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Fabric defect detection based on the 
frequency domain can be defined as the 
original defective image being converted 
into a frequency domain to detect the de-
fect. The most commonly used methods 
include the Fourier transform, wavelet 
transform and Gabor filter transform. 
Hu et al. [6] proposed an unsupervised 
defect detection method based on the 
Fourier transform and wavelet shrinkage. 
Firstly the main frequency component of 
the periodic pattern in the background is 
partially filtered with high-gradient val-
ues using the 0-mask method. Secondly 
the Fourier transform is used to repair the 
residual image. Finally wavelet threshold 
shrinkage is introduced to remove noise. 
Malek et al. [7] presented an automated 
online fabric inspection by means of the 
fast Fourier transform and cross-correla-
tion. The key to the method is converting 
the image into a frequency domain by 
means of the fast Fourier transform to 
calculate the texture regularity of each 
image. Fabric defect detection based on 
Fourier transform has the disadvantage of 
lacking support in the spatial domain and 
is unable to detect a random patterned 
texture. Lucia et al. [8] put forward an 
automated defect detection method for 
structured fabrics using Gabor filters and 
principal component analysis. The Gabor 
filter bank and principal component anal-
ysis are used to extract texture features 

of the image, and then the Euclidean dis-
tance is used for evaluating feature dif-
ferences. Finally the defective region will 
be located according to feature differenc-
es. Hu et al. [9] proposed texture defect 
detection based on the simulated anneal-
ing algorithm and optimisation of the Ga-
bor filter. The key point of this method is 
the Gabor filter being converted to a spe-
cific frequency and direction to match the 
characteristics of a defect-free image. In 
fabric defect detection based on the Ga-
bor filter, it is difficult to achieve a good 
result because of the parameters of the 
Gabor filter bank needing precise and 
meticulous calculation. 

Fabric defect detection based on the 
spatial domain directly deals with the 
pixels of the original defective image in 
the spatial domain. The most commonly 
used methods include the mathematical 
morphology operator, gray level co-oc-
currence matrix, local binary pattern 
and dictionary learning method. Celik 
et al. [10] presented fabric defect de-
tection based on linear filtering and the 
morphological operation. First of all, the 
captured images were denoised using 
a linear filter, and then the defective re-
gion was detected through the morpho-
logical closure operation. The normal 
texture regions were detected when using 
the morphological operation for defect 
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Abstract
To develop an automatic detection and classifier model for fabric defects, a novel detection 
and classifier technique based on multi-scale dictionary learning and the adaptive differential 
evolution algorithm optimised regularisation extreme learning machine (ADE-RELM) is pro-
posed. Firstly in order to speed up dictionary updating under the condition of guaranteeing 
dictionary sparseness, k-means singular value decomposition (KSVD) dictionary learning 
is used. Then multi-scale KSVD dictionary learning is presented to extract texture features 
of textile images more accurately. Finally a unique ADE-RELM is designed to build a defect 
classifier model. In the training ADE-RELM classifier stage, a self-adaptive mutation operator 
is used to solve the parameter setting problem of the original differential evolution algorithm, 
then the adaptive differential evolution algorithm is utilised to calculate the optimal input 
weights and hidden bias of RELM. The method proposed is committed to detecting common 
defects like broken warp, broken weft, oil, and the declining warp of grey-level and pure 
colour fabrics. Experimental results show that compared with the traditional Gabor filter 
method, morphological operation and local binary pattern, the method proposed in this 
paper can locate defects precisely and achieve high detection efficiency. 
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	 Introduction
In the process of textile weaving, there 
will be a variety of defects on textile sur-
faces because of the harsh environment 
and weaving machine failure. Since the 
defects are generally localised, they can 
be regarded as local abnormal texture 
regions. The purpose of defect detection 
is to localise the local abnormal texture 
and visualise the defective region. Tra-
ditional fabric defect detection is done 
by humans with vast experience, but this 
is inefficient due to the visual fatigue 
and psychological factors of the human. 
Manual detection efficiency is only 40% 
to 50% when textile weaving speeds are 
beyond 30 m/min [1]. Moreover there are 
some types of defect that are difficult to 
detect with the naked eye. Thus fabric de-
fect detection based on compute vision is 
emerging as the times require. In recent 
years, many fabric defect detection tech-
nologies based on computer vision have 
been proposed [2-4]. The most represent-
ative defect detection methods can be di-
vided into two categories [5] based on the 
frequency domain and spatial domain.
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detection because the threshold setting 
is sensitive and generalisation perfor-
mance is poor. Raheja et al. [11] pro-
posed fabric defect detection based on 
the gray level co-occurrence matrix and 
compared it with the Gabor filter method. 
In [11], experimental results show that 
the gray level co-occurrence matrix has 
better performance. Raheja also designed 
a real time fabric defect detection system 
on an embedded DSP platform in [12]. 
The gray level co-occurrence matrix is 
used to describe the texture features of 
textile images. Defect detection using 
the gray level co-occurrence matrix is 
a statistical method based on the texture 
feature statistic, which compares the tex-
ture features of standard normal fabric 
images with those of defective images. 
However, the gray level co-occurrence 
matrix needs intensive calculation and 
does not work well for texture fabric 
with large-size defects. Jing et al. [13] 
used a Gabor filter and the local binary 
pattern to detect fabric defects. The de-
fective image is converted into a binary 
image via the Gabor filter and local bina-
ry pattern, and then the defective region 
is segmented. However, the binary prob-
lem of the local binary pattern is strong-
ly dependent on the threshold setting, 
hence some normal texture regions are 
also detected as defective areas because 
the threshold setting is improper. Zhou et 
al. [14] proposed fabric defect detection 
using the complementary fractal feature 
vector and fuzzy c-means. Fabric defect 
detection based on dictionary learning is 
a relatively new detection method pro-
posed in recent years. Qu et al. [15] used 
a dual-scale over-complete dictionary 
for fabric defect detection, where the de-
tection efficiency is low due to the high 
complexity of the textured surface.

