
49

Piotr Szablewski

Technical University of Łódź 
Department of Technical Mechanics and Informatics

ul. Żeromskiego 116, 90-924 Łódź, Poland
Phone: (48) (42) 636 14 29

E-mail: piotr.szablewski@p.lodz.pl

Numerical Modelling of Geometrical 
Parameters of Textile Composites
Abstract
This paper describes a simple sinusoidal geometrical model of textile composites. On the 
basis of this model, how to obtain certain geometrical parameters that fully characterize 
the geometry of the composite structure will be presented. Using geometrical considera-
tions, it is possible to obtain from this model basic mechanical parameters that are very 
useful for further strength analysis. Such mechanical considerations and a method for cal-
culating mechanical parameters will be presented in future articles. On the basis of the 
above-mentioned theoretical considerations, a special computer program was developed. 
The method of calculation presented in this paper can be applied to more complicated 
models of textile composites.
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textile composites. A symmetric plain 
weave unit cell configuration was studied
to evaluate the performance of the pro-
cedure. The stress results were compared 
with those from other analyses.

Lomov, Gusakov and others [7] used a 
mathematical model of the internal ge-
ometry of 2D and 3D woven fabrics as 
a unit cell geometry preprocessor for 
meso-mechanical models of composite 
materials. The model computes a spatial 
placement of all the yarns in a fabric re-
peat for a given weave structure (a spe-
cial coding algorithm is employed) and 
the given warp and weft yarns’ geometri-
cal and mechanical parameters.

In [8], Jiang, Tabiei and Simitses present-
ed a stress and strain averaging proce-
dure for local and global analysis of plain 
weave fabric composites. Osada, Nakai 
and Hamada [9] considered the final
fractures of composites to be caused by 
cumulation of the microfractures, so that 
the initiation of a microfracture, namely, 
the initial fracture, is an important factor 
of which to know the mechanical proper-
ties. Microfracture behaviours in textile 
composites were decided by the geom-
etry of the textile fabric quantitatively. 
First, in order to investigate the geometry 
of the textile fabric, the crimp ratio and 
aspect ratio were measured. Tensile test-
ing was performed and the knee point on 
the stress-strain curve was identified. The
arrangement, properties and structure of 
the fibres within the yarn and the yarns
within the fabric generate a complex 
mechanism of deformation. Therefore, 
Turfaoui and Akesbi [10] developed a 
theoretical model of the mechanical be-
haviour of the plain weave. The model-
ling of textile structures by the finite ele-
ment method was a new approach based 

on the combination of geometric and 
mechanical models. The finite element
method permits a construction and repre-
sentation of fabrics by taking into consid-
eration the yarn undulation, the existence 
or not of symmetries in the basic cell and 
the type of contact between the warp and 
weft yarns.

The modelling of textile structures was 
also considered by Milašius in [12] and 
[13], where considerations are presented 
concerning the principles of woven fabric 
3D structure formation and cross-section 
shapes. Kobza [14] presented the bend-
ing theory of multi-layered composites 
filled with soft materials.

The range of applications for composite 
materials appears to be limitless. Textile 
composites can be defined as the combi-
nation of a resin system with a textile fi-
bre, yarn or fabric system. They may be 
either flexible or quite rigid. This paper
will present how to build a simple geo-
metrical model of textile composites and 
how to obtain from this model certain geo-
metrical and mechanical parameters that 
are very useful for further strength analy-
sis. As a novelty, in this study, the validity 
and limitations of the presented geometric 
model will be studied carefully. Besides, 
the usability of new iterative procedures 
in the Mathematica environment will be 
tested to extend the range of applications.

 The geometrical model  
of textile composites

Let us consider a balanced plain weave 
textile composite in which the warp 
and fill yarns contain the same number
of fibres n, with all the filaments hav-
ing the same diameter df , and with the 
warp and fill yarns having the same yarn

 Introduction
Textile composites represent a class of 
advanced materials that are reinforced 
with textile preforms for structural or 
load-bearing applications. In general, 
composites can be defined as a select
combination of dissimilar materials with 
a specific internal structure and external
shape. The unique combination of two 
material components leads to particu-
lar mechanical properties and superior 
performance characteristics not possible 
with any of the components alone [1-4].

