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Abstract
The main aim of this study is the prediction and quantity evaluation of important yarn prop-
erties (tensile, unevenness, hairiness and imperfections of yarn) from fibre properties by the 
robust regression and extra sum squares methods. We used cotton fibre and yarn properties 
measured by means of an HVI system and Uster tester. Properties of 87 Controlled sam-
ples of ring-spun cotton yarn with linear densities ranging from 19.2 to 37.4 tex with twist 
multiple: αtex = 3927.8 (from from 19.2 to 37.4 tex) were used. In this way we selected the 
effective variables by considering all possible regressions and through the criteria of the 
mean square error (MSE) and adjusted R2. Optimum equations with appropriate variables 
and relative importance of various variables were also investigated. After the fit, desirable 
MSE statistics and large adjusted R2 values were observed.
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methods for estimation of yarn quality 
characteristics. They obtained that yarn 
count and roving properties had consid-
erable effects on the yarn properties in 
the optimum twist factor [15]. 

It should be mentioned that some re-
searchers, [1, 2, 10, 14] have found some 
results which are not consistent with the 
real facts. They noted that their results 
show the autocorrelation between fibre 
properties as well as the nonlinearity 
between the independent variables and 
dependent variables. However, in this 
work, in addition to considering HVI 
fibre properties, we used yarn imperfec-
tions as the dependent variable in our 
research, as well as appropriate statisti-
cal methods so that we could remove the 
problems mentioned. On the other hand, 
so far, few research papers have been 
published about quantitative analysis of 
cotton yarn properties using fibre proper-
ties. Thus in this work we used extra sum 
squares so that we could obtain quantita-
tive values of yarn properties from fibre 
properties.

n	 Background 
Robust regression
In statistical models, an outlier is an 
extreme observation. Outliers are data 
points that are not typical of the rest of 
the data. Depending on their location in 
“X-Space”, outliers can moderate severe 
effects on the regression model. There-
fore, outliers should be carefully investi-
gated to see if a reason for their unusual 
behaviour can be found.

Various statistical methods have been 
proposed for detecting outliers. We ap-

ematical models related to cotton yarns 
have been proposed [3, 7, 8]. In this top-
ic, statistical and ANN models have also 
been developed [1, 9].

Unevenness is a very important factor for 
yarn and fabric quality. Cross-sectional 
fibre variation is the basic reason for un-
evenness. In addition to machine param-
eters, the spinning method, yarn count 
and some fibre parameters have decisive 
influence on the unevenness of the yarn. 
Some models have been determined for 
yarn irregularity by using fibre param-
eters [1, 10].

Hairiness, another measurable yarn char-
acteristic, is usually an undesirable prop-
erty. Although the prediction of blended 
yarn hairiness has been reported in some 
papers [11, 12], so far few research ar-
ticles have been published on the esti-
mation of the hairiness of 100% cotton 
yarns using fibre parameters. Kilic and 
Okur investigated the relationships be-
tween yarn diameter/diameter variation 
and yarn strength. They used nine types 
of 100% combed cotton ring yarns (from 
the same blend which had three yarn 
counts with three levels of twist). Multi-
ple linear regression models were estab-
lished to estimate the yarn strength from 
the other yarn parameters such as yarn di-
ameter, diameter and twist variation, and 
capacitive and optical unevenness [13].

In addition, Ureyen and Kadoglu used 
the linear multiple regression method for 
estimation of yarn quality characteristics. 
They found that yarn count, twist and 
roving properties had considerable ef-
fects on the yarn properties [14]. Recent-
ly, Fattahi et al. used statistical various 

n	 Introduction
The physical characteristics of fibres de-
termine its processing behaviour, produc-
tion efficiency and finally yarn and fabric 
quality. In staple yarn, variations in yarn 
parameters such as count, twist, strength, 
elongation, imperfections etc, are una-
voidable. However, these variations 
cause problems both during production 
processes and after production. Thus the 
relationships between these fibre charac-
teristics must be clearly established for 
avoiding problems.

