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The electricity-control system of a warp 
knitting machine is a typical kind of flat 
distributed complex system which can 
achieve various motion control func-
tions, such as warp yarn let-off and take-
up, electronic shogging, and electronic 
needle selection for jacquard. Piezoelec-
tric bimorph has significant advantages 
such as low drive current, low power 
consumption, strong anti-interference 
ability against the impact of current, low 
heat production, no harmful vibrations 
and no electromagnetic interference, and 
hence it is being widely applied in the 
textile machinery industry [15]. In the 
last few years, boosted by advances in 
computing, communications, and sens-
ing technologies, piezoelectric jacquard 
has represented a new research frontier 
for the warp knitting machine to replace 
the old magnet and mechanical jacquard, 
and it has recently drawn a great deal of 
attention. An innovative piezoelectric 
jacquard selection mechanism is intro-
duced in [15]. The application of flash 
memory in a computerised jacquard con-
troller was investigated in [16]. In order 
to raise the efficiency of the knitwear 
design manufacturing process, [17, 18] 
studied the knitting and jacquard design 
process using a textile Computer Aided 
Design (CAD) system. In [19], a network 
structure, function and communication 
protocol for the CAD&CAM system for 
textile was developed.

Designing piezoelectric jacquard control 
kernels still remains challenging. Gao et 
al. [20] designed an automatic jacquard 
control system for a glove knitting ma-
chine using an ARM-based STM32f407 

processor. Kumaravelu et al. [21] devel-
oped an electronic cardless jacquard for 
128 hook handloom weaving apparatus. 
Li et al. [22] proposed a piezo jacquard 
control system based on Can-bus. These 
works give some tentative and enlight-
ening research results, but have potential 
drawbacks such as that the complex mul-
ti-card structure may cause low reliabili-
ty and maintenance difficulties.

This paper introduces an innovative 
distributed integrated jacquard control 
system, i.e., an embedded electronic jac-
quard guide bar (EEJGB) for a warp knit-
ting machine. The new control method 
that we describe in this paper incorporates 
the following three novel contributions:
1)	 In order to overcome the low reliabil-

ity and maintenance difficulties of the 
traditional warp knitting machine’s 
electronic jacquard control system 
with complex multi-card structure, 
the EEJGB proposed integrates the 
Micro-Controller Unit (MCU), driver 
circuit, DC powers and communica-
tion interfaces. Such a structure not 
only greatly reduces the jacquard con-
trol system’s size but also improves 
the reliability and  ability of resisting 
noise interference and vibration. 

2) For EEJGB, a hybrid serial commu-
nication method combining the bus 
and ring logic topology architecture is 
presented to balance the real-time de-
mand, fault-tolerance and reliability. 
In this way, the addresses of EEJGBs 
can be automatically and dynamically 
assigned by a jacquard controller to 
facilitate expansion and replacement 
instead of usually using code switches 
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Abstract
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	 Introduction
Warp knitting machines, with their fast 
speed and high production efficiency, 
have received sustained attention in ac-
ademic and engineering circles of the 
textile industry [1]. In the development 
of warp knitting machines, flexibility 
rather than speed increase is prioritised 
[2]. In recent years, the increased flexi-
bility of warp knitting machines has been 
achieved by increasing the number of 
guide bars [3-4], the wide use of electron-
ically controlled drives [5-7],  innovative 
detailed solutions for yarn feeding [8,9], 
three-dimensional simulation and design 
of warp knitted structures [10-12], defect 
detection [13, 14], and so on.
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or a handheld programmer to assign 
addresses to EEJGBs.

3)	The EEJGB proposed has a distrib-
uted control architecture which is of 
simple structure, convenient mainte-
nance and, at the same time, can run 
independently. 

The rest of this paper is organised as fol-
lows: We give a comparative study on 
the characteristics of the traditional pi-
ezoelectric jacquard control system and 
the EEJGB proposed in Section 2. Sec-
tion 3 briefly investigates the hardware 
circuit design of EEJGB. Section 4 in-
troduces the communication architecture 
of the EEJGB based Modbus serial bus. 
The dynamic device address configura-
tion mechanism is presented in Section 5. 

