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Abstract
Porosity is one of the most important characteristics of fabrics that dictate the permeability 
and retention properties of fabrics. Several technical uses require textiles with a combination 
of definite permeability and retention properties. Besides filtration, surgical textiles require 
these contrary properties to offer an effective barrier against particle laden fluids, such as 
bacteria and viruses, together with added wearer comfort. Pore size and pore size distribu-
tion are  important characteristics to determine the permeability and retention behaviour 
of multifilament barrier textiles by influencing the effective porosity, which can be tailored 
according to end use requirements by material, weave construction and processing factors. 
The present research was aimed at developing the relationship that material, construction 
and loom parameters have with porosity in terms of the mean pore size and mean flow pore 
size of the fabric, and thereby with air permeability. To map such nonlinear complex rela-
tions, an artificial neural network (ANN) was employed. From the findings, it was observed 
that the porosity of barrier fabrics can be predicted with excellent accuracy using an ANN.
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both the inter-yarn and intra-yarn pore 
morphology, such as the number, size, 
shape, texture and arrangement of pores. 

Pore size and pore size distribution are 
important characteristics to estimate the 
permeability and retention behaviour of 
multifilament barrier textiles by influenc-
ing the effective porosity (the portion of 
the total porosity which permits fluid to 
pass through) of the fabric, which large-
ly depends upon the inter-yarn and in-
tra-yarn pores [7]. Even at smaller fabric 
porosities of approx. 6%, the inter-yarn 
pores contribute 89-99% of the permea-
bility [8]. This emphasises that inter-yarn 
voids (mesopores) play a very important 
role in estimating the permeation and 
retention tendencies of multifilament 
woven fabrics. Other factors also have 
an influence, but due to their structural 
complexities they are difficult to meas-
ure. Fabric porosity and permeability can 
be tailored in accordance with intended 
end use requirements by various mate-
rial, weave construction and processing 
factors [9-11]. These factors seldom act 
individually, rather their underlying in-
teractions affect the performance of bar-
rier fabrics. 

In this context, it is vital to develop 
a model which correlates the pore sizes 
of barrier fabrics with their construction-
al, material dependent and processing 
factors. Most textile processes are non-
linear and dynamic in nature. Therefore, 

	 Introduction
High density multifilament woven fabrics 
are used for several technical applica-
tions which require definite permeability 
and retention properties in combination. 
In addition to use in filter technology, the 
utilisation of textile structures, especially 
in the case of protective clothing (surgi-
cal protective textiles, protective clothing 
against chemicals, clean room clothing 
for the semiconductor and pharmaceu-
tical industries), has to meet contradic-
tory requirements with regard to barrier 
properties (water permeability, particle 
retention) and comfort properties (air 
and water vapour permeability). Porosity 
(and consequently permeability) is also 
of very vital importance from the com-
posite manufacturing impregnation point 
of view, such as resin infusion moulding. 
Sieminski and Hotte [1] described poros-
ity as the fraction of the total volume of 
void spaces to the total volume, and when 
the voids become accessible to fluid to 
pass through, this results in permeability. 
The relationship between the permeabili-
ty and porosity of normal density fabrics, 
where the fluid mainly flows through in-
ter-yarn interstices, is well established. 
Several researchers [2-6] have developed 
theoretical and analytical air permeabil-
ity models using the different porosity 
features of fabric. In the case of highly 
dense multifilament fabrics, where the 
pores cannot be observed by the naked 
eye, the flow mechanism is governed by 

to solve such complex nonlinear prob-
lems, the artificial neural network (ANN) 
is proven to be an effective tool. Since its 
beginnings in the late twentieth century, it 
has been widely used for textile machine 
optimisation [12], yarn and fabric proper-
ty prediction, including antibacterial and 
hydrophobicity [13-15], and pattern rec-
ognition [16] problems. Moreover it has 
also been used successfully to predict the 
pore size of nonwoven and ultrafiltration 
membranes [17, 18]. Processing factors 
such as the metering pump frequency, die 
to collector distance and mesh belt fre-
quency of melt blown non-woven fabrics 
were formerly used to train the network, 
whereas the solute separation and solute 
diameter were later employed to train the 
ANN. Besides that, it is also employed 
to predict the air permeability of dense 
woven fabrics [19]. It is evident from the 
literature cited herein that there is dearth 
of published research on the prediction of 
the pore size of multifilament barrier fab-
rics using material, fabric construction 
and processing factors.

