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n Introduction
Recently, many concepts in applied 
mathematics and applied mechanics 
have been successfully applied to mod-
elling the process of yarn spinning; for 
example, the conservation laws in fluid 
mechanics have been applied to establish 
a quasi-static model for two-strand yarn 
spinning [1], the homotopy perturbation 
method [2-4] has been applied to nonlin-
ear problems arising in yarn spinning [5, 
6], the technology of neural networks is 
applied to describing yarn spinning [7-
9], intelligent systems have been applied 
as a basis for improving the position and 
competitiveness of the textile industry 
[10], the kinematic approach to the analy-
sis of the sewing mechanisms of an over-
edge machine [11], and ancient Chinese 
mathematics to accurate identification of 
the shape of the yarn balloon [12]. This 
paper will apply the variational method 
to study the nonlinear phenomenon in the 
process of two-strand yarn spinning. 

n Stable working conditions
Traditionally, two-strand yarns have been 
used for weaving because they are strong-
er, and the twisting operation binds the sur-
face fibres into the yarn structure so that it 
is smoother and more resistant to abrasion 
during weaving. Two-strand spun yarns are 
now widely used in the worsted industry. 
The strands are texturised to improve the 
bulk of the resultant yarns, which have 
been proved to possess more desirable 
properties. For example, the weaveability 
of the fabric formed by the Sirospun yarns 
is significantly improved over its counter-
part yarns. 
 
The dynamical character of the system 
strongly depends upon the convergent 

angles, and we should guarantee a stable 
working condition during the spinning 
procedure. The observation shows that 
a slight change in the densities and the 
velocities of the two strands may induce 
chaotic motion of the strands. Przybyl 
studied the stable working conditions of 
the twisting-and-winding system of a 
ring spinning frame [13]. Herein we sug-
gest a very simple but effective approach 
to determining stable working conditions 
for two-strand yarn spinning. 

We first assume the system is in a stable 
condition, and then a control volume is 
chosen as illustrated in Figure 1. Based 
on the characters of the system’s dynam-
ics (mass conservation) [1], the total 
mass in the control volume remains un-
changed. This requires fulfilling the fol-
lowing formula: 

,        (1)
or 

.          (2)

where:
ρ1, ρ2  - are the densities of the above two 

strands, 
ρ  - is the density of the spun yarn, 
u1, u2 - are the velocities of the two 

strands, 
u  - is the velocity of the spun yarn, 
R1, R2 - are the radii of the two strands,
R  - is the radius of the resultant yarn.

If: 
, 

the stable working condition is broken, 
and the spinning system must operate in 
an unsteady condition. 

For multiple-strand yarn spinning, the 
stable working condition can be readily 
obtained as follows:

                 (3)

where ρk, uk, Rk are respectively the 
density, velocity and radius of the k-th 
strand. 

Three-strand yarn can be designed for 
smart fabric, and can have many advan-
tages over two-strand yarn. Our group in 
Donghua University, Shanghai, China, is 

Variational Approach to Nonlinear Coupled 
Oscillators Arising in Sirospun Yarn 
Spinning

Ji-Huan He

Modern Textile Institute & College of Science, 
Donghua University, 

1882 Yan-an Xilu Road, P.O. Box 471,
Shanghai 200051, China

Email: jhhe@dhu.edu.cn, ijnsns@yahoo.com.cn

Abstract
A description of stable working conditions for spinning two-strand yarn is given. A 
theoretical model underlying Sirospun yarn spinning is also given. Based on the variational 
formulation established for the coupled oscillators arising in two-strand yarn spinning, a 
simple analytical model for the forces that determine the nonlinear oscillation during the 
yarn spinning, as a function of inlet velocities, strand-spacing, and forces acting on the 
strands is proposed, which reveals that resonance occurs when the convergence angle is 
near 127 degrees.

Key words: two-strand yarn, Sirospun, Sirofil, dynamical model, variational principle, 
coupled nonlinear oscillator, resonance, three-strand yarn.

