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Abstract
A proposed hybrid  genetic algorithm (GA) approach for feature selection combined with 
support vector machines for regression (SVMR) was applied in this paper to optimise a 
data set of fibre properties and predict the yarn tenacity property. This hybrid approach 
was compared with a noisy model of SVMR that used all the data set of fibre properties as 
input in the prediction. The GA for feature selection was used as the preprocessing stage 
that aimed to find and select the best attributes or variables that most effect or are related to 
the prediction of yarn tenacity. The hybrid approach showed better predictive performance 
than the noisy model. However, the results indicated the suitability of GA for feature selec-
tion in the choice of the best fibre property attributes that give  the preferred performance 
and high accuracy in the prediction of yarn tenacity.

Key words: genetic algorithm,  feature selection, support vector machines for regression, 
yarn properties.

ment (HVI). The fibre properties used as 
an input data set were fibre strength in  
cN/tex, fibre length in cm, elongation in 
%, trash content in Cnt, length uniform-
ity in %), yellowness in +b, micronaire 
in M, and reflectance in Rd, as shown 
in Table 1. The tenacity (cN/tex) of cor-
responding yarn was used as the output 
data and predicted. The samples were di-
vided into two data sets: the training set, 
containing the first twenty samples  used 
for the development of the models used 
in this paper, a  statistical description of 
which is shown in Table 1; and the testing 
set, containing the last five samples used 
to validate the predictivity of the models 
which were not used in this paper.

	 Review of feature selection 
approach

Feature selection
Feature selection is the study of algo-
rithms for reducing the dimensionality of 
data to improve machine learning perfor-
mance. For a data set with N features and 
M dimensions (or features, attributes), 
feature selection aims to reduce M to M’, 
and M’ ≤ M. It is an important and widely 
used approach for dimensionality reduc-

of the algorithm, enhances data quality, 
increases the predictive power of the al-
gorithm, and makes the results more un-
derstandable and accurate [1]. In recent 
years some optimisation methods have 
been used such as the genetic algorithm 
(GA) with an artificial neural network 
(ANN) to optimise  input parameters for 
obtaining  yarn properties [3 - 5].

In this paper we use  evolutionary fea-
ture selection, that is the genetic algo-
rithm (GA), to choose a good subset of 
features of the fibre property data set  
used for predicting the target detection 
yarn tenacity property. Thus a hybrid ap-
proach based on the  combination of GA 
based feature selection with a support 
vector machine algorithm for regression 
(SVMR) was applied to optimise the data 
set of fibre properties and then predict the 
yarn tenacity.

n	 Data set
Cotton fibre and corresponding yarn data 
were collected from a published review 
[6]. A total of twenty-five different cot-
ton samples were collected and meas-
ured by an Uster high volume instru-

n	Introduction 
The most important stage after the analy-
sis of the dataset prepared for modelling 
is the selection of  variables (or features) 
to use as predictors. This process of fea-
ture selection is a very important strategy 
to follow in preparing data for data min-
ing [1]. A major problem of data mining 
in large data sets with many potential 
predictor variables is that it is not easy 
to ensure if the additional variables are 
added to the model, and it may or may 
not be able to predict a number better 
than in regression models or discrimi-
nate better between classes in a classifi-
cation model. But in most cases, using 
more features can increase the system 
complexity, which, being a bad feature, 
may greatly degrade the performance of 
the system. Thus selecting a subset of the 
best features is important [1, 2]. On the 
other hand, the greatest danger in data 
mining is the overfit problems - where 
you fit the noise data so a complex model 
may overfit the training data. 

Overfit models look good while training 
but fall apart on evaluation when used 
on new data [1]. However, statisticians’ 
investigation experiments  researched 
the relationship between complexity and 
accuracy and found that the process of 
feature selection is one way of avoiding 
the overfit by regulating the complexity 
of the model.

Feature selection aims to reduce the 
number of variables in the model, thus 
lessening the effect of the curse of di-
mensionality by removing irrelevant or 
redundant variables, or noisy data, which 
has the following immediate positive ef-
fects for  analysis: speeds up processing 

Table 1. Attribute and statistical description of training set data. 

