
MP2 + MP41 vs MP1 + MP41 22.99
MP8 + MP39 vs MP1 + MP39 15.63
MP42 + MP39 vs MP1 + MP39 13.89 0.002
MP2 + MP39 vs MP1 + MP39 18.36 0.001

Table 6. Comparison of Tukey post-hoc analysis values for given materials mixed with SW2 
and SW4 uppers.  

Treatment pair Tukey HSD  
Q statistic

Tukey HSD 
p-value

Tukey HSD  
interference

MP8 + MP41 vs MP1 + MP41   8.98 0.011
significant (p < 0.05)

MP42 + MP41 vs MP1 + MP41   8.10 0.016
MP2 + MP41 vs MP1 + MP41 10.57 0.006 significant (p < 0.01)
MP8 + MP39 vs MP1 + MP39   8.44 0.014

significant (p < 0.05)
MP42 + MP39 vs MP1 + MP39   7.42 0.021
MP2 + MP39 vs MP1 + MP39   9.89 0.008 significant (p < 0.01)

Table 7. Comparison of Tukey post-hoc analysis values for given materials mixed with SW2 
and SW4 uppers.

Treatment pair Tukey HSD 
Q statistic

Tukey HSD 
p-value

Tukey HSD
 interference

MP8 + MP41 vs MP1 + MP41 15.90 0.001
significant (p < 0.01)MP42 + MP41 vs MP1 + MP41 14.60 0.002

MP2 + MP41 vs MP1 + MP41 18.82 0.001
MP8 + MP39 vs MP1 + MP39 17.84 0.001

significant (p < 0.05)
MP42 + MP39 vs MP1 + MP39 15.90 0.001
MP2 + MP39 vs MP1 + MP39 20.76 0.001

significant (p < 0.01)
SP1 vs SP2 17.68 0.002
SP1 vs SP3   7.07 0.031 significant (p < 0.05)
SP2 vs SP3 10.61 0.010 significant (p < 0.01)
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Fig. 3. Discomfort index ratio for sets of materials: SP2, SP3, SP1 due to uppers: SW1, SW2, SW4.   
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MP41 (Figure 1) and for MP1 mixed 
with MP39 (from 0.39 for SW4 to 0.51 
for SW2) (Figure 2). 

Figure 1. Discomfort index ratio for sets of materials MP8, MP2, MP42 mixed with MP41 
due to uppers SW1, SW2 and SW4. 

Figure 3. Discomfort index ratio for sets of materials SP2, SP3 and SP1 due to uppers 
SW1, SW2 and SW4. 

Figure 2. Discomfort index ratio for sets of materials MP8, MP2 and MP42, mixed with 
MP39 due to uppers SW1, SW2 and SW4. 

When material MP41 was substituted by 
MP39, we observed analogous results. 
From the  user’s point of view, follow-

ing combinations are favourable: MP2 – 
MP39 – SW1 and MP2 – MP39 – SW4, 
with the  discomfort index fluctuating 
around 0.10. 

This trend was also observed for the fol-
lowing combinations: SW1 versus SW4 
and SW2 versus SW4. The conducted 
analysis gave the  possibility to high-
light the  uppers and linings, which are 
able to minimalise the  discomfort sen-
sation. The  best materials are given as 
follows: MP2 – MP41 – SW1 and MP2 
– MP39 – SW1 (given above) and for 
analogous compositions with the  SW4 
upper: MP2 – MP41 – SW4 (DI = 0.09) 
and MP2 – MP39 – SW4 (DI fluctuat-
ing around 0.10). It is worth noting that 
only the MP41 and MP39 materials were 
selected because for the other materials, 
where changes in the discomfort indexes 
were recorded after longer time of use 
– for 30 minutes exertion, the  changes 
were not significantly invisible.

An interesting observation is that for 
leather linings statistically significant dif-
ferences occurred only for uppers SW1 
and SW4 (Figure 3). 

According to the minimalised discomfort 
index, we can state the  best materials: 
SP1 (DI = 0.24), SP2 (DI = 0.36) and SP3 
(DI = 0.29). Hence, in general, when we 
would like to use leather linings, the best 
will be SP1. 

n	Summary 
Analysis of the  relationship between 
combinations of lining and upper mate-
rials and discomfort indexes values ob-
tained on the basis of effort simulations 
confirmed that differences exist and are 
statistically significant. Optimal choice 
of footwear materials can give positive 
results in minimalising discomfort con-
ditions inside the footwear volume. It is 
a  very important aspect, especially for 
miscellaneous special footwear manufac-
turers, like footwear for workers [31, 32], 
athletes [33] and children [34]. In these 
cases, the  risk of sweating the  footwear 
materials is higher than elsewhere. 

The  most important is for the  lining to 
to be kept away from the  foot skin and 
accumulated sweat and water, and of 
second importance is its strong absorb-
ance. Thus this way of making material 
mixtures is a  very important factor in 
the  supporting of biophysical medium 
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