The main purpose of many studies in 
recent decades has been predicting the 
important yarn characteristic such as 
the tensile, unevenness and hairiness of 
yarn from fibre properties. Two main ap-
proaches were used in these studies: the 
statistical approach and theoretical ap-
proach. However, one of the most com-
mon statistical approaches is the multiple 
regression method. 

So far, mathematical and empirical 
models for the prediction of single yarn 
tenacity from fibre properties and some 
yarn parameters have been established 
by many authors[1 - 4]. Hearle reviewed 
various mathematical and empirical stud-
ies about yarn strength published between 
1926 and 1965 [5]. Hunter reported many 
researches about the prediction of tensile 
properties up to 2004 [6].

Another important parameter that influ-
ences the performance of spun yarns 
during winding, warping, and weaving 
is yarn breaking elongation. Yarn elonga-
tion is chiefly influenced by fibre prop-
erties, yarn twist and yarn count. Math-
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We may decompose the three-degree-
of-freedom regression sum of squares as 
follows: 

 ( , , ) ( ) ( , ) ( , , )1 2 3 0 0 1 0 1 2 01 2 3
SS SS SS SS

R R R R
b b b b b b b b b b b b b= + + 

( , , ) ( ) ( , ) ( , , )1 2 3 0 0 1 0 1 2 01 2 3
SS SS SS SS

R R R R
b b b b b b b b b b b b b= + +      (8)

( , , ) ( ) ( , ) ( , , )1 2 3 0 0 1 0 1 2 01 2 3
SS SS SS SS

R R R R
b b b b b b b b b b b b b= + +  

Where, each sum of squares on the right-
hand side has one degree of freedom. In 
a special case, if the columns in X1 are 
orthogonal to those in X2, we can deter-
mine the sum of squares due to β2 , that is 
free of any dependence on the regressors 
in X1. Therefore 

 ( ) ( ) ( )
1 2

SS SS SS
R R R

b b b= + , 

 ( ) ( ) ( ) ( )1 2 2 1
SS SS SS SS

R R R R
b b b b b= − = , 
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Consequently SSR(β1) and SSR(β2) meas-
ure the contribution of regressors X1 and 
X2 to the model unconditionally, respec-
tively. We can unambiguously determine 
the effect of each regressor when the re-
gressors are orthogonal [17].

Data collection
In this study cotton crop study results of 
the International Textile Center (U.S.A) 
were used [19]. Summary statistics of 
seven cotton fibre properties measured 
by HVI (fibre bundle tenacity, elonga-
tion, upper half mean length (UHML), 
uniformity index, micronaire, reflectance 
degree and yellowness), yarn unevenness 
measured by an Uster Tester (imperfec-
tions, hairiness and capacitive irregular-
ity), tensile properties, and yarn count are 
shown in Table 1.

Statistical analyses
Each yarn quality property is analysed, 
respectively, as follows:
n	 Least squares or weighted least 

squares according to residual plot.
n	 Robust regression and LTS estima-

tor for detecting and then deleting the 
outliers. 

n	 Variable selection using all possible 
regression methods with the criteria 
of MSE, and R2.

n	 Relative importance of appropriate 
variables using extra sum of squares. 

Yarn tenacity
We used robust regression with least 
trimmed squares (LTS) estimation and  
n = 45 for detecting outlier data. Ta-

ply the robust regression method in this 
research. The main purpose of robust 
regression is to detect outliers and pro-
vide consistent results in their presence. 
Many methods have been developed in 
response to this problem. However, in 
statistical applications of outlier detec-
tion and robust regression, the methods 
most commonly used today are Huber 
M estimation, high breakdown value es-
timation, and combinations of these two 
methods [16].