Section 6 shows the feasibility and prac-
ticality of our methods. Finally conclu-
sions are drawn in Section 7.

	 Problem formulation
Rapid drive technology 
for piezoelectric jacquard
Piezoelectric jacquard applies the con-
verse piezoelectric effect to drive yarn 
guide deflection. In the modern warp 
knitting machine’s control system, the 
key technology of piezoelectric jacquard 
is quickly driving the piezoelectric ce-
ramic. According to the width of the warp 
knitting machine and knitting gauge, the 
number of piezoelectric jacquard nee-
dles installed on a warp knitting machine 
ranges from 3640 to 13440. In general, 

16 piezoelectric jacquard needles are in-
stalled on a piezoelectric jacquard bar. 
Because every piezoelectric jacquard 
needle needs to be independently con-
trolled, the control and communication 
system for piezoelectric jacquard bars 
will face  challenges.

Characteristics of the traditional 
piezoelectric jacquard control system
Currently the traditional piezoelectric 
jacquard control system for the jacquard 
warp knitting machine is composed of 
a pattern design workstation, jacquard 
controller, relay circuit boards and, driv-
er boards, shown in Figure 1. Its work-
ing principle is as follows: The pattern 
design workstation can complete the 
pattern design of warp knitting fabrics 

Figure 2. Switching power supply of EEJGB.

Figure 3. Integrated circuit design of EEJGB.
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Figure 1. Traditional piezoelectric jacquard control system for warp knitting machine.
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Fig.3. Integrated circuits design of EEJGB.

The PCB for EEJGB is shown in Figure 4. Generally, the width of a jacquard guide bar (E14-E32) 
is 25-58mm. This means that the proposed EEJGB can be used to upgrade the most of traditional 
jacquard guide bar.

Fig. 4 PCB for EEJGB  

As opposed to the traditional complex multi-card structure of piezoelectric jacquard control 
system, the presented EEJGB shown in  Figure 5,  has apparently pos-
sess the characteristic of  simple structure, high reliability, ease  installation and maintenance and 
so on.  

In order to effectively resolve the problems integration of distributed and isomeric sys-

tems, the scheme of OPC client/server architecture is adopted. EEJGB may communicate with 

CAD software and jacquard controller through the OPC Software Bus to compatible with tradi-

tional systems. 
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though CAD software and then generate 
pattern data which will be downloaded to 
the jacquard controller via an industrial 
Ethernet, flash card, etc. Next the pattern 
data are transported to the flash memo-
ry of the jacquard driver boards through 
the relay circuit boards. Finally the driver 
boards control and drive the piezoelectric 
jacquard bars to move according to the 
pattern files, as well as synchronise the 
signal generated by the proximity switch 
used to detect the run state of the warp 
knitting machine.

	 Design of EEJGB
The most appealing feature of the EEJGB 
is that the Micro-Controller Unit (MCU), 
driver circuit, DC powers and communi-

cation interfaces are integrated into the 
top of a traditional piezoelectric jacquard 
bar. The system organisation and work-
flow of the EEJGB are as follows:
1)	The MCU, which is STC15F2K60S2, 

can receive pattern files from the jac-
quard controller via the communica-
tion interface and store them in inter-
nal flash memory.

2)	 In this paper, two DC powers are in-
tegrated into the inside of the EEJGB, 
which will supply 200V and 5V to the 
driver circuit and MCU, respectively, 

as shown in Figure 2. The inputs of 
the two powers are all 24V.

3)	The driver circuit adopts the HV507, 
which is a low voltage serial to high 
voltage parallel converter with 64 
push-pull outputs. STC15F2K60S2 
controls the HV507 to drive the pie-
zoelectric jacquard bars (such as E24) 
based on the pattern data and synchro-
nising signal generated by the prox-
imity switch, used to detect the run 
state of the warp knitting machine, as 
shown in Figure 3. 

Figure 4. PCB for EEJGB.