Inspired by fabric defect detection using 
dictionary learning, and to detect fabric 
defects more correctly, a novel method 
based on multi-scale k-means singular 
value decomposition (KSVD) diction-
ary learning combined with an optimised 
regularisation extreme learning machine 
(RELM) is proposed to establish a defect 
detection model in this paper. The main 
innovations in this paper are as follows:

(1) Due to the different sizes and types of 
defects on textiles surface, a multi-scale 
KSVD dictionary learning method is 
proposed. Different sizes of dictionaries 
can be learned from standard defect-free 
images, where the learned multi-scale 
dictionaries extract texture feature in-

formation from the image more clear-
ly and improve the efficiency of defect 
recognition. The dictionaries only learn 
the normal texture, and using the learned 
multi-scale dictionary, they approximate 
the defective image, where the difference 
between the original image and approxi-
mate image is the defective region. 

(2) A defect classifier model based on the 
adaptive differential evolution (ADE) al-
gorithm to optimise RELM is proposed 
in the phase of training the ADE-RELM 
classifier, which improves detection effi-
ciency by iteratively calculating the opti-
mal input weights and hidden bias of the 
RELM. The adaptive mutation operator 
is used, which can prevent premature 
convergence in the initial iteration, pre-
vent difficult convergence in the termi-
nal iteration, and solve the problem of 
low efficiency and large workload in the 
original differential evolution algorithm. 
Adaptive differential evolution is intro-
duced to obtain the weighted and hidden 
layer bias of RELM, which solves the 
problem that the original ELM randomly 
generates input weights and hidden layer 
bias, and that despite the training speed 
being fast, the classification accuracy is 
low.

The paper is organised as follows: 
n	 The method proposed is provided in 

the next Section. 
n	 The subsequent sections present de-

tailed experiment results and discus-
sions. 

n	 The conclusions are given in the last 
section. 

	 Proposed method
In this paper, we propose a novel im-
age texture feature extraction method 
based on multi-scale dictionary learning. 
The linear summation of multi-scale dic-
tionaries is used to approximate textile 
images and describe feature information 
of the image more clearly. Besides this, 
we propose an ADE-RELM algorithm 
to build defect detection and a classifier 
model. Not only does it solve the prob-
lem of low accuracy in RELM but also 
the limitation of parameter setting in the 
original differential evolution algorithm.

Feature extraction using multi-scale 
dictionary learning
In image sparse representation, an image 
can be represented as a linear summation 
of a set of basis vectors and coefficients, 

and the approximated image is highly 
similar to the original one. Generally 
speaking, finding this set of basis vectors 
is called the dictionary learning method 
[16]. Basically dictionary learning can 
be considered as an optimal solution to 
an approximated problem, that is, the 
difference between the approximated 
image and the original one is minimised 
[17]. Multiple scale dictionary learning 
is proposed for the single scale learning 
dictionary due to its lack of a multiple 
scale and multiple directionality in image 
processing. Moreover this method can 
express image information more sparse-
ly and efficiently. The task of this paper 
is to find such a dictionary, where the D 
and matrix x coefficients are as sparse as 
possible, so that the original image can 
be approximated by the linear sum of the 
dictionary and coefficients. However, the 
method is complex and computationally 
expensive due to the calculation of the in-
verse matrix; hence the KSVD algorithm 
[18] is introduced in this paper. KSVD is 
divided into two steps: the first is sparse 
coding, and the second is dictionary 
updating. In the KSVD algorithm, the 
dictionary elements are updated with 
columns to reduce the complexity of the 
algorithm. Using 2-norm to solve dic-
tionary D based on the KSVD algorithm 
is represented by: 
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obtained after each step of the update. Consequently we learn the dictionary and most sparse 
coefficient matrix when the update is complete. Until each column in the dictionary is updated, 
through repeating iterations, the optimal dictionary and  corresponding sparse coefficients can be 
obtained. In this paper, for  defects of the same piece of cloth surface, the dictionary learned by 
the standard image learning dictionary only contains the normal texture structure. However, the 
areas of defect indicate that its local texture is abnormal. By learning the dictionary to 
approximate the defect image, the defect area is implicitly covered; thus the difference between 
the two images is the defect area. 

Considering  defects of different types and sizes on a textile surface, we proposed a multi-scale 
dictionary to approximate fabric images to describe the texture features of a textile surface more 
precisely. A traditional single-scale dictionary is used to approximate images  with linear 
summation of single-scale dictionaries to reconstruct images; however many details of the images 
are lost. Multi-scale dictionaries are learned through the dictionary learning algorithm, and then 
the dictionary elements  learned contain almost all  texture features of the textile images.  Then
the linear summation of the multi-scale dictionary is used to approximate the textile images, which 
retains detailed information of the original textile images under the condition of high 
approximation performance. Approximating the textile images using the multi-scale dictionary, 
elements can be computed as: 
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Where, dj represents the j-th atom in 
dictionary D and x T

j the row of the j-th 
coefficient. We can update dju and xju in 
every step. The updated dictionary atoms 
and sparse coefficients are obtained after 
each step of the update. Consequently we 
learn the dictionary and most sparse co-
efficient matrix when the update is com-
plete. Until each column in the dictionary 
is updated, through repeating iterations, 
the optimal dictionary and corresponding 
sparse coefficients can be obtained. In 
this paper, for defects of the same piece 
of cloth surface, the dictionary learned by 
the standard image learning dictionary 
only contains the normal texture struc-
ture. However, the areas of defect indi-
cate that its local texture is abnormal. By 
learning the dictionary to approximate 
the defect image, the defect area is im-
plicitly covered; thus the difference be-
tween the two images is the defect area.
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the dictionary elements learned contain 
almost all texture features of the tex-
tile images. Then the linear summation 
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multi-scale dictionary, elements can be 
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Where, Ds, Dm and Dl represent the small 
scale dictionary, middle scale dictionary 
and large scale dictionary, respectively. 
Xs, Xm and Xl denote the coefficient ma-
trix respectively.