Least trimmed (sum of ) squares 
Least trimmed squares (LTS) estimation 
is a high breakdown value method intro-
duced by Rousseeuw [16]. The break-
down value is a measure of the propor-
tion of contamination that an estimation 
method can withstand and still maintain 
its robustness. The LTS estimator is 
found by finding the regression model 
parameters that satisfy

∑
=

h

i
ieMinimize

1

2
)(b

Where  are the ordered 
squared residuals and h must be deter-
mined. The best robustness properties are 
obtained when h = n/2 approximately, in 
which case a breakdown point of 50% is 
attained. However, since a 50% break-
down point can sometimes produce poor 
results, it may be better to use a large 
value of h to increase efficiency. The LTS 
estimate has several advantages:
1	 Its objective function is smoother, 

making the LTS estimate less jumpy 
(i.e. sensitive to local effects). 

2	 Its statistical efficiency is better be-
cause the LTS estimate is asymptoti-
cally normal.

3	 The LTS estimate also takes less com-
puting time and is more accurate 

Collinearity diagnostic
When a regressor is nearly a linear com-
bination of other regressors in the model, 
the estimates affected are unstable and 
have standard errors. This problem is 
called collinearity and the tolerance is an 
important collinearity diagnostic. In gen-
eral, the tolerance for the jth regression 
coefficient can be written as

21 jj RTOL −=

Where 2
jR  is the coefficient of multiple 

determination obtained from regress-
ing Xj on the other regressor variables. 
Clearly, if Xj is nearly orthogonal to the 
remaining regressors, 2

jR  is small and 

Tolj is close to unity, while if Xj is nearly 
linearly dependent on some subset of the 
remaining regressors, 2

jR  is near unity 
and Tolj is near zero. Practical experience 
indicates that tolerances smaller than 0.1 
imply serious problems with collinearity 
[17].

Weight least squares regression
Linear regression models with noncon-
stant error variance can also be fitted by 
the method of weighted least squares. 
In this method of estimation the devia-
tion between the observed and expected 
values of yi is multiplied by a weight wi 
chosen inversely proportional to the vari-
ance of yi. For the case of the multiple re-
gression model, the weight least squares 
normal equations are:

(X’WX) WYXWXX ′=′ b̂)( X’WY

and the weighted least squares estimator 
is:

WYXWXX ′′= −1)(b̂ (X’WX)-1X’WY

Note that observations with large vari-
ance will have smaller weights than those 
with small variances [17].

Extra sum of squares
We may also directly determine the con-
tribution to the regression sum of squares 
of a regressor, for example xj, given that 
other regressors xi (i ≠ j) are included 
in the model by using the extra-sum-of-
squares method. In general, we can find

( , ,...., , ,....., )0 1 1 1SS j j kR j
b b b b b b− + , 

1 ≤ j ≤ k

which is the increase in the regression 
sum of squares due to adding xj to a 
model that already contains x1, …, xj-1, 
xj+1, …, xk. Some find it helpful to think 
of this as measuring the contribution of 
xj as if it were the last variable added to 
the model. When we think of adding re-
gressors one at a time to a model and ex-
amining the contribution of the regressor 
added at each step, given all regressors 
added previously, we can partition the 
regression sum of squares into marginal 
single degree-of-freedom components. 
For example, consider the model

 0 1 1 2 2 3 3
y x x xb b b b ε= + + + +

with the corresponding analysis-of-vari-
ance identity

 ( , , )1 2 3 0 Re
SS SS SS

T R s
b b b b= +     (7)
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ble 2 displays outlier point diagnostics. 
Standardised robust residuals are com-
puted based on the parameters estimated. 
Observations in Table 2 are outliers be-
cause their standardised robust residuals 
exceed the cutoff value at the absolute 
value (cutoff value = 3). Therefore due to 
incorrect recording of data or failure of 
the measuring instrument, these observa-
tions were deleted from the data set.

Then the model-selection method is used 
to calculate R2, R2adj and MSE for all 
possible combinations of independent 
variables. These results are shown in Ta-
ble 3.