Figure 6. Physical topology of EEJGB. The blue twisted pair cable is used as the downlink, and the brown twisted pair cable as the uplink.
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electronic jacquard control system.
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The PCB for EEJGB is shown in Fig-
ure 4. Generally the width of a jacquard 
guide bar (E14-E32) is 25-58mm, which 
means that the EEJGB proposed can be 
used to upgrade  most traditional jac-
quard guide bars.

As opposed to the traditional complex 
multi-card structure of the piezoelectric 
jacquard control system, the EEJGB pre-
sented, shown in Figure 5, apparently 
possesses the characteristics of  simple 
structure, high reliability, ease  of instal-
lation and maintenance, and so on. 

In order to effectively resolve the prob-
lems of integration of distributed and 
isomeric systems, the OPC client/server 
architecture scheme is adopted. EEJGB 
may communicate with CAD software 
and the jacquard controller through the 
OPC Software Bus so as to be compatible 
with traditional systems. 

Subsequent sections will provide associ-
ated communication architecture details 
of our design.

	 Communication architecture 
of EEJGB

Physical connectivity standard
Physically the EEJGB uses the TIA/EIA-
485 (RS485) physical interface [23], 
which is adopted using the design of the 
balance transmission driver and differen-
tial receiver to strengthen the ability of 
the restraining common-mode interfer-
ence. Every EEJGB installed on a warp 
knitting machine contains two MAX488 
chips with a full-duplex and low-pow-
er-to-implement serial daisy chain com-

munication mode, as shown in Figure 3 
and Figure 6. We will now discuss some 
advantages of the daisy chain communi-
cation model of serial bus topology ar-
chitecture presented. 

Downlink implementation
The downlink is used to transmit pattern 
data or synchronizing signals. By adopt-
ing the step-by-step excitation mode, 
i.e., relay transmission, the pattern data 
or synchronising signals are carried 
though the downlink from the jacquard 
controller to the first EEJGB, then until 
the final EEJGB. It is worth noting that 
the MCU is not intended to intervene 
and control the communication process; 
it is there to improve reliability without 
reducing the transmission speed. There-
fore we logically treat the downlink as 
bus topology. Before the warp knitting 
machine begins to run, the jacquard con-
troller downloads pattern data to every 
one of the EEJBGs using the downlink. 
When the warp knitting machine is run-
ning, the jacquard controller only needs 
to transmit synchronising signals to the 
EEJGBs, which can ensure real-time 
communication.

Uplink implementation 
The jacquard controller may collect the 
response signals of EEJGBs via the up-
link. A very important feature of our 
RS485 uplink implementation is that 
the response signals are controlled and 
interacted by MCUs. In the line RS485 
network for EEJGBs, the only final node 
is used as a communication node, but has 
no jacquard function, as shown in Fig-
ure 5. The topology of the uplink is sim-
ilar to ring topology.

Modbus serial data link protocol 
based on RS485 for EEJGB
We adopt Modbus protocol to implement 
the data link and application. The Mod-
bus standard defines application layer 
messaging protocol, positioned at level 7 
of the OSI model, that provides “client/
server” communications between devic-
es connected on different types of buses 
or networks. It also standardises specific 
protocol on a serial line to exchange the 
Modbus request between the master node 
and one or several slave nodes. In this pa-
per, the master node may be a jacquard 
controller or EEJGBs, and slave nodes 
are EEJGBs.

RTU transmission mode 
We use the Remote Terminal Unit (RTU) 
mode, whose advantage is that its great-
er character density allows better data 
throughput than the ASCII mode for the 
same baud rate. A typical RTU message 
frame is shown in Table 1. The maximum 
size of a Modbus RTU frame is 256 bytes. 
According to Modbus protocol, the Mod-
bus master node has no specific address; 
only the slave nodes must have an ad-
dress that has to be unique on a MOD-
BUS serial bus. This means that each EE-
JGB, as a slave node, must have a unique 
device address (from 1 to 247 decimal) 
so that it can be addressed independent-
ly from other nodes on a Modbus serial 
bus, as shown in Table 1. Address 0 is 
used for the broadcast address, which all 
slave devices recognise. The RTU func-
tion code field of the message frame tells 
the slave what kind of action to perform 
when a message is sent from a master 
to a slave device. Valid codes are in the 
range of 1-255 decimals. A data field is 
constructed using sets of two hexadeci-
mal digits, in the range of 00 to FF hexa-
decimals. The data field of messages sent 
from a master to slave devices contains 
additional information which the slave 
must use to take the action defined by the 
function code. The RTU mode includes 
an error-checking field that is based 
on the Cyclical Redundancy Checking 
(CRC) method performed on the mes-
sage contents. In the RTU mode, mes-
sages start with a silent interval of at least 
3.5 character times. The entire message 
frame must be transmitted as a contin-
uous stream. If a silent interval of more 
than 1.5 character times occurs before 
completion of the frame, the receiving 
device flashes the incomplete message 
and assumes that the next byte will be the 
address field of a new message.