In this paper, the size of fabric images 
is 200*200. The defect-free image is 
divided into image patches p×p, which 
are non-overlapping, and each small 
patch is expanded into a column vector, 
which is combined into a feature matrix. 
The KSVD method is used to learn the 

dictionaries. Plain fabric and twill fab-
ric are divided into three scale patches, 
respectively. Small-scale, middle-scale 
and large-scale dictionaries are learned 
from 20×20, 25×25, 40×40 patches, re-
spectively. Note that all dictionary ele-
ments shown in Figure 1 are reshaped 
back into image patches p×p for dis-
playing.

The features that we learned using the 
single-scale dictionary are incomplete, 
and cannot describe detailed features on 
the surface of textile images; thus there 
is a large difference between the approxi-
mated image and original image. A linear 
combination of multi-scale dictionaries 
is used to approximate the original im-
age, and the combination of information 

Figure 1. Multi-scale dictionary elements learned from normal fabrics: a) and c) are the 
twill fabric image and plain fabric image; b) and d) are multi-scale dictionary elements 
learned from a) and c), respectively.

Figure 2. Normal twill fabric and plain fabric image approximated using a different scale dictionary and multi-scale dictionary. a) Original 
defect-free images, b) approximated image using 40*40 dictionary, c) approximated image using 25*25 dictionary, d) approximated image 
using 20*20 dictionary, e) approximated image using multi-scale dictionary.

a) b)

c) d)

a1)	 b1)	 c1)	 d1)	 e1)

a2)	 b2)	 c2)	 d2)	 e2)
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from the different scale dictionaries is 
used to describe texture features of the 
textile image more clearly. For exam-
ple, some features are learned by the 
small-scale dictionary, but none by the 
middle-scale dictionary and large-scale 
dictionary; then an amount of feature 
information will be lost if only the mid-
dle-scale and large-scale dictionaries are 
used to approximate the original image. 
There is complementation between the 
multi-scale dictionaries as much as pos-
sible to learn all features of fabric imag-
es, and then the difference between the 
approximate fabric images and original 
images is minimised. Defect-free imag-
es are approximated using different scale 
dictionary elements and a multi-scale 
dictionary, as shown in Figure 2, with 
a  defect-free image approximated using 
20*20 scale dictionary elements, 25*25 
scale dictionary elements, 40*40 scale 
dictionary elements and multi-scale dic-
tionary elements, respectively. It can be 
clearly seen that the larger the diction-
ary size, the larger the distance between 
the approximated image and the original 
image, due to the fact that a great deal 
of feature information will be lost in 
the process of the large-scale dictionary 
learning stage. The difference between 
the approximated image and original 
image is smaller when using 20*20 dic-
tionary elements, and the approximated 
image using a combination of multi-scale 
dictionary elements is nearly identical to 
the original normal texture image, with 
only the smallest difference. 
 
In order to evaluate the approximate ef-
fect, we define ED as the error degree of 
the approximated images and original 
images:
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Where, ix  represents original image patches, '
ix approximated image patches, and N  is the 

total number of image patches. To evaluate the quality of approximated images, our idea is that 
because there are multiple original images and each single-scale dictionary and multiple scale 
dictionary must approximate multiple original images,  the approximate average value of the 
multiple original image is taken. We calculated the error degree of approximated images and 
original images in the case of different single-scale and multi-scale dictionaries via different 
cardinality of dictionaries. As shown in Table 1, the left column of the table represents the 
cardinality of dictionaries. 

Table 1 Comparison of the error degree of a single-scale dictionary and multi-scale dictionary 
Error Degree

20*20 
dictionary

25*25 
dictionary

40*40 
dictionary

Multi-scale
dictionary

2 90% 95% 95% 90%

  (3)

Where, xi represents original image 
patches, x ′

i approximated image patches, 
and N is the total number of image patch-
es. To evaluate the quality of approximat-

ed images, our idea is that because there 
are multiple original images and each 
single-scale dictionary and multiple scale 
dictionary must approximate multiple 
original images, the approximate aver-
age value of the multiple original image 
is taken. We calculated the error degree 
of approximated images and original im-
ages in the case of different single-scale 
and multi-scale dictionaries via different 
cardinality of dictionaries. As shown in 
Table 1, the left column of the table rep-
resents the cardinality of dictionaries.

In Table 1, the error degree is small un-
der the condition of using a small-scale 
dictionary. Because small-scale diction-
aries are learned from small-scale image 
patches, the small-scale image patches 
will learn more detailed feature informa-
tion in the process of learning a diction-
ary. The middle-scale and large-scale dic-
tionaries will lose some detailed features 
in the dictionary learning phase, due to 
the image patches being larger than in the 
small-scale dictionary. Through the com-
plementarity of multi-scale dictionaries, 
we can learn as much as possible the fea-
ture information of the image, and mini-
mize the difference between the approxi-
mated image and the original image. Also 
the error degree is smaller when the car-
dinality of dictionaries is 12 to 20, and it 
verifies the texture feature of the approx-
imated image more clearly when more 
dictionaries are used. Figure 3 shows 
the approximated defective images using 
different scale and cardinality dictionar-
ies, where the first to third rows represent 
the approximated defective image using 
20*20, 25*25 and 40*40 dictionaries 
with different cardinality, respectively. 
The last row represents the approximated 
fabric image using a multi-scale diction-
ary with different cardinality.