 Attribute 
number  Attribute name Range Mean Standard 

deviation CV%

1 Fibre strength, cN/tex 17.80 - 32.00 22.58 3.652 16.2
2 Fibre length, mm 27.18 - 35.05 29.61 2.225 7.52
3 Trash content, Cnt 0.000 - 9.000 4.150 1.981 45.74
4 Length uniformity, % 0.420 - 0.525 0.454 0.027 5.95
5 Micronaire, M 3.600 - 4.800 4.325 0.361 8.35
6 Elongation, % 0.056 - 0.062 0.058 0.002 3.45
7 Yellowness (+b) 8.90 - 13.50 10.595 1.398 13.19
8 Reflectance, Rd 0.648 - 0.794 0.750 0.043 5.73
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n	 SVMR algorithm
Support vector machines (SVM) were 
originally developed for the classification 
problem by Vapnik and co-workers [8].  
This technique was built on the struc-
tural risk minimisation principle. Now, 
with the introduction of the e-insensitive 
loss function, SVM has been extended 
to solve nonlinear regression estimation. 
By using the kernel function, SVM plays 
a role in mapping the data to a high di-
mensional feature space and then finds 
a linear separating hyperplane with the 
maximal margin in that high dimensional 
space. Several kernel functions are avail-
able for nonlinear transformation of the 
input space, such as linear, polynomial 
and Gaussian radial basis function (RBF) 
kernels [9].

The technique has demonstrated much 
success in prediction studies in textile 
engineering exactly in the fibre and yarn 
relationship area,  giving  powerful ac-
curacy with good performance in many 
studies[10-12] However, a detailed de-
scription of SVM theory was discussed 
in review[8]. In this paper we used a 
support vector machine for regression 
(SVMR) with the common kernel func-
tion (radial basis function (RBF)) to op-
timise the operation of the prediction of 
the yarn tenacity. The kernel function is 
defined by

2( , ) exp( , / 2 )i j i jK x x x x γ= −    (1)

where γ > 0 is the parameter that controls 
the width of the Gaussian and plays a role 
in controlling the flexibility of the result-
ing classifier.

	 Experimental results  
and comparisons

Genetic algorithm (GA) for feature 
selection
The genetic algorithm  is a powerful tool 
for the optimisation procedure that has a 
large field of application. A genetic algo-
rithm for feature selection was applied 
to select a good subset of features  used 
for predicting  target detection from fibre 
properties, as well as in the training data 
set.

The genetic algorithm selection scheme 
used in this paper was Boltzmann and the 
genetic algorithm parameters selected 
were population size, maximum number 
of generations, p initialise, p mutation, p 
crossover, and crossover type. The mean-
ing of those parameters was expressed as  
follows:

tion and is commonly used in applica-
tions where original features need to be 
retained [7].

The structure of a feature selection sys-
tem consists of four basic components: 
input, search, evaluation, and output. The 
output of any feature selection system 
can be either a ranked list or a subset of 
features.

In the context of learning, the input to a 
feature selection system is the data which 
can be 1). supervised – all instances are 
associated with class labels, as in super-
vised learning; 2). unsupervised – no 
class labels are available, as in unsuper-
vised learning, and 3). some instances 
have class labels and the rest do not, as in 
semi-supervised learning. 

To rank the features or select a feature, 
the subset can be phrased as a search 
problem in which various search strate-
gies can be employed. Depending on 
how a feature selection system  works 
together with a learning system, we can 
apply different models of feature selec-
tion such as wrapper, filter, or embedded. 
A filter model relies on measures about  
intrinsic data properties. A wrapper mod-
el involves a learning algorithm (e.g., a 
classifier, or a clustering algorithm) in 
determining the feature quality. An em-
bedded model embeds feature selection 
in the learning of a classifier.

This necessitates the evaluation of fea-
ture selection to help us  understand how 
the benefit of the removal of features can 
help machine learning [7].

The search for relevant features can be 
realised in two ways: 1). feature rank-
ing – features are ranked according to the 
intrinsic properties of the data so that the 
top k features can be chosen according to 
the need or a given threshold, and 2). sub-
set selection – a subset of the feature is 
selected from the full set of features, and 
there is no relevant difference between 
those in the subset selected. Subset selec-
tion can be carried out in various ways: 
forward selection, backward elimination, 
and random [7].

GA feature selection
Evolutionary feature selection (EFS) is 
a bio-inspired methodology for explicit 
modification of input data of a learning 
system. EFS uses an evolutionary algo-
rithm such as the genetic algorithm (GA).

The genetic algorithm (GA) is used to 
find a mapping from the original data 
representation space onto a secondary 
representation space; the mapping con-
sists in dropping off some of the features 
(attributes) from the original representa-
tion so that the dimensionality of the re-
sulting representation space is not greater 
than that of the original space [7].

A multitude of attributes are often in-
volved in real-world machine learning 
problems. Those attributes often indi-
vidually have low informative content 
and cannot provide a satisfactory perfor-
mance of the learning system. Particu-
larly this applies to the problem of fibre 
and yarn property relationships because 
in most cases these are nonlinear and 
complex. Thus in prediction with many 
low-quality attributes, the algorithms 
might tend to build classifiers that per-
form poorly in terms of classification or 
regression accuracy. This problem may 
be alleviated by removing some features 
from the original representation space 
(feature selection). Unfortunately many 
learning algorithms lack the ability of 
discovering intricate dependencies be-
tween attributes, which is a necessary 
precondition for successful feature selec-
tion. This gap is filled out by EFS, which 
uses GA to get rid of superfluous attrib-
utes and to construct new features.