An optimal model is selected with six 
variables (X1, X2, X3, X4, X5, X8) by de-
sirable MSE, R2 and R2adj. Table 4 dis-

plays the parameter estimates and other 
values for the fitted model. This model is 
as follows:

Y1 = -21.021 + 0.478X1 + 
+ 0.395X2 - 0.084X3 + 0.281X4 +

+ 0.258X5 - 0.098X8

According to Table 4, most of the effects 
(variables) are significant. Tolerances 
(TOL) have near unity. These diagnostics 
indicate that independent variables are 
approximately orthogonal. We also used 
an extra sum of squares to obtain the im-
portance and contribution of each inde-
pendent variable. The related equation is 
as follows:

SS(b) = SS(b1) + SS(b2|b1) + 
+ SS(b3|b1, b2) + SS(b4|b1, b2, b3) +

+ ... + SS(b6|b1, b2, ... b5)

SS(b) = 34.6 + 18.4 + 11.8 + 1.0 +
+ 0.9 + 0.8 = 67.5       SST = 90.04

Therefore the relative importance and 
contribution of parameters for yarn 
strength (Y1) are approximately X1 - 38%,  
X8 - 20%, X4 - 13%, X5 - 2%, and X2,  
X3 - 1%, respectively.

Figure 1 shows the scatter plot of pre-
dicted values versus experimental values 
and regression line.

Yarn elongation
As in the previous case, we used the ro-
bust regression. After deleting the eight 
outlier points, the model is fitted for the 
79 remaining observations. The results 
concerning model-selection are shown in 
Table 5.

The optimal model is selected with seven 
variables (X1, X2, X3, X4, X5, X7, X8) by 
desirable MSE, R2, and R2adj. The param-
eter estimates and other values are shown 
in Table 6. The final model is obtained 
as follows:

Y2 = -16.71 - 0.26X1 + 
+ 0.61X2 + 0.18X3 + 0.35X4 +

- 0.80X5 - 0.21X7 - 0.098X8

According to this Table 6, all variables 
are significant and nearly independent. 
Therefore the extra sum of squares for 
this model is as follows:

SS(b) = 11.56 + 7.91 + 4.86 + 4.67 +
+ 3.74 + 3.15 + 1.76 = 37.65    SST = 49

Thus the relative importance and con-
tribution of parameters for yarn elonga-
tion (y2) are nearly X8 - 23%, X2 - 16%,  
X4 - 10%, X5 - 9.5%, X1 - 7.5%, X3 - 6.5%  
and X7 - 3.5%, respectively. Figure 2 
displays the diagram of predicted values 
against experimental values. 

Yarn unevenness
By using robust regression, nine outlier 
points (19 - 20 - 21 - 65 - 66 - 69 - 70 - 77 - 78)  
were observed. After deleting these outli-
ers, the model was fitted with the rest of 
observations. According to Table 7, the 
final model is selected with seven vari-
ables (X1, X3, X4, X5, X6, X7, X8).

The parameter estimates and other values 
are shown in Table 8. Therefore the final 
model is as follows:

Y3 = 72.21 - 0.566X1 + 
+ 0.157X3 - 0.197X4 - 1.92X5 +
- 0.160X6 - 1.118X7 + 0.287X8

Table 1. Summary statistics for fibre and yarn properties.

Fibre and yarn Min. Max. Mean S.D. Index
Fibre tenacity, cN/tex 26.5 34.0 28.95 1.41 X1

Fibre elongation, % 5.3 6.9 6.24 0.46 X2

UHML, mm 24.5 30.5 26.5 1.3 X3

Uniformity index, % 79.1 83.2 81.5 1.05 X4

Micronaire, mg/in 3.1 5.0 4.2 0.45 X5

Reflectance degree, ° 70.5 80.4 76.93 2.28 X6

Yellowness, - 8 11.4 9.35 0.72 X7

Linear density (Yarn count - Ne)
 from 19.2 to 37.4 tex 15.8 30.8 23.9 5.28 X8

Yarn tenacity, cN/tex 12.28 18.02 14.73 1.13 Y1

Yarn elongation, % 4.23 7.5 5.9 0.77 Y2

Irregularity, %CV 16.35 26.42 20.01 2.31 Y3

Hairiness index (3 mm), - 4.31 6.66 5.3 0.59 Y4

Imperfection (I.P.I), - 286 5298 1473 1071 Y5*

Table 2. Outlier point diagnostics for tenacity (Y1). 