The size of the dictionary has a signifi-
cant effect on the defect detection. This 
paper hopes to find a dictionary that ap-
proximates the normal texture region 

well, yet it cannot approximate the de-
fect region well simultaneously. Thus 
the choice about K is extremely impor-
tant for successfully detecting the defect 
area. It can be seen from Figure 3 that 
the small-scale dictionary used to ap-
proximate a defective image has good 
performance with a small number of dic-
tionaries. A large-scale dictionary cannot 
approximate a defective image very well 
when using the same number of diction-
aries. The multi-scale dictionary used to 
approximate a defective image has very 
good performance with fewer dictionar-
ies. In this paper, we selected K as ac-
counting for around 15% of the error de-
gree, which performed well for approxi-
mating the fabric image and robustness.

Adaptive mutation operator of  
a DE-based regularisation extreme 
learning machine
The defects on a textile surface are of 
different types and sizes, and hence it 
is difficult to extract all types of defect 
for training. In this paper, we propose 
a novel fabric defect classifier method 
called the single-class classifier, which 
means either normal texture or abnormal 
texture. The defective areas will be con-
sidered as local abnormal texture for the 
same textiles. Then we trained a classi-
fier that only catches the normal texture 
and discards the abnormal texture. Gen-
erally speaking, textiles with defects are 
few and the defective areas are relatively 
small, and thus the method we propose in 
this paper is suitable for textiles that con-
tain a large amount of normal texture and 
small amount of abnormal texture. 

Researches show that the variation factor 
of the DE algorithm is generally selected 
as between 0 and 1 in the iterative opti-
misation process. The variation factor is 
used to amplify or reduce the difference. 
In general, the DE algorithm [19-21] 
randomly generates the initial amount of 
the mutation factor in practical applica-
tion, and then according to the specific 
problem, the DE algorithm dynamically 
selects the optimal variation factor. If the 
variation factor is too large, the search 
efficiency is low, and it is difficult to con-
verge to a global optimum. In contrast, 
if the variation factor is too small, pre-
mature convergence will occur, and the 
diversity of the population will be greatly 
reduced. Therefore the adaptive mutation 
operator is introduced. In the early stage 
of DE algorithm optimisation, premature 
convergence and the local optimum is 
prevented under the premise of ensuring 

Table 1. Comparison of the error degree of a  single-scale dictionary and multi-scale 
dictionary.

Error degree
20*20 

dictionary
25*25 

dictionary
40*40 

dictionary
Multi-scale
dictionary

2 90% 95% 95% 90%
4 75% 80% 80% 70%
8 50% 60% 75% 40%

12 35% 40% 55% 20%
16 20% 25% 30% 15%
20 10% 15% 25% 5%
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the diversity of the population. At the end 
of the optimisation, under the premise of 
finding the optimal solution, speeding up 
the algorithm converges it to the global 
optimum. In this paper, a detection mod-
el based on ADE algorithm optimised 
RELM is proposed. RELM [22-23] has 
a fast learning speed because of the in-
put weights and hidden bias being gen-
erated randomly; however, the accuracy 
of RELM is low. The ADE algorithm 
is introduced to iteratively calculate the 
input weight and hidden bias. To easily 
obtain in the process of calculating the 
output weights, RELM is introduced. 
In fact, the regularisation parameter is 
an adopted term to represent structural 
risk in the process of solving the output 
weight. There are many parameters that 
need to be set in the original differential 
evolution algorithm, for most of which 
dynamic parameter selection is used; 
however, this leads to low efficiency and 
a high workload. In this paper, the adap-
tive mutation operator is used to prevent 
premature convergence in the early itera-
tion and prevent hard convergence at the 
end of iteration. 

In this paper, we proposed an ADE al-
gorithm optimised RELM used for the 
training detection model and achieved 
high detection efficiency. Given a dataset: 
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population will be greatly reduced. Therefore the adaptive mutation operator is introduced. In the 
early stage of DE algorithm optimisation,  premature convergence and the local optimum is 
prevented under the premise of ensuring the diversity of the population. At the end of the 
optimisation, under the premise of finding the optimal solution, speeding up the algorithm 
converges it to the global optimum. In this paper, a detection model based on ADE algorithm 
optimised RELM is proposed. RELM [22-23] has a fast learning speed because of the input 
weights and hidden bias being generated randomly; however, the accuracy of RELM is low. The 
ADE algorithm is introduced to iteratively calculate the input weight and hidden bias. Considering 
that the illness??? solution will be easily obtained in the process of calculating the output weights,  
RELM is introduced. In fact, the regularisation parameter is an adopted term to represent  
structural risk in the process of solving the output weight. There are many parameters that need to 
be set in the original differential evolution algorithm,  for most of which  dynamic parameter 
selection is used; however, this leads to low efficiency and a high workload. In this paper, the 
adaptive mutation operator is used to prevent  premature convergence in the early iteration and 
prevent hard convergence at the end of iteration.  

In this paper, we proposed an ADE algorithm optimised RELM used for the training detection 
model and achieved high detection efficiency. Given a dataset: 

 n m( , ) | R , R ,i 1,2......i i i iN x t x t N    , RELM can be defined as an optimisation problem: ,
RELM can be defined as an optimisation 
problem:
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Where, iw  represents input weights, ib hidden bias, i output weights, C  the 

regularisation parameter, and L denotes the number of hidden layer neurons of RELM. The

optimisation problem is to find the most suitable iw , ib and i  to minimise the error. 

Therefore the ADE algorithm is introduced to find the optimal input weights and hidden bias, and 
then the output weights are calculated. In this paper, the basic DE algorithm with an adaptive 
mutation operator is adopted to solve the problem of dynamic parameter selection in the process 
of iteration. A specific explanation of the algorithm flow is given below: 
(i) Initialised number of hidden network neurons L, population size NP and maximum number 

of iteration maxG .