Figure 1. Control volume for stable spinning 
process; ρ1, ρ2 - densities of the strands, 
ρ - density of the spun yarn, u1, u2 - velocities 
of the strands, u - velocity of the spun yarn, 
R1, R2 - radii of the strands, R - radius of 
the resultant yarn.

Figure 2. Three-strand yarn spinning; 
different methods at joining.
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doing research on three-strand yarn (see 
Figure 2). The stable working condition 
for the three-strand yarn is as follows:

 .   (4)

The three-strand yarn can be prepared in 
a single processing step, and far-reaching 
implications are emerging for its use in 
applications including intelligent textile 
and multi-functional materials. We will 
discuss how to determine the convergent 
points and to establish its dynamical 
model in future papers.

The aim of this paper is to use the 
variational method to study the nonlinear 
phenomena in the process of two-strand 
yarn spinning. For this purpose, a simple 
mathematical model was developed. 
We do not present the boundary limits 
concerned with the type of yarn, linear 
masses of the strands, spinning velocity 
and the geometrical dimensions, as it ap-
pears that this is not necessary for these 
commonly-used qualities at this stage of 
consideration. 

 Dynamical model 
and variational principle 

Let the ends of the two strands above the 
convergent point be fixed at a distance 
2L apart, and the equilibrium position 
be H below. Let x-direction be the direc-
tion of strand-spacing, and y-direction be 
perpendicular to the x-direction as illus-
trated in Figure 3. The density of strands 
and spinning velocity are assumed to be 
constant in the Sirospun system, and the 
equations of the motion in x- and y-direc-
tions are:

,   (5)

.  (6)

Here M is the total mass of a fixed control 
volume, F1, F2, F - the forces acting in 
strands and yarn respectively. This con-
trol volume is chosen in such a way that 
the mass centre coincides with the con-
vergent point (O) of the two strands. 

By a simple manipulation, we simplify 
Equations (5) and (6) as follows [5]: 

, 

, ,            
(7)

, 

, ,            (8)

where the particular quantities (ωx, ωy) 
and constants (a, b, c) are described by 
Equations (8’). 

In this paper we will apply the variational 
method to analysis of Equations (7) and 

(8). The variational method is widely ap-
plied to dealing with nonlinear problems 
[14 - 17]. Equations (7) and (8) can be de-
rived from a functional as stationary con-
ditions. To search for such a functional, 
in view of the semi-inverse method [14], 

Figure 3. The dyna-
mical illustration 
of two-strand spun 
yarns; F, F1, F2 
– forces acting in 
yarn and the both 
strands;  α, β – angles 
between the strands 
and the horizontal 
axis at equilibrium 
positions and the 
dynamically dis-
placed position, α0 
- convergence angle; 
the converqence paint 
is displacemed from 
0(0,0) to 0’(-x,-y).

Equations 8’. The quantities and constants described by Equation 8.

(8’)

(18)

(9)

(11)

(13)

(14)

(15)

(16)

(17)

(21)

Equations: 9, 11, 13 - 18, and 21.
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we begin with the trial-functional pre-
sented by Equation (9), where Π is 
an unknown function of y and its de-
rivatives. The stationary condition of the 
above functional (3) with respect to x can 
be expressed as follows:

,             (10)

where , and L is the Lagrangian 
as defined by (11). 

Equation (10) reduces to Equation (7) 
by the substitution of (11) into (10). 
Now calculating the variation of (9) with 
respect to y, we obtain the following sta-
tionary condition: 

,             (12)

where  is the variational derivative

with respect to y defined by Equation (13).

We search for such an F so that Equation 
(12) is equivalent to Equation (8). To this 
end, we set (14), from which Π can be 
identified as (15). 

Finally we obtain the following necessary 
variational formulation presented by (16).

From the functional (16), we obtain the 
Hamiltonian invariant (17), where H is 
the conserved constant which can be 
determined from the initial conditions: 

, , , , 
so Equation (17) can be re-written in the 
form of (18).

The system has a period solution, so we 
assume that 

x = A sinΩxt,               (19)
y = B sinΩyt,               (20)

where Ωx, Ωy are frequencies in x- and 
y-directions respectively. 

Substituting (19) and (20) into (18), we 
obtain the residual (21). 