The pore size and pore distribution of 
fabrics, filters and membranes can be 
measured with several methods such as 
mercury intrusion porosimetry [7, 20], 
bubble point [21], capillary flow porom-
etry [22, 23], image analysis techniques 
[11, 24, 25], and the liquid displacement 
method [26, 27]. By using standard meas-
uring equipment, the liquid displacement 
method provides important information 
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regarding material porosity. As discussed 
earlier, theoretical models based on pore 
size data result in higher prediction errors 
because of the experimental inaccuracies 
in the measurement of pore size. The po-
rosimeter PSM 165 (Topas GmbH, Ger-
many), which has excellent measuring 
precision, measures the pore size of bar-
rier woven fabrics, filters, membranes and 
non-woven fabrics in terms of the weight-
ed mean pore size of the complete pore 
size distribution of a particular sample. 
The value of the weighted mean pore size 
is more realistic because it covers all type 
of pores according to their weighted per-
meability from the pore size distribution. 
Therefore, in current research, the weight-
ed mean pore size (MPS), mean flow pore 
size (MFPS) and pore size distribution are 
measured using the liquid displacement 
method to train the neural network.

	 Material and methods
Materials
Polyester (PES) is a commonly used syn-
thetic fibre to produce barrier fabrics, be-
cause of its wide variety of available fibre 
fineness, texture, cross-section and added 
functionalities, coupled with excellent 
physical properties. With the use of mi-
cro-fibres, it extends excellent drapability 
and softness. Due to these advantageous 
properties, it enables the manufacturer 
to develop woven barrier fabrics with 
defined densities and tailored pore mor-
phology [9, 10]. Aibibu [10] categorized 
the effect of technological parameters on 
pore morphology, as stated in Table 1.

A data set of 52 fabrics was generated 
comprising 28 and 24 patterns of plain  
(P 1/1) and twill 2/2Z (T 2/2Z) weave, re-
spectively, following two trial matrices. 
The first was used to record the effect of 
loom dynamics and the second was de-
signed to record the effect of weft den-
sity, yarn and filament fineness and tex-
ture on the pore sizes of dense multifil-
ament woven fabrics. The specifications 
of yarns used in the current research are 
stated in Table 2. The theoretical diame-
ter of yarns and filaments was calculated 
as follows:

develop woven barrier fabrics with defined densities and tailored pore morphology (9,10).

Aibibu (10) categorized the effect of technological parameters on pore morphology, as stated 

in Table 1. 

Table 1: Impact of textile technological factors on pore size 

Source of influence
Degree of influence on pore size

Micro pores Meso pores

Multifilament yarn fineness + +++
Filament cross-section +++ +
Filament fineness +++ +
Yarn density ++ +++
Weave type + +++
+++ very important, ++ important, + not very important

A data set of 52 fabrics was generated comprising 28 and 24 patterns of plain (P 1/1) and twill 

2/2Z („T 2/2Z) weave, respectively, following two trial matrices. The first was used to record 

the effect of loom dynamics and the second was designed to record the effect of weft density, 

yarn and filament fineness and texture on the pore sizes of dense multifilament woven fabrics. 

The specifications of yarns used in the current research are stated in Table 2. The theoretical 

diameter of yarns and filaments was calculated as follows: 

𝐷𝐷 [𝑚𝑚𝑚𝑚] =   𝑇𝑇𝑦𝑦×4
𝜋𝜋×𝜌𝜌𝑦𝑦×105 × 10                                                                                                              1   

where D is the diameter of the yarn/filament, Ty the fineness in tex; and ρy the material density 

in g/cm3 (PES = 1.39 g/cm3)

Table 2: Yarn specifications

Yarn specifications

Yarn 1 Yarn 2 Yarn 3 Yarn 4
TREVIRA

Multifilament 
100 dtex f40 

flat

TREVIRA
Multifilament 
100 dtex f128 

flat

TREVIRA
Multifilament 
100 dtex f80 

textured 

TREVIRA
Multifilament 
150 dtex f48 

flat
Yarn diameter [mm]* 0.096 0.096 0.096 0.117
Filament fineness [dtex] 2.5 0.8 1.25 3.125
Filament diameter [µm]* 15 8.6 10.7 16.9

Use Warp yarn x
Weft yarn x x x x

* diameter was measured according to Eq. 1. 

 (1)

where D is the diameter of the yarn/fila-
ment, Ty the fineness in tex; and ρy the ma-
terial density in g/cm3 (PES = 1.39 g/cm3).