The benefits of EFS expected include  re-
duced dimensionality of the input space, 
better predictive accuracy of the learning 
system, faster training and querying, and 
better readability of the knowledge ac-
quired [7].

Typically the genetic algorithm plays a 
role in maintaining a population of solu-
tions (individuals), each of which encod-
ing a particular subset of features. Solu-
tions undergo mutations, crossing-over, 
and selective pressure that promote the 
well-performing ones. Selective pressure 
is exerted by the fitness function, which 
estimates the solution’s quality by meas-
uring some properties of the secondary 
representation space. Figure 1 illustrates 
how evolutionary feature selection can 
work. This usually involves three steps:

1.	 Decoding of solution (retrieving map-
ping from the encoded solution).

2.	 Transforming the training set into a 
secondary representation space ac-
cording to the mapping.

3.	 Estimating the quality of the second-
ary representation space, which after 
appropriate conversion (e.g., scaling) 
becomes the solution’s fitness.
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n	 population size: number of individu-
als per generation, (Range: integer;  
1 - +∞),

n	 maximum number of generations: 
number of generations after which  
the algorithm was terminated (Range: 
integer; 1 - +∞),

n	 p initialise: initial probability for an 
attribute to be switched on (Range: 
real; 0.0 - 1.0),

n	 p mutation: probability for an at-
tribute to be changed (Range: real;  
0.0 - 1.0),

n	 p crossover: probability for an indi-
vidual to be selected for crossover 
(Range: real; 0.0 -1.0),

n	 crossover type: type of  crossover. 
(Range: one_point, uniform, shuffle) 
The type  used in this paper was uni-
form. 

A genetic algorithm works as follows: 
Generate an initial population consisting 
(population_size) of individuals. Each 
attribute is switched on with probability 
(p_initialize) 
1.	 For all individuals in the population,
2.	 Perform mutation, i.e. set used at-

tributes for unused with probability 
(p_mutation) and vice versa,

3.	 Choose two individuals from the pop-
ulation and perform crossover with 
probability (p_crossover). The type of 
crossover can be selected by (crosso-
ver_type),

4.	 Perform selection, map all individuals 
to sections on a roulette wheel whose 
size is proportional to the individual’s 
fitness and draw (population_size) in-
dividuals at random according to their 
probability, 

5.	 As long as the fitness improves, go  
to 2. 

The output of the genetic algorithm is 
represented as the weights of the attrib-
utes and the performance of their best at-
tributes was selected.

Optimisation of parameters and 
implementation of SVMR 
The parameters of the support vector 
machine for regression (SVMR) such as 
the complexity parameter C, the value of  
e-insensitive loss function, and the width 
of RBF kernel function g, were optimised 
by using the grid search approach, in 
which after inserting the ranges of pa-
rameters and trials depending on the 
RMSR error,  optimal parameters of the 
yarn tenacity property were chosen.

To implement the support vector machine 
for regression, we used the sequential 

minimal optimization (SMO) algorithm 
to solve the quadratic programming (QP) 
optimisation problem.

During training, the support vector ma-
chine requires the solution of a very large 
quadratic programming (QP) optimisa-
tion problem. SMO breaks the large QP 
problem into a series of smallest possible 
QP problems, which are solved analyti-
cally,  avoiding using  time-consuming 
numerical QP optimisation.

The most popular algorithm is the im-
proved SMO (RegSMOImproved) by 
Shevade et al [13]. This algorithm was 
proposed to overcome the limitation of 
the other algorithm  called the original 
SMO algorithm (RegSMO), described 
by Smola and Schoelkopf [14] and  pro-
posed by Platt [15].

To evaluate the prediction performance 
of each algorithm, we used the cross-
validation techniques, which randomly 
divides the data set into 10 folds or 
groups, creates a model using 9 of the 
sets and tests it on the remaining group. 
This procedure is repeated until each of 
the 10 groups has served as a test group. 
Error estimates are calculated and then 
averaged. Here the whole training data 
set was randomly divided into 10 groups 
and the model  trained on 9 groups, with 
the one remaining group  used for testing 
each time. 

The errors  used as an indicator of the pre-
dictive performance of the models were 
the root mean-squared error (RMSE), 
mean absolute error (MAE), and rela-
tive error (RE %). The definitions of all 
these functions are given by the follow-
ing equations 
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where n represents the total number of 
data points in the data set, and yi, yp are 
the actual  and prediction values, respec-
tively. The squared error (SE) and cor-
relation coefficient (R) were also consid-
ered. 