We apply the collocation method to 
identify the frequencies. Collocating at 
Ωxt = π/4 and Ωyt = π/4, and putting 
R = 0 gives 

,      (22) 

.      (23)

From (22) and (23), the frequencies can 
be approximately determined. It is very 
clear that the frequencies (Ωx and Ωy) 
depend upon strand-spacing, the con-
vergent angle α0. For the given param-
eters (H, L, A and B), the values of the 
frequencies can be readily determined 
from Equations (22) and (23) by MatLab. 
The Lissajou figures are illustrated in 
Figure 4 for various different values of 
Ωx and Ωy. 

n Resonance
In order to find the resonance condition 
of the coupled oscillator (7) and (8), we 
have written (7) and (8) in the approxi-
mately forms of (24) and (25).

Resonance occurs when ωx = Ωx + Ωy, or 
ωx = Ωy - Ωx, or ωy = 2Ωx, or ωy = 2Ωy, 
where Ωx, Ωy are solved approximately 
by collocation of the Hamiltonian invari-
ant, Equation (21). 

In case a is small, then Ωx ≈ ωx. In such 
a case, resonance occurs when 2ωx = ωy 
(i.e. L = 2H or the convergence angle 
2α0 = 2 × 63.43°). 

n Conclusion 
To conclude, we obtain a Hamiltonian 
invariant, from which the frequencies 
are approximately determined by two-
point collocation. The frequencies de-
pend upon the strand-spacing (H) and 
the convergent angle (α0). Note that the 
convergent angle is determined from the 
inlet velocities and the forces acting on 
the strands. So, we obtain a very simple 

analytical model describing the nonlin-
ear oscillation during the yarn spinning. 
Resonance occurs when the convergence 
angle is near 127°, so the design conver-
gence angle should be far from 127°. The 
linear dynamical model [18] predicts an 
optimal convergence angle of 90°. 
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The 9th International Cotton Conference
“Future of Cellulose Fibres 

Regarding Trends in Development 
of Textile and Apparel Industries”

will be held on 6-7 September 2007 in Gdynia, Poland

Organisers:
n The Gdynia Cotton Association (GCA)
n The Department of Spinning Technology and 

Yarn Structure, and the Department of Clothing 
Technology, Technical University of Łódź

The International Cotton Conference in Gdynia has been 
organised bi-annually since 1988, in alternation with the cotton 
conferences in Bremen organised by the Faserinstitut Bremen 
& the Bremen Cotton Exchange. The Conference topic is always 
devoted to selected problems of testing, turnover and processing 
of cotton and cotton-like fibres.
We hope that as in previous years, the 9th International Cotton 
Conference in Gdynia will bring together numerous participants 
from international business and science as well as representatives 
of R&D centres and companies active in the cotton sector.
The dynamic globalisation of this sector is changing development 
trends in the European textile industry to a considerable extent, 
and has increased the need for the creation and efficient 
implementation of new-generation materials and technologies. 
The leading topic of the scientific-technical part of the 
Conference will be cellulose fibres, their application and 
development prospects. The topic of the Conference will also 
cover issues of the prospects for the textile-apparel sector 
which has recently been undergoing drastic changes, such as 
the liberalisation of turnover, the rapid development of emerging 
economies, the breakdown of the multilateral Doha talks, allocation 
of industrial production, and problems in removing access barriers 
to the markets of third countries for goods from developed 
countries. The question of the future and economic perspectives 
of the European and world industries is now the most important 
one asked by the international trade and industry groups.
Presentation of companies: We invite companies to present their 
technical achievements; interested parties are asked to contact 
the conference organisers.

You are welcome to participate.

Chairman of the Organising Committee:
Ignacy Józkowicz, President of GCA
Chairman of the Scientific Committee:
Professor Tadeusz Jackowski

For more information, please contact:

GDYNIA COTTON ASSOCIATION
ul. Derdowskiego 7, 81-369 Gdynia, Poland

tel. 058 / 620 7598, fax 058 / 620 7597 
e-mail: ib@gca.org.pl   

www.bawelna.org.pl   www.cotton.org.pl