Fabric and loom parameters
The pore size and pore size distribution 
of dense multifilament woven fabrics 
are highly influenced by the weave type, 
weave density, yarn fineness and filament 
fineness, whereas the effect of processing 
parameters is limited [9]. For the sake of 
higher loom efficiencies, better process 
handling and cost effectiveness, higher 
warp densities and optimum weft densi-
ties are advisable, which is more impor-
tant for dense fabrics, where weaving is 
more challenging, Therefore the warp 
density was set at 68 ends/cm, while 
the weft density was varied between 22-
36 picks/cm for P 1/1 and 39-48 picks/cm  
for the T 2/2Z weave. The size of in-
ter-yarn pores is usually measured from 

the geometrical parameters of the fabric 
unit cell, which in turn depends upon the 
yarn fineness (yarn diameter) and weave 
design; whereas intra-yarn pores are in-
fluenced by filament fineness, as indicat-
ed in Table 1. To avoid too many input 
variables to train the ANN, in the current 
research the weave density index (WDI) 
is calculated according to Walz-Luibrand 
[28] using the densities measured. It is 
a unified input in which the warp and 
weft density, warp and weft yarn diam-
eter and count, and material density are 
merged together, reducing the complexi-
ty of the model by decreasing the number 
of inputs. Fabric density is theoretically 
calculated as follows:

WDI = c · (Dwp + Dwf)2 · 
(Nwp · Nwf)

100   (2)

where c is the weave coefficient (plain 
1/1 = 1, twill 2/2 = 0.56), D the yarn 
diameter in mm (calculated according 
to Equation (1)), and N is the number 
of yarns per cm. Subscripts wp and wf 
represent warp and weft yarns, respec-
tively.

The weaving of PES multifilament wo-
ven barrier fabrics was carried out on 
a Dornier PTS4/S EasyLeno® double ra-
pier weaving machine (Lindauer Dornier 
GmbH, Germany) with a conventional 
shedding mechanism. Asymmetric shed 
geometries (lower shed > upper shed) 
were selected for all fabrics, and to pre-
vent width contraction, a full-width tem-
ple guide was employed. Weaving was 
performed according to a trial matrix 
(Table 3), which comprises two sub-trial 
plans. Trial plan a (samples 1-32) served 
to assess the effect of machine processing 
parameters, such as the machine speed 
(rpm) and shed closing time (°) on the 
pore size of fabrics, whereas trial plan b 
(samples 33-52) was used to record the 
influence of yarn and fabric parameters, 
as given in Table 3. Loom dynamics also 
influence the yarn tension forces, which 
affect the crimp interchange and yarn 
flattening on crossovers, thereby impact-
ing the pore morphology of the fabric 
(9,29). To record the influence of pro-
cessing factors, the loom speed was var-
ied between 200 and 450 rpm. Beyond 
this range weaving was not possible with 
higher thread densities, whereas the warp 
sheet closing time (angle °) was varied 
between -10° and +15° from the default 
330° (i.e. 320°-345°). After weaving, the 
fabrics were desized, washed and ther-
mally fixed.

Table 1. Impact of textile technological factors on pore size.

Source of influence
Degree of influence on pore size

Micro pores Meso pores
Multifilament yarn fineness + +++
Filament cross-section +++ +
Filament fineness +++ +
Yarn density ++ +++
Weave type + +++
+++ very important, ++ important, + not very important

Table 2. Yarn specifications. Note: * diameter was measured according to Equation (1).

Yarn specifications
Yarn 1 Yarn 2 Yarn 3 Yarn 4

TREVIRA
Multifilament  

100 dtex f40 flat

 TREVIRA
Multifilament  

100 dtex f128 flat

TREVIRA
Multifilament  

100 dtex f80 textured

TREVIRA
Multifilament  

150 dtex f48 flat
Yarn diameter, mm* 0.096 0.096 0.096 0.117
Filament fineness, dtex 2.5 0.8 1.25 3.125
Filament diameter, µm* 15 8.6 10.7 16.9

Use
Warp yarn x
Weft yarn x x x x
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Measurement of pore size  
and pore size distribution
Liquid displacement porosimetry using 
a pore size meter – PSM 165 (Topas 
GmbH, Germany) was performed fol-
lowing the standards ASTM E1294-89 
and ASTM F316-03 with a capillary con-
stant of 28.6. Topor (a perfluorocarbon of 
surface tension 16 mN/m) was used as the 
test liquid. Measurements were carried 
out using a standard measuring head of 
2.01 cm², and the flow rate range and max-
imum pressure were set at 0.06-70 l/min  
and 2000 mbar, respectively. PSM 165 is 
an automated instrument which provides 
not only the pore size distribution range 
between 0.15 µm and 250 µm but also 
delivers the weighted mean, median and 
model pore sizes, the mean flow pore size 
(pore size diameter corresponding to the 
pressure drop, where the wet flow value is 
half of the dry flow) and the bubble point. 