Observations 11 14 26 32 34 52 53 54
Standardised robust 

residuals -3.03 3.22 -3.35 -3.26 -3.52 3.72 4.15 5.79

Table 3. MSE selection method for tenacity (Y1). 

Number in model R2 R2adj MSE Variables in model
6 0.747 0.726 0.315 X1, X2, X3, X4, X5, X8

5 0.740 0.722 0.320 X1, X2, X4, X5, X8

5 0.739 0.721 0.321 X1, X2, X3, X4, X8

6 0.742 0.720 0.322 X1, X2, X4, X5, X7, X8

4 0.727 0.714 0.330 X1, X3, X4, X8

Table 4. Parameter estimates for tenacity (Y1). 

Variable Parameter 
estimate t-value Pr > |t| TOL

Intercept -21.021 -3.73 0.0004 0
X1 0.478 9.21 <0.0001 0.754
X2 0.395 2.26 0.026 0.648
X3 -0.084 -1.44 0.154 0.766
X4 0.281 3.39 0.001 0.556
X5 0.258 1.52 0.133 0.661
X8 -0.098 -8.14 <0.0001 0.973
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According to Table 8, most of the varia-
bles are significant (P < 0.0001) and close 
to independence (TOL 1≅TOL  1). Therefore 
the extra sum of squares for the model is 
as follows:

SS(b) = 127.85 + 55.60 + 50.85 + 
+ 34.59 + 4.05 + 2.12 + 1.66 = 276.72

SST = 382.37

Thus the relative importance and contri-
bution of parameters for yarn uneven-
ness are nearly X8 - 33.5%, X5 - 14.5%,  
X1 - 13.5%, X7 - 9%, X6 - 1%, X4 - 0.5% 
and X3 - 0.5%, respectively. Figure 3 
shows the scatter plot of predicted values 
versus experimental values.

Yarn hairiness
By using robust regression, five outlier 
points (19 - 63 - 65 - 69 - 77) were ob-
served. After deleting the outliers, this 
model is fitted by the 82 remaining ob-
servations. According to Table 9, the fi-
nal model is selected with six appropriate 
variables (X1, X2, X4, X5, X7, X8).

The parameter estimates and other values 
are shown in Table 10. The final model is 
derived as follows:

Y4 = 19.271 - 0.066X1 + 
- 0.154X2 - 0.083X4 - 0.255X5 +

- 0.124X7 - 0.087X8

According to Table 10, all variables are 
significant and close to independence. 
Therefore the extra sum of squares for 
this model is as follows:

SS(b) = 19.51 + 5.51 + 1.10 + 0.50 + 
 + 0.50 + 0.29 = 24.2     SST = 27.53

Thus, the relative importance and con-
tribution of various Parameters for yarn 
hairiness are about X8 - 70%, X4 - 10%, 
X5 - 4%, X7 - 2%, X1 - 2% and X2 - 1%, re-
spectively. Figure 4 displays the diagram 
of predicted values against experimental 
values.

Yarn imperfections
The assumption of constant variance is a 
basic requirement of regression analysis. 
A common reason for the violation of this 
assumption is for the response variable 
Y to follow a probability distribution in 
which the variance is functionally related 
to the mean. Thus since the distribution 
of Y*5 (Yarn imperfection) is Poisson, 
we can regress Y5 = √Y*5 against X as 
the variance of the square root of a Pois-
son’s random variable is independent of 
the mean. The plot of R-Student residu-
als versus the fitted values Y5 is shown in 

Figure 5. This plot again indicates a vio-
lation of the constant variance assump-
tion. Consequently the least squares fit is 

inappropriate. To correct this inequality-
of-variance problem, we should know 
the weights wi. The inverse of these fit-
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Table 5. MSE selection method for elongation (Y2). 