(ii) Initialised population NP DG  , and D is the dimension of population G. The initialised

population consists of the input weights w  and hidden bias b . The i-th individual of the 0-th 
generation in the population is: 

 , ,(0) | (0) , 1,2...... ; 1,2......i jmin,i j i jmax ix x x x j D i NP                              (5) 

Where, , (0)j ix  means the j-th feature of the i-th individual, and jminx & jma xx represent the 

lower and upper bounds of the j  component, respectively. 
(iii) Mutation operation. The ADE algorithm achieves individual variation through the mutation 
strategy. In this paper, we introduced the self-adaptive mutation operator  ; the adaptive 
mutation operator is used to prevent  premature convergence in the early iteration as well as hard 
convergence at the end of iteration. The self-adaptive mutation operator is shown  below: 

max

max
1

1 m

G
G Ge


                                                               (6) 

Where, maxG  represents the maximum number of iteration, and mG  denotes the current number 

of iteration. Thus the mutation factor is calculated as: 0 2F F   , where F0 is the initialised

mutation factor. The mutation strategy DE/rand-to-best-1 is selected, which can be written in the 
following form: 

4 3 1 2(g ) (g) F [ (g) (g)] F [ (g) (g)]i m i best i i ix x x x x x                                   (7) 

Where, (g)bestx  represents the best member in the current population, 1(g)ix ， 2 (g)ix ， 3 (g)ix ，

4 (g)ix the members selected randomly in the population, respectively, and (g )i mx  means the

variation intermediate of the g-th population through mutation. 
(iv) Crossover operation. The crossover of individuals between the current g-th individual 

(g)ix  and variation intermediate (g )i mx .
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     (4)

Where, wi represents input weights, bi 
hidden bias, βi output weights, C the 
regularisation parameter, and L denotes 
the number of hidden layer neurons of 
RELM. The optimisation problem is 
to find the most suitable wi, bi and βi to 
minimise the error. Therefore the ADE 
algorithm is introduced to find the opti-
mal input weights and hidden bias, and 
then the output weights are calculated. In 
this paper, the basic DE algorithm with 
an adaptive mutation operator is adopted 
to solve the problem of dynamic param-
eter selection in the process of iteration. 
A specific explanation of the algorithm 
flow is given below:

(i) Initialised number of hidden network 
neurons L, population size NP and maxi-
mum number of iteration Gmax.

(ii) Initialised population GNP×D, and D is 
the dimension of population G. The ini-
tialised population consists of the input 
weights w and hidden bias b. The i-th 
individual of the 0-th generation in the 
population is:
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Where, xj,i (0) means the j-th feature of 
the i-th individual, and xjmin & xjmax repre-
sent the lower and upper bounds of the j 
component, respectively.

(iii) Mutation operation. The ADE al-
gorithm achieves individual variation 
through the mutation strategy. In this pa-
per, we introduced the self-adaptive mu-
tation operator λ; the adaptive mutation 
operator is used to prevent premature 
convergence in the early iteration as well 
as hard convergence at the end of itera-
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(a) K=2          (b) K=4       (c) K=8      (d) K=12       (e) K=16      (f) K=20   (g) defective image      

(h) K=2          (i) K=4          (j) K=8         (k) K=12         (l) K=16        (m) K=20   (n) defective image

(o) K=2          (p) K=4          (q) K=8         (r) K=12        (s) K=16      (t) K=20    (u) defective image

  

(v) K=2          (w) K=4          (x) K=8      (y) K=12       (z) K=16       (I1) K=20   (J1) defective image  
Fig. 3. Approximated results of defective image: rows from top to bottom using 20*20, 25*25, 40*40 and 

multi-scale dictionary, respectively. 

Fig. 4. Overview of defect detection and classifier model 

	 a) K = 2	 b) K = 4	 c) K = 8	 d) K = 12	 e) K = 16	 f) K = 20	 g) defective image

Figure 3. Approximated results of defective image: rows from top to bottom, using 20*20, 25*25, 40*40 and multi-scale dictionaries, 
respectively.

	 v) K = 2	 w) K = 4	 x) K = 8	 y) K = 12	 z) K = 16	 I) K = 20	 J) defective image 

	 h) K = 2	 i) K = 4	 j) K = 8	 k) K = 12	 l) K = 16	 m) K = 20	 n) defective image

	 o) K = 2	 p) K = 4	 q) K = 8	 r) K = 12	 s) K = 16	 t) K = 20	 u) defective image 
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tion. The self-adaptive mutation operator 
is shown below:
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Where, Gmax represents the maximum 
number of iteration, and Gm denotes the 
current number of iteration. Thus the mu-
tation factor is calculated as: F  =  F0 ·2λ, 
where F0 is the initialised mutation fac-
tor. The mutation strategy DE/rand-to-
best-1 is selected, which can be written 
in the following form:
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then the output weights are calculated. In this paper, the basic DE algorithm with an adaptive 
mutation operator is adopted to solve the problem of dynamic parameter selection in the process 
of iteration. A specific explanation of the algorithm flow is given below: 
(i) Initialised number of hidden network neurons L, population size NP and maximum number 

of iteration maxG .

(ii) Initialised population NP DG  , and D is the dimension of population G. The initialised

population consists of the input weights w  and hidden bias b . The i-th individual of the 0-th 
generation in the population is: 

 , ,(0) | (0) , 1,2...... ; 1,2......i jmin,i j i jmax ix x x x j D i NP                              (5) 

Where, , (0)j ix  means the j-th feature of the i-th individual, and jminx & jma xx represent the 

lower and upper bounds of the j  component, respectively. 
(iii) Mutation operation. The ADE algorithm achieves individual variation through the mutation 
strategy. In this paper, we introduced the self-adaptive mutation operator  ; the adaptive 
mutation operator is used to prevent  premature convergence in the early iteration as well as hard 
convergence at the end of iteration. The self-adaptive mutation operator is shown  below: 

max

max
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1 m

G
G Ge


                                                               (6) 

Where, maxG  represents the maximum number of iteration, and mG  denotes the current number 

of iteration. Thus the mutation factor is calculated as: 0 2F F   , where F0 is the initialised

mutation factor. The mutation strategy DE/rand-to-best-1 is selected, which can be written in the 
following form: 

4 3 1 2(g ) (g) F [ (g) (g)] F [ (g) (g)]i m i best i i ix x x x x x                                   (7) 

Where, (g)bestx  represents the best member in the current population, 1(g)ix ， 2 (g)ix ， 3 (g)ix ，

4 (g)ix the members selected randomly in the population, respectively, and (g )i mx  means the

variation intermediate of the g-th population through mutation. 
(iv) Crossover operation. The crossover of individuals between the current g-th individual 

(g)ix  and variation intermediate (g )i mx .
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Where, xbest(g) represents the best mem-
ber in the current population, xi1(g), 
xi2(g), xi3(g), xi4(g), the members selected 
randomly in the population, respectively, 
and  xi(gm), means the variation interme-
diate of the g-th population through mu-
tation.