Table 1. RTU Message frame.

Device address Function code Data CRC check

1 Byte 1 Byte n Byte 2 Byte

Table 2. Bit sequence in RTU mode.

Start Data Parity/stop Stop

1 bit 8 bit 1 bit 1 bit

LSB  MSB

Table 3. Example of MODBUS request frame over Serial Line.

Slave device 
address

Function 
code

Data
CRC checkNo. of 

registers 
Data start register 

address Pattern data

01 H 15 H 80 H 0000 H 128 Byte 2 Byte



99FIBRES & TEXTILES in Eastern Europe  2018, Vol. 26,  6(132)

When messages are transmitted on stand-
ard Modbus serial networks, each char-
acter or byte is sent in this order (left 
to right): Least Significant Bit (LSB).... 
Most Significant Bit (MSB), as shown in 
Table 2. Devices may accept by config-
uration either Even, Odd, or No Parity 
checking. If No Parity is implemented, 
an additional stop bit is transmitted to 
fill out the character frame to a full 11-bit 
asynchronous character.

RTU message of pattern design data in 
unicast mode
An EEJGB usually includes sixteen knit-
ting needles. Before the warp knitting 
machine begins to run, the jacquard con-
troller issues a Modbus request message 
including pattern design data to every 
EEJGB in the unicast mode through the 
downlink. Large pattern design data can 
be sent  multiple times. Apparently this 
mode of offline downloading and step-
by-step excitation of pattern design data 
can not only effectively reduce real time 
data traffic but also increase the maxi-
mum number of slave nodes in the Mod-
bus serial bus.

Firstly the jacquard controller address-
es every individual EEJGB sequentially. 
Table 3 shows an example of a Modbus 
query message in hexadecimals from 
a jacquard controller. The query contains 
a standard Modbus slave address, func-
tion code, byte count, starting address and 
error check fields. The jacquard controller 
query is a Write General Reference (i.e., 
the value 15 Hex) request that can write 
multiple groups of references to slave 
device address 01Hex. The message re-
quests pattern design data to 128(80 Hex) 
registers of an EEJGB. Note that the mes-
sage specifies the starting register address 
as 0000 Hex. The available quantity of 
Memory depends upon the size of Extend-
ed Memory installed in the slave EEJGB. 
In this paper, the STC15F2K60S2 has 
60K storage space for pattern design data. 

Then after receiving and processing the 
request, every EEJGB returns a message 
(a ‘reply’) in hexadecimals to the jac-
quard controller. If the action requested is 
without error, it returns the same address, 
function, byte count and starting address 
code in its response. It means that the 
slave simply echoes the original function 
code as a normal response. As an excep-
tional response, the slave returns a code 
that is equivalent to the original function 
code, with its most significant bit set to 
logic “1”. For example, if an exception 

figure addresses for EEJGBs each time, 
which is a burden to operators. Therefore 
we proposed a new dynamic configura-
tion method of EEJGB addresses which 
incorporates the following key features:
n	 the unique identification (ID) number 

of each EEJGB is sent to the jacquard 
controller in the unicast mode;

n	 all the ID numbers of EEJGB are 
mapped to an address table according 
to the chronological arrival   order of 
ID numbers;

n	 the jacquard controller sends the ad-
dress table to all EEJGBs in the broad-
ca st mode;

n	 by using the methods of address ta-
ble lookups, every EEJGB can obtain 
a unique address based its own ID 
number.