Air permeability measurements
Test specimens were acclimatised under 
standard atmospheric conditions for tex-
tiles for 24 hours according to DIN EN 
ISO 139: 2005+A1:2011. The through 
thickness air permeability (K) of the 
fabric was measured in accordance 
with standard test method DIN EN ISO 
9237:1995 using an FX 3300 (Textest 
AG, Switzerland) air permeability tester. 
The measurements were performed using 
a 20 cm2 test head and the pressure drop 
was set to 200 Pa. Five measurements 
were taken from each right and left side 
and centre of the fabric to complete a to-
tal of 15 measurements across the width 
of a 1 m2 fabric sample. The mean val-
ue of fifteen measurements was used for 
analysis. To exclude any impact of air 
leakage between the fabric and sample 
holder, the measurements were repeated 
with a plastic sheet and the value of per-
meability (K2) recorded was subtracted 
from the permeability value measured 
with the fabric only (K1). 

𝐾𝐾 = 𝐾𝐾1 − 𝐾𝐾2                                                                                                                                              3 

Artificial Neural Network 

Since its beginnings in the late 20th century, when Rumelhart, Hinton and Williams (30) 

presented a backpropagation algorithm to train multilayer perceptron (MLP) by overcoming 

the limitations of early perceptron type networks, as identified by Minsky and Papert in 1969 

(31), the artificial neural network (ANN), or simply neural network, is a widely accepted soft 

computing technique to solve process optimisation, prediction and pattern recognition 

problems in  a wide range of science and engineering disciplines. ANNs are adoptive systems 

inspired by the human nerve cell system; hence, like the human brain, they also learn and 

develop rules by experience. An ANN gets information from the environment through a 

training and learning process, and the knowledge learnt is stored in synaptic weights. 

Feedforward multilayer perceptron (MLP) is a commonly used algorithm. From a 

functionality point of view, MLP‟s architecture is divided into three parts: input, hidden and 

output neurons. The input neurons get training inputs to the network through interfacing with 

the outside world. The mathematical operations and functions are performed by 

hidden/intermediate neurons, whereas the network‟s predicted outputs are delivered by the 

output neuron(s). The neurons in the preceding layer are connected to the succeeding layer by 

connection weights to mimic the ability of the human brain.  

    (3)

Artificial neural network
Since its beginnings in the late 20th cen-
tury, when Rumelhart, Hinton and Wil-
liams [30] presented a backpropagation 
algorithm to train multilayer perceptron 
(MLP) by overcoming the limitations of 
early perceptron type networks, as iden-
tified by Minsky and Papert in 1969 [31], 
the artificial neural network (ANN), or 
simply neural network, is a widely ac-
cepted soft computing technique to solve 

Table 3. Trial matrix for manufacturing of model weaves. Note: superscripts * and + represent 
set and measured weft densities, whereas ++ is for the Wlaz-Luibrand Index.