(iv) Crossover operation. The crossover 
of individuals between the current g-th 

individual xi(g) and variation intermedi-
ate xi(gm).
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(vi) Output weight calculation operation. The process of optimisation is done when the maximum 
number of iterations is reached. The maximum iterations refer to the number of iterations in which 
the classification correct rate tends to converge. The ending criterion of the algorithm is that the 
error of the classification correct rate in the current and next is less than 0.001, that is, with the 
increase of iterations, the classification correct rate tends to converge. We obtain  the optimised 

input weights and hidden bias and calculate the output weights by using =( )T - 1 T+ I HH H T
C

,

and then the detection model is established. 
An overview of the ADE-RELM is summarised in Algorithm 1. 

Algorithm 1 The ADE-RELM method proposed
Input：Population number M，Dimension D，Maximum number of iterations T，Number of 
neurons in hidden layer L
1：Initial population 

2：Initial variation factor 0F ，Difference strategy and crossover probability CR

3：After initialisation, the current population of the best individual β is calculated to find the 
overall optimal individual β

4： if bestx   

5： =( )I HH H T
C

 T - 1 T+  

6： end

7：Mutation operation /* Generate variant intermediates ( )i mx g */ 

8：   While tT 

9：      
max

max
1

1 m

G
G Ge


   

10：     F=F0*2
λ
 

11：  end 

12：Cross operation /* The crossover operation generates the next generation of individuals */ 
13：Selection operation /* Select the best output weight */ 
14：  for i=1：NP

15：    ( 1)best ix x g  /*Global optimal output weightβ*/ 

16：  end
The dictionary in this paper is learned from defect-free images. Therefore the dictionary
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(v) Selective operation. The ADE algo-
rithm uses the greedy selection strategy 
to select the best offspring generation.

10 / 18

,
,

,

(g ) (0,1) or (1,2......D)
(g )

(g)
j i m

j i m
j i

x rand CR j rand
u

x other
  


                     ( 8 ) 

(v) Selective operation. The ADE algorithm uses the greedy selection strategy to select the best 
offspring generation. 

(g ) [ (g )] [ (g)]
(g 1)

(g)
i m i m i

i
i

u f u f x
x

x other


  


                                        (9)

(vi) Output weight calculation operation. The process of optimisation is done when the maximum 
number of iterations is reached. The maximum iterations refer to the number of iterations in which 
the classification correct rate tends to converge. The ending criterion of the algorithm is that the 
error of the classification correct rate in the current and next is less than 0.001, that is, with the 
increase of iterations, the classification correct rate tends to converge. We obtain  the optimised 

input weights and hidden bias and calculate the output weights by using =( )T - 1 T+ I HH H T
C

,

and then the detection model is established. 
An overview of the ADE-RELM is summarised in Algorithm 1. 

Algorithm 1 The ADE-RELM method proposed
Input：Population number M，Dimension D，Maximum number of iterations T，Number of 
neurons in hidden layer L
1：Initial population 

2：Initial variation factor 0F ，Difference strategy and crossover probability CR

3：After initialisation, the current population of the best individual β is calculated to find the 
overall optimal individual β

4： if bestx   

5： =( )I HH H T
C

 T - 1 T+  

6： end

7：Mutation operation /* Generate variant intermediates ( )i mx g */ 

8：   While tT 

9：      
max

max
1

1 m

G
G Ge


   

10：     F=F0*2
λ
 

11：  end 

12：Cross operation /* The crossover operation generates the next generation of individuals */ 
13：Selection operation /* Select the best output weight */ 
14：  for i=1：NP

15：    ( 1)best ix x g  /*Global optimal output weightβ*/ 

16：  end
The dictionary in this paper is learned from defect-free images. Therefore the dictionary

(9)

(vi) Output weight calculation opera-
tion. The process of optimisation is done 
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classification correct rate tends to con-
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rithm is that the error of the classification 
correct rate in the current and next is less 
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iterations, the classification correct rate 
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marised in Algorithm (1).

The dictionary in this paper is learned 
from defect-free images. Therefore the 

Algorithm 1. The ADE-RELM method proposed.

Input: � Population number M, Dimension D, Maximum number of iterations T, Number of neurons in 
hidden layer L

  1.  Initial population
  2.  Initial variation factor F0 Difference strategy and crossover probability CR
  3. � After initialisation, the current population of the best individual β is calculated to find the overall 

optimal individual β
  4.  if xbest = β

  5. 
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10.  F = F0*2
λ

11.  end
12.  Cross operation /* The crossover operation generates the next generation of individuals */
13.  Selection operation /* Select the best output weight */
14.  for i = 1: NP
15.  xbest = xi(g + 1) /*Global optimal output weightβ*/
16.  end
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(a) K=2          (b) K=4       (c) K=8      (d) K=12       (e) K=16      (f) K=20   (g) defective image      

(h) K=2          (i) K=4          (j) K=8         (k) K=12         (l) K=16        (m) K=20   (n) defective image

(o) K=2          (p) K=4          (q) K=8         (r) K=12        (s) K=16      (t) K=20    (u) defective image

  

(v) K=2          (w) K=4          (x) K=8      (y) K=12       (z) K=16       (I1) K=20   (J1) defective image  
Fig. 3. Approximated results of defective image: rows from top to bottom using 20*20, 25*25, 40*40 and 

multi-scale dictionary, respectively. 