Number in model R2 R2adj MSE Variables in model
7 0.768 0.745 0.160 X1,X2,X3,X4,X5,X7,X8

6 0.732 0.710 0.182 X1,X2,X3,X4,X5,X8

7 0.733 0.706 0.184 X1,X2,X3,X4,X5,X6,X8

7 0.718 0.690 0.194 X1,X2,X4,X5,X6,X7,X8

6 0.710 0.686 0.197 X1,X2,X4,X5,X7,X8

Table 6. Parameter estimates for elongation (Y2). 

Variable Parameter 
estimate t-value Pr > |t| TOL

Intercept -16.71 -4.37 <0.0001 0
X1 -0.26 -6.45 <0.0001 0.62
X2 0.61 4.85 <0.0001 0.74
X3 0.18 4.21 <0.0001 0.78
X4 0.35 6.52 <0.0001 0.68
X5 -0.80 -6.85 <0.0001 0.75
X7 -0.21 -3.31 0.0015 0.95
X8 -0.06 -6.55 <0.0001 0.96

Table 7. MSE selection method for irregularity (Y3).

Number in model R2 R2adj MSE Variables in model
7 0.724 0.696 1.509 X1, X3, X4, X5, X6, X7, X8

6 0.718 0.694 1.518 X1, X4, X5, X6, X7, X8

6 0.718 0.694 1.518 X1, X3, X5, X6, X7, X8

5 0.714 0.694 1.520 X1,X5, X6, X7,X8

4 0.703 0.690 1.554 X1,X5, X7, X8

Table 8. Parameter estimates for irregularity (Y3).

Variable Parameter 
estimate t-value Pr > |t| TOL

Intercept 72.21 4.95 <0.0001 0
X1 -0.566 -4.44 <0.0001 0.60
X3 0.157 1.19 0.230 0.77
X4 -0.197 -1.19 0.231 0.69
X5 -1.92 -5.41 <0.0001 0.77
X6 -0.160 -1.93 0.0500 0.57
X7 -1.118 -5.00 <0.0001 0.77
X8 0.287 10.66 <0.0001 0.95

Figure 1. Plot of tenacity (Y1) and predict-
ed tenacity (Y1).
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Figure 2. Plot of elongation (Y2) and pre-
dicted elongation (Y2).
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ted values will be reasonable estimates of 
the weights wi. Applying weighted least 
squares to the data gives the appropriate 
fitted model. We should now examine the 
residuals to determine if using weighted 
least squares has improved the fit. To do 
this, the weighted residuals are plotted 
against weighted fitted values.

This plot is shown in Figure 6, and is 
much improved when compared to the 
previous plot (Figure 5) for the least 
squares fit. We conclude that weighted 
least squares have corrected the inequali-
ty-of-variance problem.

As in previous cases, we used the ro-
bust regression. After deleting the outlier 

points (ten observations), the model is 
fitted for the 77 remaining observations. 
The results of model-selection are shown 
in Table 11.

An optimal weighed model is selected 
with seven variables (X1, X3, X4, X5, X6, 
X7, X8). The parameter estimates and 
other values are shown in Table 12. The 
final weighted least squares model is as 
follows:

Y5 = 401.62 - 1.194X1 + 
+ 1.733X3 - 3.294X4 - 7.096X5 +
- 1.036X6 - 3.273X7 + 1.233X8

According to Table 12, all variables 
are significant and nearly independent. 
Therefore the extra sum of squares for 
this model is as follows:

SS(b) = 2.65 + 1.33 + 0.45 + 0.39 + 
 + 0.20 + 0.14 + 0.13 = 5.29   

SST = 7.416

Thus the relative importance and contri-
bution of various parameters for yarn im-
perfection are about, X8 - 35%, X4 - 18%, 
X7 - 6%, X5 - 5.5%, X6 - 3%, X1 - 2% and 
X3 - 2%, respectively. Figure 7 displays 
the diagram of predicted values against 
experimental values.