Results and comparisons
To carry out our experiments, the hybrid 
GA/SVMR algorithm was run  using the 
A RM software program. The optimum 
genetic algorithm parameters to optimise 
yarn tenacity were the population size = 5,  
maximum number of generations = 30,  
p initialise = 0.5, p mutation = -1.0, and 
p crossover = 0.9, as shown in Table 2. 

Optimised parameters of the support vec-
tor machine for regression (SVR) were 
selected  using the grid search approach, 
and depending on the smaller RMSE 
error the parameters were as  follows:  

Figure 1. Evolutionary feature selection and construction.
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Figure 2. Influence of (A) fibre strength and fibre length, (B) fibre strength and length uniformity, (C) fibre strength and micronaire, (D) 
fibre length and length uniformity, (E) fibre length and micronaire, and (F) length uniformity and micronaire on yarn tenacity.



99FIBRES & TEXTILES in Eastern Europe  2013, Vol. 21, No.  6(102)

Received 27.07.2012         Reviewed 23.05.2013

complexity parameter C = 150, value of  
e-insensitive loss function = 0.04, and  
width of RBF kernel function g = 0.01, as 
shown in Table 3.

Table 4 summarises our results of the 
two models of SVMR; the noisy model 
of SVMR used the whole input data set 
or all attributes, and the optimised model 
of the hybrid GA-SVMR used the attrib-
utes selected. 

First the preprocessing stage of the ge-
netic algorithm for feature selection 
showed that the better attributes  select-
ed were the fibre strength, fibre length, 
length uniformity, and micronaire. As  
can be observed from these results, all 
those attributes selected means that it 
has a strong relation with the prediction 
of yarn tenacity. Figure 2 showed the 
influence of the fibre property attributes 
selected on the yarn tenacity property. 
Thereafter the (GA) for feature selection 
removed the attributes that are less  re-
lated to the yarn tenacity predicted, such 
as trash, elongation, yellowness (+b), and 
reflectance (Rd).

The errors  used as an indicator of the pre-
dictive performance are utilised to com-
pare the results. The results in Table  4 
illustrate that the optimised model of hy-
brid GA/SVMR with selected attributes 
gives smaller RMSE, MAE, RE% and 
SR errors than the original noisy model 
with all attributes; however, correlation 
coefficient R looks same in both models.

As can be observed from these results, 
there is a model with selected features 
with a lower dimension and higher per-
formance value when compared with the 
noisy model consisting of all the fea-
tures. This means that the prediction per-
formance can be significantly improved  
using a small feature subset, while the 
usage of all the features does not guaran-
tee better prediction results. Therefore by 
applying a prediction-driven dimension-
ality reduction mechanism based on GA 
for the feature selection scheme, only the 
most essential features are kept.

These results indicate that the suitability 
of the genetic algorithm (GA) for  the se-
lection  of  better attributes that give  the 
preferred performance and high accuracy 
in the prediction of yarn tenacity.

n	 Conclusions
In this paper, we presented a hybrid ap-
proach of GA/SVMR. The GA for feature 

selection was used as the preprocessing 
stage  to find and select the best attributes 
or variables that most affect or relate to 
the prediction of yarn tenacity. This hy-
brid approach was compared with a noisy 
model of SVMR that used all attributes 
of fibre properties as input or predictors.

In the hybrid approach, the genetic algo-
rithm for feature selection gave us better 
selected attributes for  fibre strength, fibre 
length, length uniformity and micronaire, 
which were kept and used as predictors. 
Other attributes such as trash, elongation, 
yellowness (+b), and reflectance (Rd) 
were selected as less related attributes, 
removed from the second representation 
and not used.

It can be seen that from the results that 
the genetic algorithm for feature selec-
tion is capable of selecting a good set of 
features to discriminate the target from 
the data set.

However, the results of comparing  the 
hybrid approach of GA/SVMR with the 
noisy model of SVMR show that the hy-
brid approach of GA/SVMR is able to 
obtain very high prediction accuracy and 
better performance than the noisy model 
with all attributes or all input data set 
variables. 
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Table 2. Optimal parameters of GA parameters.

population size maximum number of generations p initialize p mutation p crossover
5 30 0.5 -1.0 0.9

Table 3. Optimal parameters of SVM model based on RBF kernel for predicting yarn tenac-
ity.

Property
Optimal parameters of SVM model based on RBF Kernel 

γ ε C
Yarn tencaity, cN/dtex 0.01 0.04 150.0

Table 4. Comparison of GA feature selection with the noisy model. 

Errors Noisy model Genetic algorithm  
 Feature subset All features        1,2,4,5     

Errors
RMSE 0.527 0.449
MAE 0.474 0.420

RE, % 3.73 3.45
SR 0.329 0.226
R 0.800 0.799