Model 
weave Weave Weft,

cm-1
Weave  

density++
Weft 
Yarn

Loom 
speed, rpm

Shed 
closing, °

Mean pore 
size, µm

Air 
permeability

M1 P 1/1

36*/40+ 1.07

Yarn 1

450

330

2.25 9.05

M2 P 1/1 200 2.39 9.9

M3 P 1/1 300 2.8 10.49

M4 P 1/1 400 2.55 8.37

M5 T 2/2Z

48*/50+ 0.8

450 5.31 31.1

M6 T 2/2Z 200 4.98 27.1

M7 T 2/2Z 300 5.13 29.89

M8 T 2/2Z 400 5.47 26.66

M9 P 1/1

36*/40+ 1.07

450

320

2.72 9.24

M10 P 1/1 200 2.67 9.47

M11 P 1/1 300 2.46 8.52

M12 P 1/1 400 2.78 8.59

M13 T 2/2Z

48*/50+ 0.8

450 5.03 32.37

M14 T 2/2Z 200 5.92 27.05

M15 T 2/2Z 300 6.3 29.58

M16 T 2/2Z 400 6.12 28.41

M17 P 1/1

36*/40+ 1.07

450

335

2.44 9.38

M18 P 1/1 200 2.51 8.8

M19 P 1/1 300 2.48 8.84

M20 P 1/1 400 2.57 8.58

M21 T 2/2 Z

48*/50+ 0.8

450 5.44 31.01

M22 T 2/2 Z 200 4.8 28.97

M23 T 2/2 Z 300 5.25 29.71

M24 T 2/2 Z 400 5.1 27.72

M25 P 1/1

36*/40+ 1.07

450

345

2.59 8.93

M26 P 1/1 200 2.46 8.2

M27 P 1/1 300 2.62 8.45

M28 P 1/1 400 2.7 10.25

M29 T 2/2Z

48*/50+ 0.8

450 5.24 31.81

M30 T 2/2Z 200 4.87 30.23

M31 T 2/2Z 300 5.68 33.23

M32 T 2/2Z 400 4.79 29.33

M33 P 1/1 22*/24+ 0.64

Yarn 1

300 330

3.91 38.47

M34 P 1/1 27*/29+ 0.78 3.57 32.91

M35 P 1/1 36*/40+ 1.07 2.8 10.49

M36 T 2/2Z 39*/41+ 0.66 5.7 37.14

M37 T 2/2Z 48*/50+ 0.80 5.13 29.89

M38 P 1/1 22*/24+ 0.64

Yarn 2

3.76 23.75

M39 P 1/1 27*/29+ 0.78 3.31 13.07

M40 P 1/1 36*/40+ 1.07 2.68 7.87

M41 T 2/2Z 39*/41+ 0.66 5.42 28.28

M42 T 2/2Z 48*/50+ 0.80 4.68 17.01

M43 P 1/1 22*/24+ 0.64

Yarn 3

3.73 30.47

M44 P 1/1 27*/29+ 0.78 3.07 17.83

M45 P 1/1 36*/40+ 1.07 2.1 7.12

M46 T 2/2Z 39*/41+ 0.66 5.17 30.45

M47 T 2/2Z 48*/50+ 0.80 4.21 23.11

M48 P 1/1 18*/19+ 0.63

Yarn 4

5.68 80.19

M49 P 1/1 22*/24+ 0.79 4.63 40.63

M50 P 1/1 29*/32+ 1.07 3.02 17.69

M51 T 2/2Z 31*/34+ 0.67 11.31 87.23

M52 T 2/2Z 39*/42+ 0.80 9.52 70.23

Warp density measured: P 1/1 = 73 ends/cm and T 2/2Z = 78 ends/cm
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process optimisation, prediction and 
pattern recognition problems in a wide 
range of science and engineering disci-
plines. ANNs are adoptive systems in-
spired by the human nerve cell system; 
hence, like the human brain, they also 
learn and develop rules by experience. 
An ANN gets information from the en-
vironment through a training and learn-
ing process, and the knowledge learnt is 
stored in synaptic weights.

Feedforward multilayer perceptron 
(MLP) is a commonly used algorithm. 
From functionality point of view, MLP’s 
architecture is divided into three parts: 
input, hidden and output neurons. The 
input neurons get training inputs to the 
network through interfacing with the out-
side world. The mathematical operations 
and functions are performed by hidden/
intermediate neurons, whereas the net-
work’s predicted outputs are delivered 
by the output neuron(s). The neurons in 
the preceding layer are connected to the 
succeeding layer by connection weights 
to mimic the ability of the human brain. 

Multilayer networks are commonly 
trained by using a backpropagation algo-
rithm. Iterative training is performed in 
three steps: firstly the inputs are present-
ed to the network along its feedforward 
path, and mathematical functions are 
performed. In the next step, the network 
predictions are compared with set targets, 
and the error signal is computed. 

In the last step, if the network does not 
meet the user’s specified stopping con-
ditions, the algorithm first calculates the 
new weight and then updates the weight 
and bias variables for the new iteration.
 
The architecture of a multilayer ANN 
and operations performed by a nonlin-
ear neuron are schematically illustrated 
in Figure 1. Training begins with the 
presentation of inputs Xi through the ith 
neuron of the input layer to the jth neuron 
(succeeding layer) by weight factor Wji. 
The weighted inputs are summed up, the 
bias weight added, and then the network 
input function netj converts the presented 
ith layer inputs into a new value as fol-
lows:

Figure 1: Schematic diagram of artificial neural network 

Multilayer networks are commonly trained by using a backpropagation algorithm. Iterative 

training is performed in three steps: firstly the inputs are presented to the network along its 

feedforward path, and mathematical functions are performed. In the next step, the network 

predictions are compared with set targets, and the error signal is computed.  

In the last step, if the network does not meet the user‟s specified stopping conditions, the 

algorithm first calculates the new weight and then updates the weight and bias variables for 

the new iteration.  