The dynamic device address configura-
tion mechanism above represents an im-
portant contribution of this paper.

	 Real-time communication 
testing and analysis 

For a jacquard warp knitting machine, 
guiding needles are required to complete 
the lateral movement while completing 
the offset action. Take E32 for exam-
ple, the width of an EEJGB containing 
16 needles is 25.4 mm, and their offset 
is 0.79 mm. Each revolution of the warp 
knitting machine spindle allows the off-
set angle to be 70° before the needle and 
160° after the needle, as shown in Fig-
ure 7. According to document [24], the 
allowable time range for deflection of the 
piezoelectric ceramic guide needles is 
18ms ≤ tDE ≤ 43ms.

The spindle speed of the warp knitting 
machine can be calculated by

jam in real-time.   
5.Dynamic device address configuration mechanism

In the traditional jacquard control system of a warp knitting machine, each EEJGB is assigned 
a fixed address by the code switch or handheld programmer. In this way, when the physi-
cal location of an EEJGB is changed, we need to re-configure addresses for EEJGBs each time,
which is a burden to operators. Therefore we proposed a new dynamic configuration method of 
EEJGB addresses which incorporates the following key features: 

1) the unique identification (ID) number of each EEJGB is sent to the jacquard controller in the 
unicast mode; 

2) all the ID numbers of EEJGB are mapped to an address table according to the chronological 
arrival   order of ID numbers; 

3) the jacquard controller sends the address table to all EEJGBs in the broadca 
st mode; 

4) by using the methods of address table lookups, every EEJGB can obtain a unique address 
based its own ID number. 

The dynamic device address configuration mechanism above represents an important contribu-
tion of this paper.
6.Real-time communication testing and analysis   

For a jacquard warp knitting machine,  guiding needles are required to complete the lateral 
movement while completing the offset action. Take E32 for example, the width of an EEJGB con-
taining 16 needles is 25.4 mm, and their offset is 0.79 mm. Each revolution of the warp knitting 
machine spindle allows the offset angle to be 70°before the needle and 160°after the needle, as 
shown in Fig.7. According to document [ 24 ], the allowable time range for deflection of the pie-
zoelectric ceramic guide needles is DE18ms t 43ms  . 

Fig.7 Migration movement diagram of jacquard guide needle

The spindle speed of the warp knitting machine can be calculated by 
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where   is the rotation angle of the spindle， t  the communication time，and DEt the time 

allowable for deflection of the piezoelectric ceramic guide needle。 

The serial communication time model can be expressed as 

T PD PDt t t t     (2) 

where = /Tt N B  is the data string transmission time, where N is the number of characters of a 

data frame,   the data digits in each character, B  the baud rate, ( / )PD PLH PHLt t  the data 

transmission delay time of the downlink, where ( / )PLH PHLt is the MAX488 transmission delay 

time,   the number of EEJGB in the downlink channel,   the number of MAX488 in an 

EEJGB, and PDt   the uplink channel data transmission delay time，which can be described as 

      (1)

where θ is the rotation angle of the spin-
dle tΔ the communication time, and tDE 

Table 4. Example of MODBUS normal response frame over Serial Line.

Slave device 
address

Function 
code

Data
CRC checkNo. of 

registers 
Data start 

register address
Diagnostic 

code
01 H 15 H 80 H 0000 H 00 H 2 Byte

Table 5. Example of MODBUS exceptional response frame over Serial Line.

Slave device 
address

Function 
code

Data
CRC checkNo. of 

registers 
Data start 

register address
Diagnostic 

code
01 H 95 H 80 H 0000 H 01 H 2 Byte

occurs, the EEJGB must return the fol-
lowing function code: 95H. In addition 
to its modification of the function code 
for an exceptional response, the slave 
also places a unique diagnostic code into 
the data field of the response message. 
Tables 4 and 5, respectively, illustrate 
an example of a normal and exceptional 
response by an EEJGB. The diagnostic 
code 00 Hex and 01 Hex indicate ‘nor-
mal’ and ‘error’, respectively. The jac-
quard controller’s application program 
has the responsibility of handling excep-
tional responses. Typical processes are to 
post subsequent retries of the message, 
to try to send diagnostic messages to the 
EEJGB, and to notify operators. 