Many authors in their works have dis-
cussed the classical textile studies per-
formed by Peirce, Kawabata and Leaf. 
Scida and others [5] presented a micro-
mechanical model called MESOTEX for 
the prediction of the elastic behaviour of 
composites reinforced with non-hybrid 
weave (plain weave, satin weave and 
twill weave) and hybrid weave (hybrid 
plain weave and hybrid twill weave) fab-
rics. By using the classical thin laminate 
theory applied to each woven structure, 
this analytical model takes into account 
the strand undulations in the two direc-
tions and also integrates the geometrical 
and mechanical parameters of each con-
stituent (resin, fill and warp strands). Woo
and Whitcomb in [6] analysed macro-
elements for detailed stresses of woven 
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packing density pd. The yarn packing 
density is defined as pd = n · Af /A, where  
Af  = � df 

2/4 is the cross-sectional area of 
the filament. The cross-sectional area of
the yarns is given by Af = (� df 

2n)/(4pd). 
The representative unit cell (RUC) is a 
rectangle consisting of two warp yarns 
interlaced with two fill yarns with resin
matrix filling the remaining portion of
the volume. Its dimensions are 2a × 2a 
and its thickness is denoted by H. The 
other parameters are denoted and shown 
in Figure 1, which shows the idealization 
of the real model. The idealizations are 
relatively simple because most warp and 
weft yarns are nominally straight. The 
thickness of the yarn along the centreline 
of the yarn path is denoted by t. If the fi-
bre volume fraction specified for the unit
cell is too small, it is necessary to add an 
additional resin layer of thickness tr to the 
unit cell. The geometry of the path of the 
warp or fill yarn is modelled using two
assumptions: 1 – the centreline of the 
yarn path consists of undulation portions 
and straight portions, with the centreline 
of the undulating portions described by 
the sine function, 2 – the cross-sectional 
area and the thickness of the yarn normal 
to its centreline are uniform along the arc 
length of the centreline. The centreline of 
the warp yarn path in an undulating re-
gion is specified by

3
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where hr = 1 + tr /(2t) (tr is the thickness 
of the resin layer) and E(m) is a complete 
elliptic integral of the second kind.

The geometry of the undulation region
On the basis of a constant thickness nor-
mal to the centreline path, we can deter-
mine the equations of the lower and up-
per curves of the warp yarn in the cross 
section of the RUC along the undulating 
portion of the path. These lower and up-
per curves are depicted in the detail of 
the undulation region shown in Figure 2. 
The parametric equations of the lower 
and upper curves are:
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Figure 1. Cross section of the representative unit cell (RUC) along the warp yarn. Figure 2. Geometry of an undulation region 
along the warp yarn.
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),( mF aφ  and ),( mE aφ  are the incomplete elliptic integrals of the first and second kind.

Assuming that 1β0 2
c <<≤ , we obtain approximations to the volume fraction equation (4) and the yarn 

shape equation (10). We neglect terms of order 2
cβ  and higher in the series expansions to obtain the 

final results: 

)/( r ahVpAt fd= ,  )/21(/)/1( π−−= drfu phVaL .        (13) 

Small crimp angle approximations (13) are used in the iterative procedure at the beginning of the 
calculations.

2.2. Algorithm to determine the architecture parameters

Input parameters: n, fd , dp , a, fV , tol, imax. Output parameters: t, uL , cβ , rt , newa  – new yarn 

spacing only if o45β =c , V – vol. of ¼ of the RUC, yarnV  – vol. of the yarns in ¼ of the RUC, rV  – vol. 

of the resin in ¼ of the RUC. 

1. Compute the cross-sectional area A of the yarn from )4/()( 2
df pndA π= . Set 1r =h .

From the small crimp angle equations (13), compute the initial values of the thickness t and length 

uL . The initial crimp angle 0)β( c  is computed from eq. (3). 