Fig. 4. Overview of defect detection and classifier model Figure 4. Overview of defect detection and classifier model.
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Fig. 5. CCR for each types defective images with different iterations of ADE-RELM. (a) Broken warp, (b) hole, (c) 

broken weft, (d) oil, (e) declining warp, (f) heavy warp. 
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Figure 5. CCR for each type of defective image with different iterations of ADE-RELM: a) broken warp, b) hole, c) broken weft, d) oil,  
e) declining warp, f) heavy warp.

a) b)

c) d)

e) f)

dictionary elements only contain nor-
mal texture features and have good ap-
proximation performance for defect-free 
images. However, the defective image is 
the normal texture image with local ab-
normal texture, and hence the dictionary 
learnt can only approximate normal tex-
ture, but covers the defective area implic-

itly. The difference between the defective 
image and that approximated using the 
dictionary is the defective region. There-
fore we train a single-class classifier us-
ing the dictionary which can approximate 
normal texture features well. Thus at the 
testing stage, the defective image can be 
detected.

Fabric defect detection and classifier 
model
Developing a fabric defect detection and 
classifier model has three stages: the dic-
tionary learning stage, ADE-RELM clas-
sifier training stage, and testing stage. In 
the dictionary learning stage, defect-free 
images are selected to divide into image 
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patches p×p, which are non-overlapping. 
Each small patch is expanded into col-
umn vectors, which are then combined 
into a feature matrix. The KSVD method 
is introduced to the learning dictionary, 
where multiple scale dictionaries are 
learned from different sizes of image 
patches and consist of the dictionary 
set. In the training single-class classifier 
stage, defect-free images are still selected 
to divide into image patches  p×p, which 
are non-overlapping. The multi-scale 
dictionaries learned are used to approx-
imate the image patches, extract simi-
larity features and train the ADE-RELM 
classifier. For testing images, features 
and the defect detected are extracted via 
the ADE-RELM classifier in the testing 
stage. The whole fabric defect detection 
model is illustrated in Figure 4.

In dictionary learning stage, we are com-
mitted to detecting defects on the surface 
of the same piece of fabric, and diction-
ary elements are only learned for the 
normal texture features using standard 
defect-free images. The defective area is 
characterised as a local abnormal texture, 
and the defective area is totally covered 
by the approximate defective image us-
ing the learned dictionary. Hence the 
difference between the approximate im-
age and original image is the defective 
region. In the ADE-RELM training stage, 
we still use the defect-free images, and the 
learned dictionary extracting features are 
used to train the ADE-RELM classifier. 

	 Experimental results and 
discussions

In this paper, each individual fabric im-
age has a size of 200*200 with 256-grey 
levels. We chose six different types of 
grey-level fabric defective images, such 
as broken warp, hole, broken weft, oil, 
declining warp and heavy warp. Each 
type of fabric image consists of 15 de-
fect-free images and three images con-
taining anomalies. Three defect-free im-
ages of each type were used for learning 
the dictionary and six defect-free images 
of each type were taken for learning the 
ADE-RELM classifier. The remaining 
defect-free images together with those 
containing anomalies were used for test-
ing. In training the ADE-RELM classifi-
er, the initial population size and crosso-
ver probability of the ADE algorithm is 
8D and 0.9, respectively. The mutation 
strategy selected was DE/rand-to-best/1, 
and the mutation factor was self-adap-
tively learned. The hidden neurons of 

RELM were 40. For evaluating detection 
efficiency, we defined the classification 
correct rate (CCR) to describe the per-
formance of detection. Where CCR can 
be defined as Nc/Ntn, Nc represents the 
defective images classified correctly, 
and Ntn the total number of images. We 
curved the CCR of each type of defective 
image with different iterations of ADE-
RELM using different single-scale and 
multi-scale dictionaries. This is shown in 
Figure 5.
 
It can be seen from Figure 5, that the CCR 
was raised following the increase in iter-
ations. The CCR we get using the small-
scale dictionary is higher than for the 
middle-scale and large-scale dictionar-
ies. The multi-scale dictionary achieved 
the highest CCR. It is also verified that 
texture feature details of the fabric image 
can be described more clearly using the 
multi-scale dictionary, and a higher CCR 
will be obtained. A better performance of 
hole defects and oil defects was achieved 
with fewer iterations, because of their 
defective regions are relatively small and 
simple. The CCR of declining warp de-
fects and heavy warp defects is smaller, 
due to their defective regions being rel-
atively large and complicated. The fig-
urative examples of detection results of 
six different types of grey-level fabric 
defective images are given in Figure 6. 
They were obtained using the multi-scale 
dictionary learned from Equation (2) 
and compared with some existing fab-
ric defect detection methods, such as the 
Gabor filter method [11], morphological 
operation method [10] and local bina-
ry pattern method [13]. Where, the first 
column is the original defective images, 
and the second to final columns represent 
defect detection results using the Gabor 
filter, morphological operation, local bi-
nary pattern and our proposed method, 
respectively.