RTU message frame of synchronous 
data in broadcast mode
Once the warp knitting machine is up 
and running, the jacquard controller can 
receive a synchronous data message in 
real-time from the proximity switch and 
then broadcast it to all EEJGBs to decide 
whether to move. The synchronous data 
message includes the sequence number 
of current steps of EEJGB (one byte) and 
the synchronous control signal (two bytes) 
(Table 6). 

After receiving the synchronous data 
message, every EEJGB will send a re-
sponse signal to its own upper node via 
the uplink. Every upper node applies the 
synchronous data message from the low-
er node to verify its own and no longer 
transports it upwards to effectively avoid 
the uplink jam in real-time (Table t). 

	 Dynamic device address 
configuration mechanism

In the traditional jacquard control system 
of a warp knitting machine, each EEJGB 
is assigned a fixed address by the code 
switch or handheld programmer. In this 
way, when the physical location of an 
EEJGB is changed, we need to re-con-
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the time allowable for deflection of the 
piezoelectric ceramic guide needle.

The serial communication time model 
can be expressed as

jam in real-time.   
5.Dynamic device address configuration mechanism

In the traditional jacquard control system of a warp knitting machine, each EEJGB is assigned 
a fixed address by the code switch or handheld programmer. In this way, when the physi-
cal location of an EEJGB is changed, we need to re-configure addresses for EEJGBs each time,
which is a burden to operators. Therefore we proposed a new dynamic configuration method of 
EEJGB addresses which incorporates the following key features: 

1) the unique identification (ID) number of each EEJGB is sent to the jacquard controller in the 
unicast mode; 

2) all the ID numbers of EEJGB are mapped to an address table according to the chronological 
arrival   order of ID numbers; 

3) the jacquard controller sends the address table to all EEJGBs in the broadca 
st mode; 

4) by using the methods of address table lookups, every EEJGB can obtain a unique address 
based its own ID number. 

The dynamic device address configuration mechanism above represents an important contribu-
tion of this paper.
6.Real-time communication testing and analysis   

For a jacquard warp knitting machine,  guiding needles are required to complete the lateral 
movement while completing the offset action. Take E32 for example, the width of an EEJGB con-
taining 16 needles is 25.4 mm, and their offset is 0.79 mm. Each revolution of the warp knitting 
machine spindle allows the offset angle to be 70°before the needle and 160°after the needle, as 
shown in Fig.7. According to document [ 24 ], the allowable time range for deflection of the pie-
zoelectric ceramic guide needles is DE18ms t 43ms  . 
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From the above testing and analysis, it can be seen that the factors restricting the spindle 
speed of a warp knitting machine by the traditional communication mode are not only controlled 
by the offset speed of the piezoelectric jacquard needle, but also by the communication rate. After 
the distributed heterogeneous communication architecture proposed, the spindle speed of the warp 
knitting machine is mainly controlled by the offset speed of the piezoelectric jacquard needle. 
7. Conclusions

In this work, taking into account using a Modbus serial bus, a new integrated control strategy,
i.e., EEJGB, is proposed for warp knitting machines. The EEJGBs, with their com-
pact structure and small bulk, can be embedded into various warp knitting machines in a quick 
and convenient way. The feasibility is shown in the 3D PCB board constructed by means of Al-
tium Designer (version 14.3.12) soft. 
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From the above testing and analysis, it 
can be seen that the factors restricting the 
spindle speed of a warp knitting machine 
by the traditional communication mode 
are not only controlled by the offset speed 
of the piezoelectric jacquard needle, but 
also by the communication rate. After 
the distributed heterogeneous communi-
cation architecture proposed, the spindle 
speed of the warp knitting machine is 
mainly controlled by the offset speed of 
the piezoelectric jacquard needle.
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ative effect on bending rigidity as well as 
the air and moisture permeability.

In this work, taking into account using 
a Modbus serial bus, a new integrated 
control strategy, i.e., EEJGB, is proposed 
for warp knitting machines. The EE-
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