2. Begin the iteration loop: for 1=i  to imax in steps of one. 
2a. Set 0r =t  or 1r =h  and for the crimp angle 1)(β −ic  solve the quadratic equation (11) for the 
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Set of Equations 12.
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a. If 0 < βc ≤ π / 4, then STOP. Conver-
gence of the geometric parameters 
t, Lu and tr has been achieved and 
the geometry of the RUC is estab-
lished.

b. If βc > π / 4, then set βc = π / 4 and 
assume that the specified value of the
yarn spacing a is incorrect. Solve for 
t, Lu, tr and a in steps from 3c to 3f.

c. Set tr = 0 or hr = 1 and solve the quad-
ratic equation (11) for the two roots 
Lu/a.

 Take the positive real root for the ratio 
of Lu/a.

d. If 0 < Lu/a ≤ 1, then go to step 3e, else, 
if Lu/a > 1, then set Lu/a = 1 and solve 
eq. (11) for hr.

e. Because βc = 1, we determine from 
eq. (3) that t = (2/π) (Lu/a)a. Substi-
tute this expression for t into the vol-
ume fraction equation (4) and solve 
for the new yarn spacing anew to ob-
tain 

6

2g. Calculate the difference in the iterates using the measure 1)(β)(βε −−= icic .

2h. If tol>ε , then increase the index 1+→ ii .
2i. If imaxi ≤ , then go to step 2a, else, if imaxi > , then STOP and print a non-convergence 

message. 
2j. If tol<ε , then the fixed point iteration is judged to have converged to the crimp angle 

icc )(ββ = .

3. Check the constraint on the crimp angle. 
3a. If 4/β0 π≤< c , then STOP. Convergence of the geometric parameters t, uL  and rt  has been 

achieved and the geometry of the RUC is established. 
3b. If 4/β π>c , then set 4/β π=c  and assume that the specified value of the yarn spacing a is 

incorrect. Solve for t, uL , rt  and a in steps from 3c to 3f. 

3c. Set 0r =t  or 1r =h  and solve the quadratic equation (11) for the two roots aLu .

Take the positive real root for the ratio of aLu .

3d. If 1/0 ≤< aLu , then go to step 3e, else, if 1>aLu , then set 1=aLu  and solve eq. (11) for 

rh .

3e. Because 1βtan =c , we determine from eq. (3) that aaLt u )()2( π= . Substitute this 

expression for t into the volume fraction equation (4) and solve for the new yarn spacing newa

to obtain ])(2[)]()β(1[ r1new hVaLaLgAda fuucp −= π , where 4β π=c .

3f. For newa  from step 3e, compute new)( aaLL uu ⋅= , uLt )2( π=  and )1(2 rr −= htt .

Numerical example
Input data: mm007.0=fd , 64.0=fV , mm411.1=a , 75.0=dp , 6104 −⋅= πtol , imax = 30. 

Output data:   

For n = 14000, a maximum crimp angle condition, the yarn spacing a is recomputed. 
In Figure 3, a numerically calculated shape of the undulation region along the warp yarn is shown for 
two cases: a) model is valid ( 4/β π≤c ), b) model is not valid because a cusp forms in the filament in a 

region close to the end of the undulating region ( 4/β π>c ).

n a, mm t, mm uL , mm cβ , deg No. of 
iterations

2000 1.4110 0.0857 0.5869 12.90 4 
10000 1.4110 0.4727 0.7812 43.54 6 
14000 1.6260 0.5804 0.9117 45.00 23 

 where βc = π/4.
f. For anew from step 3e, compute 

Lu = (Lu/a)·anew, t = (2/π)Lu and  
tr = 2t(hr – 1).

Input data df = 0.007, Vf = 0.64, a = 1.411 
mm, pd = 0.75, tol = π/4 · 10–6, imax = 30. 
The output data is presented in Table 1.

For n = 14000, a maximum crimp angle 
condition, the yarn spacing a is recom-
puted.

In Figure 3, a numerically calculated 
shape of the undulation region along 
the warp yarn is shown for two cases: a) 
model is valid (βc ≤ π/4), b) model is not 
valid because a cusp forms in the fila-
ment in a region close to the end of the 
undulating region (βc > π/4).