The architecture of a multilayer ANN and operations performed by a nonlinear neuron are 

schematically illustrated in Figure 1.  Training begins with the presentation of inputs Xi

through the ith neuron of the input layer to the jth neuron (succeeding layer) by weight factor 

Wji. The weighted inputs are summed up, the bias weight added, and then the network input 

function netj converts the presented ith layer inputs into a new value as follows: 

Netj = XiWji + bj

N

i=1
                                                                                                                             4 

Backpropagation requires a differentiable transfer function; therefore in the present model (as 

illustrated in Figure 1, right side) a logsigmoid is used as the transfer function in hidden layer 

neurons. The summed weighted inputs, netj, are fed to the transfer function, and transformed 

into the neuron output Yj (output of the current layer becomes the input of the following layer 

neurons) as below: 

Yj = f netj = 1
1 + e− net j 

                                                                                                                   5 

At the end of each iteration, the network predicted outputs (Oi) are compared with the target 

outputs (Ti) and the error signal is computed in terms of the mean squared error MSE, which

is calculated as  

MSE =  1
N  Ti − Oi 2

N

i=1
                                                                                                                         6 

where N is the number of patterns. 

For the current research, the Matlab® neural network toolbox function „trainbr‟ was used,

which is an incorporation of the Levenberg-Marquardt (LM) optimisation technique and 
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At the end of each iteration, the network 
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is computed in terms of the mean squared 
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to literature [32-35] for details about the 
LM method and Bayesian regularisation.

The number of layers and neurons were 
selected using the hit and trial process 
by training several networks with differ-
ent architecture and parameters. More-
over the logistic sigmoid (logsig) and 
linear (purelin) transfer functions were 
selected for hidden and output neurons, 
respectively, and the mean squared error 
(MSE, Equation (6)) was used as the 
performance function. However, the net-
work performance is reported in terms of 
the mean absolute error (MAE) and root 
mean square deviation (RMSD), calcu-
lated as follows: 
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Before training, the whole data set was 
normalised between 0 and 1 and subse-
quently divided randomly into training 
and testing sub sets; 42 data patterns were 
selected for network training and the re-
maining 10 patterns used to evaluate the 
network performance for unseen data.
 
By varying the network architecture 
and parameters, several networks were 
trained to minimise the error and obtain 
a model with better generalised capabil-
ities. On the basis of the hit and trial of 
a two hidden layer network, three neu-
rons in each layer were selected. The ar-
chitecture and training parameters of the 
model selected are given in Figure 1 and 
Table 4. 

	 Results and discussion
The neural network was trained using 
the weave type, weave density, filament 
fineness, filament type, loom speed and 
shed closing time, the input levels of 
which are given in Table 6. The training 
and testing performances of the ANN 
models developed for the weighted mean 
pore size (MPS) and mean flow pore size 
(MFPS) are illustrated in Figure 2. It can 
be observed from the following figure 
that the neural network learnt the under-
lying interaction between training inputs 
and output variables well. Apart from 
some minor deviations in a few samples, 
the network predictions match well with 
experimental scores. The training perfor-
mance of both models is almost identical, 

but the testing performance of ANN-MPS 
is slightly better than for ANN-MFPS.
 
The training error of both models is 
within 2%, whereas the testing error is 
within 3%. The MAE and RMSD values 
of ANN-MPS are 0.23 and 0.28 µm, re-
spectively, on a scale of 2.1-11.31 µm. 
Moreover MAE and RMSD values for 
ANN-MFPS are recorded as 0.31 and 
0.68 µm, respectively, on a scale of  
2.19-13.22 µm, as stated in Table 5. This 

excellent performance for unseen data 
indicates that the ANN has generalised 
well without any evident overfitting.

Regression analysis is another important 
measure to check ANN performance. 
Figures 3.a, 3.b reflects the excellent re-
lationship between the experimental and 
predicted mean pore size of barrier fab-
rics. R2 values of the linear fitted model 
between predicted and experimental 
scores for training and testing are 0.990 

Table 5. Performance of model selected.

Performance parameters
ANN-MPS ANN-MFPS

Training Testing Training Testing
MAE, % 1.44 2.45 1.61 2.81
MAE, µm 0.13 0.23 0.18 0.31
RMSD, µm 0.18 0.28 0.25 0.68
Max. error, % 0.54 0.59 -0.88 -0.99
Min. error, % 0.00 -0.01 0.001 0.01

Table 6. Input levels and middle values for trend analysis.

