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n	 Introduction
A variety of the practical end-use consid-
erations of textile structures are associ-
ated with the bending rigidity of  yarns 
comprising a structure. The association 
may be obvious or subtle, and in either 
case the magnitude of the interrelation-
ship may be large or small. Examples 
of obvious associations are the flexural 
rigidity or drape ability of fabrics, and 
fabric crease resistance or resistance to 
bending. Examples of more subtle asso-
ciations are the curl and skew or shape in-
stability of knitted and woven goods [1]. 

When a fiber assembly is deformed, 
whether it be a woven or knitted fabric, 
yarn, or cord, the constituent fibers and 
fiber assemblies which constitute the 
structure are subjected to a combination 
of extensional, bending and torsion de-
formation [2]. The applied moment cor-
responding to unit curvature is known as 
bending rigidity. The bending rigidity for 
linear materials is the product of the ten-
sile elastic modulus and moment of iner-
tia of the cross-section [3].

In order to evaluate  fabric hand, Pierce 
[4] introduced the principle of cantilever 
deformation in textiles to characterise 
fabric bending. In this method, the fabric 
is made to deform under its own weight 
as a cantilever, then the cantilever length 
required to produce a predetermined de-
flection angle is measured, and subse-
quently the bending rigidity of the fabric 
is calculated. Szablewski et. al applied 

numerical analysis to  Pierce’s cantilever 
beam to obtain the bending rigidity of 
textiles [9]. Kocik et. al used an Instron 
and principles of  buckling in the case of 
small curvature to evaluate the bending 
rigidity of flat textiles [10].

In the case of  yarn, the small dimension 
and untwisting of the free ends of the 
yarn are the major difficulties in the sim-
ple cantilever method. The exact position 
of the free end of a bent yarn can not be 
well defined and measured thus could 
lead to a major source of error. To avoid 
these difficulties in this work, a two sup-
port beam system was used to calculate 
the bending rigidity of  yarn. The free end 
of the yarn is placed on a simple support, 
whereas the other end of the yarn is fixed 
on another support.

n	 Theory
Consider an elastic beam bent by the ap-
plied moment (M). It can be shown that 
the curvature of the neutral line is as fol-
lows [5]:
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Where M is the moment, ρ the radius of 
curvature, E is the elastic modulus and I 
is the moment of inertia of the section. In 
preliminary mathematics it can be shown 
that the curvature of a fixed point is:
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If the length of the beam in comparison 
to the deflection is very large, the slope 
of the tangent to the curve at any point  
(dy/dx) is very small. In this case the val-

ue of the square of dy/dx can be neglected 
in compression/comparison to the unity 
in equation (2), and the deflection may 
be accepted a small deflection. The small 
deflection equation governing the defor-
mation of the beam is as follows:
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Figure 1 shows an elastic beam fixed at 
one end and supported by a simple sup-
port at the other; the beam is loaded under 
its own uniform weight. Using the theo-
ries for statically indeterminate beams, 
one can obtain [6, 7]:
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Where W is the total weight of the beam, 
and l is the length of the beam. If an ex-
ternal force P is applied to the beam at 
point B (as shown in Figure 2), neglect-
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Figure 1. Bending of elastic beam under 
uniform weight.

Figure 2. Bending of elastic beam under 
point load.
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ing the weight of the beam, the displace-
ment of the beam can be obtained by:
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From A to B                   (5)
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From B to C                   (6)

Where R is the reaction force at point A 
and is equal to [8]:
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If there is a uniformly distributed load 
and point load (Figure 2) applied to-
gether,  elastic curves (deformed shape) 
at different points are obtained using the 
superposition principle. Hence we have 
Equations 8 and 9.

Two successive differentiations from the 
above equations lead to the coordinate 
of the maximum deflection point (Equa-
tions 10 and 11).

n	 Experimental
A type of zero twist PET filament yarn 
was used in this experiment. The yarn 
count was 150 dtex consisting of 48 fila-
ments. In order to have two supports, 
a small vice was used. Two moveable 
jaws of the vice were used as supports. 
The distance between the jaws, i.e. the 
distance between the supports, could be 
adjusted with the handle of the vice.