 Conclusions
The presented method of analysis was 
very useful for the modelling of textile 
composites. It can of course be applied 
for more complicated models (not only 
with a sinusoidal centreline of the yarn). 
On the basis of this model, certain geo-
metrical parameters were obtained. 
These parameters fully characterize the 
geometry of the considered composite 
structure. The method has shown that 
the presented model is valid only for a 
crimp angle of less than 45° (βc ≤ π/4). 
If the crimp angle βc > π/4, the model is 
not valid because a cusp forms in the fil-
ament in a region close to the end of the 

Table 1. The output data.

n a, mm t, mm Lu, mm βc, deg No. of iterations

2000 1.4110 0.0857 0.5869 12.90 4

10000 1.4110 0.4727 0.7812 43.54 6

14000 1.6260 0.5804 0.9117 45.00 23

Substituting eq. (10) for A in eq. (4), we 
can rearrange the result as a quadratic 
equation in the ratio of Lu / a:
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Equation (11) is used in the iterative procedure to determine parameters uL .
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),( mF aφ  and ),( mE aφ  are the incomplete elliptic integrals of the first and second kind.

Assuming that 1β0 2
c <<≤ , we obtain approximations to the volume fraction equation (4) and the yarn 

shape equation (10). We neglect terms of order 2
cβ  and higher in the series expansions to obtain the 

final results: 

)/( r ahVpAt fd= ,  )/21(/)/1( π−−= drfu phVaL .        (13) 

Small crimp angle approximations (13) are used in the iterative procedure at the beginning of the 
calculations.

2.2. Algorithm to determine the architecture parameters

Input parameters: n, fd , dp , a, fV , tol, imax. Output parameters: t, uL , cβ , rt , newa  – new yarn 

spacing only if o45β =c , V – vol. of ¼ of the RUC, yarnV  – vol. of the yarns in ¼ of the RUC, rV  – vol. 

of the resin in ¼ of the RUC. 

1. Compute the cross-sectional area A of the yarn from )4/()( 2
df pndA π= . Set 1r =h .

From the small crimp angle equations (13), compute the initial values of the thickness t and length 

uL . The initial crimp angle 0)β( c  is computed from eq. (3). 

2. Begin the iteration loop: for 1=i  to imax in steps of one. 
2a. Set 0r =t  or 1r =h  and for the crimp angle 1)(β −ic  solve the quadratic equation (11) for the 

two roots of the ratio aLu .

2b. If no positive real root aLu  exists, then STOP the program and write a warning message. 

2c. Take the smallest positive real root, and multiply the root by the yarn spacing a to obtain a 
new value of the undulation length uL .

2d. If aLu ≤<0 , then go to step 2e, else, if aLu > , then set aLu =  and solve eq. (11) for rh .

2e. Determine a new thickness t from the fibre volume fraction equation (4). 

2f. Calculate a new crimp angle ic )(β  from eq. (3) using the new uL  and t determined in steps 2c 

to 2e. 
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df pndA π= . Set 1r =h .

From the small crimp angle equations (13), compute the initial values of the thickness t and length 

uL . The initial crimp angle 0)β( c  is computed from eq. (3). 
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new value of the undulation length uL .

2d. If aLu ≤<0 , then go to step 2e, else, if aLu > , then set aLu =  and solve eq. (11) for rh .

2e. Determine a new thickness t from the fibre volume fraction equation (4). 

2f. Calculate a new crimp angle ic )(β  from eq. (3) using the new uL  and t determined in steps 2c 

to 2e. 

(11)
+

Equation 11 is used in the iterative proce-
dure to determine parameters .
The function of the crimp angle is defined
by Equation 12 (see page 50).

F(φa, m) and E(φa, m) are the incomplete 
elliptic integrals of the first and second
kind. 

Assuming that 
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new value of the undulation length uL .
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, we obtain 
approximations to the volume fraction 
equation (4) and the yarn shape equation 
(10). We neglect terms of order 
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the final results
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 (13)

Small crimp angle approximations (13) 
are used in the iterative procedure at the 
beginning of the calculations.

Algorithm to determine the architec-
ture parameters
Input parameters: n, df, pd, a, V, tol, imax. 
Output parameters: t, Lu, βc, tr, anew – new 
yarn spacing only if βc = 45°, V – vol. of 
¼ of the RUC, Vyarn – vol. of the yarns in 
¼ of the RUC, Vr – vol. of the resin in ¼ 
of the RUC.

1. Compute the cross-sectional area A of 
the yarn from 
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to 2e. 

 Set 
hr = 1.