Inputs Input levels Middle values

Weave float P 1/1, T 2/2Z 1 for plain weave
2 for twill weave

Weave density 
(Walz-Luibrand Index)

P 1/1 – 0.64, 0.8, 1.07  
& T 2/2Z – 0.64, 0.8 0.8 

Weft filament fineness, dtex 0.78, 1.25, 2.5, 3.125 2.5
Weft yarn type Flat (0), textured (1) Flat
Loom speed, rpm 200, 300, 400, 450 300
Shed closing time, ° 320, 330, 335, 345 330
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and 0.959, respectively, which means 
that more than 96% variance in the de-
pendent variable is explained by the in-
dependent variables. This is also obvious 
from the slope and intercept of the linear 
models as well. Almost similar model re-
gression analysis results can be observed 
for ANN-MFPS in Figure 3.c, 3.d.

These findings advocate that it is plau-
sible to predict the mean pore size and 
mean flow pore size of PES multifila-
ment barrier fabrics using material, fabric 
construction and processing parameters 
with excellent accuracy using an artifi-
cial neural network. It also confirms the 
prediction power and accuracy of an arti-
ficial neural network. 

Trend analysis of model developed
Trend analysis is a method to check the 
influence of individual input variables 
on the model output. In this technique 
one input is varied at a time to its factor 

levels, whereas the other input variables 
are kept to their middle value, with the 
change in output being recorded at each 
level. This process is repeated for all var-
iables. The input levels and middle val-
ues are given in Table 6. 

Results of the trend analysis for ANN-
MPS are illustrated in Figure 4.a-4.f. It is 
evident from (a) that the pore size of plain 
woven fabric is lower than for twill weave 
using the same weave index, which is in 
agreement with experimental results. As 
the permeability of fabric is directly in-
fluenced by its porosity, a similar trend is 
observed in the experimental air permea-
bility values stated in Table 3. Weave type 
mainly impacts the inter-yarn pores. Higher 
float length weaves (satin/twill) have big-
ger inter-yarn pores as compared to small 
float length constructions like plain weave. 

The mean pore size of barrier fabrics is 
decreased by increasing the weave den-

sity, as shown in Figure 4.b. A similar 
trend is also observed with the weft fil-
ament fineness: the finer the filament 
(similar yarn fineness), the lower the 
mean pore size (Figure 4.c). The change 
is minor – from 0.78 to 1.25 dtex fila-
ment; thereafter a substantial increase in 
MPS is observed as the filament fineness 
decreased to 3.125 dtex, due to finer fil-
aments increasing the yarn packing and 
reducing inter-filament gaps. Likewise 
fabric woven with textured weft yarn has 
somehow a lesser mean pore size than 
those woven with flat weft yarns (Fig-
ure 4.d). 

The influence of the loom speed and shed 
closing time is depicted in Figure 4.e, 4.f,  
which reflects that the mean pore size 
slightly increases with increasing loom 
speed. However, with respect to the 
shed closing time, the effect is random 
and lacks a certain trend. In plain weave 
a slight increase in the mean pore size is 

Figure 3. Regression analysis experimental vs. predicted values (in µm): ANN-MPS – a) training, b) testing; ANN-MFPS – c) training,  
d) testing.
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observed with respect to the shed closing 
time, whereas for twill fabric woven at 
320° the shed closing time shows a high-
er MPS; thereafter it is almost constant. 

The findings of the trend analysis are in 
agreement with the experimental results, 
which suggest that the model developed 
has simulated the input-output relation-
ship well. Thus this model can be used 
for practical problem within its learnt 

domain to predict the mean pore size of 
barrier woven fabrics. 

Moreover, by using the yarn crimp meas-
ured from the fabric model and informa-
tion from the porosity ANN model devel-
oped in the present research, new weave 
geometries can be realised using micros-
cale simulation with the finite element 
method for virtual simulation. Geometric 
models based on selected parameters such 

as yarn crimp, yarn and filament fineness, 
weave type and weave density can be used 
to predict the porosity, permeability and 
other structural properties of dense fabrics 
in relaxed and under loading situations 
using any the fluid dynamics procedure. 
However, for confirmation of the geomet-
ric models, the porosity measured can be 
validated with the neural network devel-
oped model as well as by available experi-
mental data. For this purpose a microscale 

Figure 4. Trend analysis using ANN model developed: effect of (a) weave type, (b) weave density, (c) weft filament fineness, (d) yarn texture, 
(e) loom speed and (f) shed closing time of mean pore size of barrier woven fabrics.
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voxel model of a plain weave’s unit cell is 
being developed and simulations will be 
performed later. The concept is pictorially 
explained in Figure 5. The voxel mod-
el can be obtained from a finite element 
model of the fabric that is built according 
to the method described in [36], which 
uses the input of geometrical parameters 
such as warp and weft densities and yarn 
crimp from the ANN model. The finite el-
ements are then transferred into volumet-
ric voxels in order to obtain the porosity of 
the fabric more efficiently, because voxel 
geometry is the native input format used 
by several software modules like Flow-
Dict and FilterDict.