n	 Results and discussion 
The equations obtained show that yarn 
properties such as strength, elongation, 
unevenness, hairiness and imperfection 
are influenced by fibre properties and 
yarn count in the constant twist factor. 
The accuracy of the two models (least-
squares regression and robust regression) 
is also evaluated by the R squares (R2) 
criterion. These results are shown in Ta-
ble 13. The predictive accuracy of all the 
models improves in the case of robust 
regression. Therefore it is clear that the 
performance of the robust regression is 

Table 9. CP selection method for Y4.

Number in model R2 R2adj MSE Variables in model
6 0.879 0.869 0.0442 X1, X2, X4, X5, X7, X8

7 0.880 0.869 0.0443 X1, X2, X4, X5, X6, X7, X8

7 0.880 0.868 0.0446 X1, X2, X3, X4, X5, X7, X8

8 0.881 0.868 0.0448 X1, X2, X3, X4, X5, X6, X7, X8

5 0.869 0.860 0.0474 X1, X4, X5, X7, X8

Table 10. Parameter estimates for Y4.

Variable Parameter 
estimate t-value Pr>|t| TOL

Intercept 19.271 9.94 <0.0001 0
X1 -0.066 -3.61 <0.0005 0.811
X2 -0.154 -2.55 0.0127 0.755
X4 -0.083 -3.05 0.0032 0.686
X5 -0.255 -4.28 <0.0001 0.763
X7 -0.124 -3.78 0.0003 0.973
X8 -0.087 -19.70 <0.0001 0.970

Figure 3. Plot of irregularity (Y3) and pre-
dicted irregularity (Y3).

Figure 4. Plot of hairiness index (Y4) and 
predicted hairiness index (Y4).
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Figure 5. Plot of residuals versus 5̂Y . Figure 6. Plot of residuals versus weight-
ed 5̂Y .
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predicted imperfection (Y5).

Im
pe

rfe
ct

io
n 

(Y
5)

Predicted imperfection (Y5)



53FIBRES & TEXTILES in Eastern Europe  2013, Vol. 21, No.  4(100)

better than that of the least squares. The 
robust regression model exhibits an in-
crease in predictive power of between 
2.2% and 13.1% for various properties. It 
is also observed from Table 13 that there 
is the highest value of improvement for 
Y3 and the lowest value for Y4. 

The relative importance, contribution, 
and direction of the effect of various 
characteristics on different properties of 
yarn are also shown in Table 14.

Yarn count and uniformity are the most 
decisive factors for yarn properties. 
Among the other properties, the strength 
and micronaire of fibres also have great 
importance.

As shown by Table 14, as might be ex-
pected, yarn strength is highly influ-
enced by fibre strength, yarn count and 
uniformity. Most of the studies [14, 15, 
18, 19] showed that fibre strength has the 
greatest effect on yarn strength. In order 
of importance, the contribution and di-
rection of significant properties are fibre 
strength (+38%), yarn count (-20%), and 
uniformity (+13%). Yarn elongation is 
mainly influenced by the yarn count, fibre 
elongation, uniformity and micronaire, 
respectively. Some other researchers [7, 
9] also found yarn count and fibre elon-
gation to be the first and second most im-
portant contributors of yarn elongation. 
In order of importance, the contribution 
and direction of significant properties 
are yarn count (-23%), fibre elongation 
(+16%), uniformity (+10%), micronair 
(-9.5%), fibre strength (-7.5%), UHML 
(+6.5%), and yellowness (-3.5%). 

As we expected, among the various 
properties, yarn count (+33.5%) has the 
greatest effect on yarn unevenness. Simi-
lar results have been reported about this 
property by others [14, 15, 18]. Other im-
portant factors that influence yarn even-
ness in order of importance are micro-
naire (-14.5%), fibre strength (-13.5%) 
and yellowness (-9%). The hairiness of 
yarn is mainly influenced by the yarn 
count (-70%). In addition, the uniformity 
(-10%) and micronaire (-4%) can affect 
the hairiness of yarn. Some papers have 
also shown that there are significant ef-
fects of the yarn count and uniformity on 
yarn hairiness [15, 18]. 