The Gabor filter is a typical fabric defect 
detection method based on the frequency 
domain, where the image in the spatial 
domain is converted into a frequency 
domain. From Figure 6, the defective re-
gion is roughly detected using the Gabor 
filter method. But the defective image is 
in the frequency domain, and the detec-
tion result is not clear. The morpholog-
ical operation method used for defect 
detection compares the actual pixel and 
threshold. Generally speaking, the de-
fective region is the high light region, 
and thus it will be regarded as the de-
fective region if the pixel is larger than 

the threshold; otherwise it is a normal 
texture region. The method using the 
morphological operation was strongly 
dependent on the threshold set and has 
poor performance of generalisation. De-
fect detection based on the local binary 
pattern method can locate the defective 
region. But the defect-free areas will be 
detected as defective due to the thresh-
old of binarisation being inappropriate. 
The dictionary learning method involves 
learning a set of sparse dictionaries and 
approximating a defective image using 
a multi-scale dictionary, which describes 
the texture feature of the original image 
more clearly. The ADE algorithm opti-
mized RELM developed for the defect 
detection model can solve the problem 
of inefficiency and improve the robust-
ness of the algorithm. It is seen from the 
above-mentioned experimental results 
that our proposed method can detect the 
defective area accurately and has the 
best efficiency. Furthermore, the defect 
detection method proposed in this paper 
also has good performance for pure col-
our fabrics. In Figures 7 and 8, the de-
tection results of pure red fabric defects 
and pure pink fabric defects are present-
ed, respectively. We chose four types of 
defects, such as broken warp and weft, 
and declining warp and oil. Where the 
first column is original pure colour fabric 
defective images, the second – grey-level 
images, the third – approximated images 
of grey-level images, and the final column 
is the detection results from using the mul-
ti-scale dictionary learning method.

In this paper, we selected two categories 
of pure colour images: pure red fabrics 
and pure pink fabrics. Four types of 
common defects containing broken warp 
and weft, and declining warp and oil are 
detected on the surface of pure colour 
fabrics. The specific techniques are de-
scribed below. Firstly the pure colour 
fabric image is converted into a grey-lev-
el image. Little feature information will 
be lost due to the background of the rel-
atively simple pure colour images. Sec-
ondly grey-level images are used to learn 
dictionary elements and approximate 
original images via a multiple scale dic-
tionary. The experimental results show 
that the approximated images are highly 
consistent with the normal region of the 
original images. Finally the defective re-
gion is the difference between the orig-
inal images and approximated images, 
and then the defective region is visual-
ised. From the above-mentioned experi-
ment, the results show that the defective 
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Fig. 6. Some fabric defect detection examples obtained by the four detection algorithm. (a) Original defective 

image, (b) Gabor filter detect results, (c) morphological operation detect results, (d) local binary pattern detect 

results, (e) our proposed method. 
Figure 6. Some fabric defect detection examples obtained by the four detection algorithm: a) original defective image, b) Gabor filter 
detection results, c) morphological operation detection results, d) local binary pattern detection results, e) our proposed method.
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Fig. 8. Detect results of pure pink fabric defects. (a) Original pure color images, (b) grey-level images, (c) 

approximated images, (d) detect results. 
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Fig. 7. Detect results of pure red fabric defects. (a) Original pure color images, (b) grey-level images, (c) 

approximated images, (d) detect results 

 

 

 

 

 

 

 

 

 

 

Figure 8. Detect results of pure pink fabric defects: a) original pure colour images, b) grey-
level images, c) approximated images, d) detection results.

Figure 7. Detect results of pure red fabric defects: a) original pure color images, b) grey-
level images, c) approximated images, d) detect results.
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region is detected exactly based on the 
multiple scale dictionary. Moreover the 
defect-free region is not detected as the 
defective region because of the normal 
texture region of the original image and 
approximated image being more similar. 

At the training stage, standardised de-
fect-free images are used, for which the 
proportion of the defect area is mainly 
considered as usually small. It is found 
from the experiments that there is little 
difference between the dictionary learn-
ing of the defective image sample as 
a training sample and the corresponding 
normal image sample as a training sam-
ple. Therefore the image having no de-
fects is selected as the training sample. 
Standard defect-free images are divided 
into image blocks of p×p size without 
overlapping, and then the learned dic-
tionary is used to approximate the im-
age blocks to obtain feature similarity. 
Since dictionary learning can be learned 
offline, the real-time performance of the 
algorithm is improved. The ADE-RELM 
classifier is trained by combining the 
multiple scale dictionary with the ap-
proximate image, the Euclidean distance 
extracted and the correlation coefficient. 
Most common types of defects can be de-
fined previously according to the feature 
vector. For uncommon types of defects, 
they are classified into a new type of de-
fect image by the feature vectors, such 
as the Euclidean distance and correlation 
coefficient. 

	 Conclusions
This paper proposes a fabric defect de-
tection and classifier method based on 
multi-scale dictionary learning combined 
with the ADE algorithm to optimised 
RELM. The main conclusions are as fol-
lows: 

n	 The multi-scale dictionary is learned 
from different sizes of image patch-
es to extract the texture feature more 
accurately, and approximated original 
image is learned via a multi-scale dic-
tionary to minimise the difference be-
tween the original image and approxi-
mated image.

n	 The original differential evolution al-
gorithm has many parameters, most 
of which are optimised by dynamic 
parameter selection, which leads to 
low efficiency and a large workload. 
The adaptive mutation operator is 
used in this paper, which can adap-
tively adjust itself to prevent prema-
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ture convergence in the early iteration 
stage. Moreover it can prevent slow 
convergence at the end of iteration.

n	 The original ELM randomly generates 
input weights and hidden layer bias, 
and hence, although the training speed 
is fast, the classification accuracy is 
low. The adaptive DE is introduced to 
obtain the weighted and hidden layer 
bias of the regularisation ELM, which 
solves the problem of low classifica-
tion accuracy in the original ELM.

n	 For the broken warp and weft, oil, 
oblique warp and so on of white 
greige and pure colour cloth fabric, 
the algorithm proposed realised the 
automatic detection of defects. Com-
pared with the traditional application 
of a Gabor filter, the morphological 
operation and local binary mode, the 
proposed method obtained the highest 
classification accuracy 95% in detec-
tion stage. Compared with the exist-
ing defect detection algorithm, the 
method proposed can locate the defect 
more accurately and detect the defect 
area.
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