A special cellar tape was fixed to the 
support to act as a fixed end. The other 
support acted as a simple support. A very 
light weight made of thin copper wire 
was softly placed on the yarn near the 
fixed support . The weight of the wire 
was measured to the nearest 0.1 of a mil-
ligram and found to be 0.0041 grams.

The experiments were carried out on 20 
samples of the yarn, and for each sample 
seven different distances between the 
supports were tested. For each sample 
the distance between the two supports 
was chosen as 30, 35, 40, 45, 50, 55 and 
60 millimeters, and the length of the yarn 
was 10% more than the distance between 
the two supports. Figures 3 and 4 show 
two typical photographs of the bent yarn.

In order to increase the accuracy of the 
experiments, photographs of the yarn in 
each experiment were taken using a digi-

tal camera, and then by exerting a suit-
able resolution on each photograph, the 
deflection of the yarn, coordinates of the 
point of applying the external load and 
the point of  maximum deflection were 
obtained.

In order to confirm the validity of the 
small deflection equations, the coordi-
nates of the various points of the bent 
yarn were obtained and compared with 
the shape of a elastic beam curve with 
the same characteristics in  small deflec-
tion . If the curves are close to each other, 
we can use small deflection equations to 
obtain the bending rigidity of the yarn; 
otherwise the large deflection case must 
be considered.

This investigation was conductedusing 
three samples of the yarn. Each sample 
contained seven different distances be-
tween the supports. For each experiment, 
graphs of the shape of the yarn deflec-
tion and the shape of the beam deflection 
curve, in the same condition, were pre-
pared. For all the samples investigated, it 
was observed that, in the small lengths of 
the beam, the curve of the yarn deflec-
tion was close to that of the elastic beam 
deflection. More deviation was observed 
as the length of the beam increased. Fig-
ure  5 shows one of the graphs indicat-
ing the deflection of the yarn and  elastic 
beam in the same experiment.

Subsequently, by illustrating that we can 
use elastic beam equations in cases of 
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Equations: 8, 9, 10, and 11.

Figure 4. The yarn on the supports. Dis-
tance between supports 60 mm. 

Figure 3. The yarn on the supports. Dis-
tance between supports 30 mm. 

Figure 5. Curves of deflection of yarn and beam when distance between two supports is 
60 millimeter.
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small deflection, and by preparing a suit-
able computer program, the bending ri-
gidity of the yarn was calculated.

n	 Results
Determination of yarn bending 
rigidity
As was mentioned before, in the case of 
small deflection, Equations 8 and 9 can 
be used to calculate the bending rigidity 
of  yarn. These equations can be written 
as Y = Z/EI, where Y is the coordinate 
of the maximum deflection point. If the 
small deflection equations hold, plots of 
the values of Z versus Y must be a straight 
line with a slope equal to EI. The values 
of Z for each sample were obtained by 
using Equations 8 and 9. Figure 6 shows 
the plots of Z values obtained for the cor-
responding Y for all experiments.

As can be seen from Figure 6, the data 
points are close to each other in the small 
beam lengths, and more variations are ob-
served as the length of the beam increas-
es. It is also clear that two different parts 
can be distinguished. At  small values of 
deflection, Y ≤ 0.4 cm, the data points 
show a linear trend confirming the linear-
ity of the data points and validity of small 
deflection equations. However, as the de-
flection increases, Y > 0.4 cm, the data 
points deviate from the straight line, in-
dicating the onset of large deflection and 
less accuracy in  cases of small deflection. 
The reason for this is that the accuracy 
of small deflection assumptions decreas-
es as the length of the beam increases.

The bending rigidity of the yarn was 
calculated from the slope of the first 
part of the curve and found to be  
By = 8.84×10-6 Kg.cm2, which is equal to 
8.84 mg.cm2. The linear correlation coef-
ficient of the data points in the first part 
was also found to be R = 0.842.

n	 Conclusion
Yarn was considered as an elastic beam 
deflected by applying an external point 

load. Simulation was performed by set-
tling one end of the yarn on a fixed sup-
port and the other  on a simple support. 
The results showed that the behaviour of 
the yarn tested in this condition follows 
from  the behaviour of the in the small 
deflection case. Therefore, in order to 
calculate the yarn bending rigidity, small 
deflection equations can be used with  ac-
ceptable accuracy.
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Figure 6. Plots of Z 
versus Y.
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