 From the small crimp angle equations 
(13), compute the initial values of the 
thickness t and length Lu. The initial 
crimp angle (βc)0 is computed from 
eq. (3).

2. Begin the iteration loop: for to imax 
in steps of one.

a. Set tr = 0 or hr = 1 and for the crimp 
angle (βc)i–1 solve the quadratic equa-
tion (11) for the two roots of the ratio 
Lu / a.

b. If no positive real root Lu / a exists, 
then STOP the program and write a 
warning message.

c. Take the smallest positive real root, 
and multiply the root by the yarn spac-
ing a to obtain a new value of the un-
dulation length Lu.

d. If 0 < Lu ≤ a, then go to step 2e, else, 
if Lu > a, then set Lu = a and solve 
eq. (11) for hr.

e. Determine a new thickness t from the 
fibre volume fraction equation (4).

f. Calculate a new crimp angle (βc)i from 
eq. (3) using the new Lu and t deter-
mined in steps 2c to 2e.

g. Calculate the difference in the iterates 
using the measure 
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2g. Calculate the difference in the iterates using the measure 1)(β)(βε −−= icic .

2h. If tol>ε , then increase the index 1+→ ii .
2i. If imaxi ≤ , then go to step 2a, else, if imaxi > , then STOP and print a non-convergence 

message. 
2j. If tol<ε , then the fixed point iteration is judged to have converged to the crimp angle 

icc )(ββ = .

3. Check the constraint on the crimp angle. 
3a. If 4/β0 π≤< c , then STOP. Convergence of the geometric parameters t, uL  and rt  has been 

achieved and the geometry of the RUC is established. 
3b. If 4/β π>c , then set 4/β π=c  and assume that the specified value of the yarn spacing a is 

incorrect. Solve for t, uL , rt  and a in steps from 3c to 3f. 

3c. Set 0r =t  or 1r =h  and solve the quadratic equation (11) for the two roots aLu .

Take the positive real root for the ratio of aLu .

3d. If 1/0 ≤< aLu , then go to step 3e, else, if 1>aLu , then set 1=aLu  and solve eq. (11) for 

rh .

3e. Because 1βtan =c , we determine from eq. (3) that aaLt u )()2( π= . Substitute this 

expression for t into the volume fraction equation (4) and solve for the new yarn spacing newa

to obtain ])(2[)]()β(1[ r1new hVaLaLgAda fuucp −= π , where 4β π=c .

3f. For newa  from step 3e, compute new)( aaLL uu ⋅= , uLt )2( π=  and )1(2 rr −= htt .

Numerical example
Input data: mm007.0=fd , 64.0=fV , mm411.1=a , 75.0=dp , 6104 −⋅= πtol , imax = 30. 

Output data:   

For n = 14000, a maximum crimp angle condition, the yarn spacing a is recomputed. 
In Figure 3, a numerically calculated shape of the undulation region along the warp yarn is shown for 
two cases: a) model is valid ( 4/β π≤c ), b) model is not valid because a cusp forms in the filament in a 

region close to the end of the undulating region ( 4/β π>c ).

n a, mm t, mm uL , mm cβ , deg No. of 
iterations

2000 1.4110 0.0857 0.5869 12.90 4 
10000 1.4110 0.4727 0.7812 43.54 6 
14000 1.6260 0.5804 0.9117 45.00 23 

.
h. If ε > tol, then increase the index 

i → i + 1.
i. If i ≤ imax, then go to step 2a, else, if 

i > imax, then STOP and print a non-
convergence message.

j. If ε > tol, then the fixed point itera-
tion is judged to have converged to the 
crimp angle βc = (βc)i.

3. Check the constraint on the crimp 
angle.

Figure 3. Geometry of an undulation region along the warp yarn calculated numerically: 
a) βc ≤ π/4 – model is valid, b) βc > π/4 – model is not valid (a cusp forms).
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undulating region. Using geometrical 
considerations, it is possible to obtain 
from this model basic mechanical pa-
rameters that are very useful for further 
strength analysis. Such mechanical con-
siderations and a method for calculating 
mechanical parameters will be presented 
in a future article. Using the Mathemati-
ca environment [11], a special computer 
program was developed to calculate the 
geometrical parameters.
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