Relationship between mean pore size 
and air permeability
The coefficient of correlation is a meas-
ure of the strength and direction of the 
linear relation between two variables. 
It is established that the permeability of 
materials depends upon their porosity. In 
woven fabrics porosity is described as the 
number, size, shape, texture and arrange-
ment of inter-yarn and intra-yarn pores 
[6]. Pore size is one of the important fac-
tors which comprise the greatest part of 
porosity, and consequently permeability; 
other factors also have an influence, but 
they are difficult to measure. 

The linear fitted regression model given 
in Figure 6 demonstrates a very strong 
positive correlation between the MPS 
[µm] and air permeability [l/m2/s] of the 
barrier fabric with the coefficient of cor-
relation, an R value of 0.934 (R2 = 0.87). 

Air permeability = 8 × MPS – 10.4
(10)

It reflects that as the MPS of the fabric in-
creases, the air permeability also increas-
es, and vice versa, which is also obvious 
from the regression equation. It confirms 
the theoretical knowledge that air perme-
ability mainly depends upon inter-yarn 
pores. Furthermore the outcomes also 
validate the accuracy of the measuring 
technique used for MPS measurement. 
Therefore the use of the artificial neural 
network models in the above-mentioned 
research is advised, which could save ex-
perimental time and cost. Furthermore an 
ANN could be beneficial in the manufac-
turing of hybrid composites for tailored 
mechanical properties.

From the findings above, it is inferred 
that MPS can be predicted from material, 
fabric and processing parameters using 
an ANN, and the results can also be used 
to determine air permeability.

	 Conslusions
Porosity in terms of the mean pore size 
(MPS) and mean flow pore size (MFPS) 
of PES multifilament barrier woven fab-
rics was successfully predicted with ex-
cellent accuracy using artificial neural 
networks. ANN-MPS and ANN-MFPS 
were trained separately using similar in-
put variables. From the test performance 
it can be inferred that both models have 
learnt the underlying interactions be-
tween input and output variables. The 
MAE and RMSD of ANN-MPS observed 
are 0.23 and 0.28 µm, with an R² value 
of 0.959, which means that 96% variance 
in the dependent variable is explained by 
independent variables. Likewise the test 
error in terms of the MAE and RMSD of 
ANN-MFPS were recorded as 0.31 and 
0.68 µm, respectively, with a coefficient 
of determination of 0.955. 

The model developed for the mean pore 
size was further evaluated through trend 
analysis. It was observed that porosity 
is significantly influenced by the weave 
type, weave density, and filament fine-
ness, and is moderately effected by the 
yarn texture. A slight change in loom pa-

Figure 5. Geometrical model for simulation of porosity/permeability in relaxed and loaded 
situations.

Using crimp of model woven fabrics

Weave float

Weave density

Filament fineness

Weft yarn type

Loom speed

Shed closing angle

Yarn crimp

M
PS

Vslifstion Representative unit cell generation

A microscale voxel model 
of the nit cell

Po
ro

si
ty

/p
er

m
ea

bi
lit

y
si

m
ul

at
io

n 
w

ith
ou

t l
oa

di
ng

Po
ro

si
ty

/p
er

m
ea

bi
lit

y
si

m
ul

at
io

n 
un

de
r l

oa
di

ng

Figure 6. Correla-
tion between mean 
pore size and air per-
meability of barrier 
woven fabrics.

90

75

60

45

30

15

0

Ai
r p

er
m

ea
bi

lit
y,

 l/
m

2 /s

Data scores
Best linear fit

R = 0.934

0   2   4   6   8 10 12

Weighted mean pore size, μm



79FIBRES & TEXTILES in Eastern Europe  2018, Vol. 26,  3(129)

rameters was also noted. Furthermore it 
was observed that the air permeability of 
barrier fabrics can be determined using 
the weighted mean pore size calculated 
from the pore size distribution. 

From these findings it is inferred that 
ANN is a powerful prediction tool to de-
termine the MPS from material as well 
as fabric and processing parameters with 
excellent accuracy, and the prediction 
results can be used to determine air per-
meability as well. This will eliminate the 
trial and error procedure, which saves 
time and money. 
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