Among the various properties, yarn count 
(+35%) has the greatest effect on yarn 
imperfections. Other important proper-
ties that affect yarn imperfections are 
uniformity (-18%), yellowness(-6%), mi-

cronaire (-5.5%), and reflectance (-3%). 
Fattahi et al. [15] also obtained that mi-
cronaire and yarn count have significant 
effects on yarn imperfections.

Our emphasis is to evaluate the effect of 
the various properties subjectively (the 
value of effect), while most of the previ-
ous papers found the order of importance 
of properties [6, 9, 14, 15, 18, 19]. 

n	 Conclusions
Yarn properties such as tensile, elonga-
tion, unevenness, hairiness and imper-
fection are influenced by fibre properties 
and yarn count in the constant twist fac-
tor. In this study, we investigated some 
statistical approaches for the modelling 

and prediction of important properties 
of ring spun cotton yarn. The results 
obtained showed that the predictive ac-
curacy of all the models improves in the 
case of robust regression as compared to 
that of the least squares. We also selected 
yarn imperfection as a dependent vari-
able. The models derived showed better 
prediction performance than the previous 
studies. 

The relative importance, contribution, 
and direction of the effect of various 
characteristics on different properties of 
yarn are obtained. From a quality-con-
trol-in-cotton-spinning point of view, the 
models obtained are desirable, especially 
in practical cases.

Table 11. MSE selection method for Y5.

Number in model R2 R2adj MSE Variables in model
7 0.714 0.685 0.0300 X1, X3, X4, X5, X6, X7, X8

7 0.713 0.684 0.0308 X2, X3, X4, X5, X6, X7, X8

7 0.700 0.670 0.0322 X1, X2, X4, X5, X6, X7, X8

6 0.695 0.669 0.0323 X3, X4, X5, X6, X7, X8

6 0.695 0.669 0.0323 X2, X4, X5, X6, X7, X8

Table 12. Parameter estimates for Y5.

Variable Parameter 
estimate t-value Pr >│t│ TOL

Intercept 401.62 6.66 <0.0001 0
X1 -1.194 -2.15 0.0350 0.599
X3 1.733 2.65 0.0100 0.676
X4 -3.294 -4.61 <0.0001 0.650
X5 -7.096 -4.18 <0.0001 0.745
X6 -1.036 -3.07 0.0030 0.665
X7 -3.273 -3.54 0.0007 0.799
X8 1.233 9.69 <0.0001 0.935

Table 13. Validation results of least squares and robust regression by R2. 

Regression methods
Yarn properties

Tenacity 
(Y1)

Elongation 
(Y2)

Irregularity 
(Y3)

Hairiness 
(Y4)

Imperation 
(Y5)

(Least squares reg.) R2, % 63.7 64.0 59.3 85.7 68.1
(Robust reg.) R2, % 74.7 76.8 72.4 87.9 71.4
(Improvement), % 11.0 12.8 13.1   2.2   3.3

Table 14. Importance of various characteristics on yarn properties.

Fibre properties
Yarn properties

Tenacity (Y1) Elongation 
(Y2)

Irregularity 
(Y3)

Hairiness 
(Y4)

Imperation 
(Y5)

Strength (X1) +38% -7.5% -13.5% -2% -2%
Elongation (X2) +1% +16% - -1% -
UHML (X3) -1% +6.5% +0.5% - +2%
Uniformity (X4) +13% +10% -0.5% -10% -18%
Micronaire (X5) +2% -9.5% -14.5% -4% -5.5%
Reflectance (X6) - - -1% - -3%
Yellowness (X7) - -3.5% -9% -2% -6%
Yarn count (X8) -20% -23% +33.5% -70% +35%
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