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of solid and gas phase continuities for the 
heat and moisture transport in firefighter 
protective clothing during fire exposure. 
The model is complicated and does not 
completely describe the normal condi-
tions of personal protective clothing.
 
Boundary conditions are important for 
the solution of differential equations. The 
microclimate formed by textiles was dis-
cussed by Więźlak et al. [24]. Theoretical 
and experimental investigations were car-
ried out on single-layer clothing material 
packs. One of the most important mate-
rial parameters is thermal conductivity. 
Jirsak et al. [11] compared dynamic and 
static methods for measuring the thermal 
properties of different textile materials. 
Numerical calculations of the effective 
thermal conductivity of fibrous compos-
ite materials with an interfacial thermal 
resistance was discussed by Rocha and 
Cruz [20]. The heat transfer coefficient 
is determined on the basis of the immuta-
ble parameters of the textile layer, which 
was studied by Ziegler and Kucharska-
Kot  [25]. To have a comprehensive un-
derstanding of the protection and thermal 
comfort of protective clothing, Lee and 
Obendorf [15] examined the barrier and 
air/moisture vapour permeabilities of ma-
terials commonly used for protective cloth-
ing. Some effects of the outwear moisture 
transfer rate during bicycle exercise was 
developed by Sato et al. [21]. Coupled 
heat and moisture transfer within textile 
structures is important for understanding 
the dynamic thermal comfort of clothing, 
see Kaasjager [12]. The mathematical 
model introduced is used to determine the 
coupled transfer within fabrics as well as 
the thermal comfort of the user. Effective 
composite properties as a result of dif-
ferent homogenisation methods are dis-
cussed by Golański, Terada, Kikuchi [7]. 

The effective thermal conductivity of 
gas-solid composite materials was deter-
mined by Liang and Qu [16] by means 
of a specially developed homogenisation 
method. Basic physical principles of the 
body’s mechanism for heat transfer were 
discussed by Turgul Ogulata [23],and the 
thermal insulation properties caused by 
different interlayers were determined by 
Nadzeikiene et al. [19].

The main idea of the presented paper is 
to optimise the thickness of textile mate-
rials subjected to coupled heat and mass 
transfer. The model by Henry/David and 
Nordon is introduced to describe the 
physical phenomena. Mathematically 
speaking, we introduce the first-order 
sensitivity of an arbitrary behavioral 
functional as well as determine the sen-
sitivities of state fields and the sensitivity 
expression within the textile structure. 
The state variables are the temperature, 
water vapour concentration within the fi-
brefibres and water vapour concentration 
of the air in the interfibrefibre spaces. The 
material derivative concept and direct ap-
proach to sensitivity analysis are consid-
ered. This paper constitutes an extension 
of the previous work in the area of sensi-
tivity analysis by Dems, Mróz [4], Dems, 
Korycki [5] and Korycki [13]. The opti-
misation of material thickness by means 
of sensitivity analysis of the coupled heat 
and moisture transfer of textiles is not 
considered in the literature analysed for 
the compled heat and moisture transfer 
of textiles. 

	 Problem of primary transient 
heat and mass transfer

Let us introduce a complex textile struc-
ture packed with fibres and gas within 
the free spaces between the fibres sub-
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n	 Introduction
Physically speaking, the problem of heat 
and mass transfer within textile structures 
is complicated and is solved by means of 
different methods. Henry [10] proposed a 
mechanism for coupled water vapour and 
heat transfer into an assembly of textile fi-
bres. This description was supplemented 
by David and Nordon [3]. An improved 
mathematical model by Henry/David and 
Nordon taking into account the water va-
pour sorption mechanism of fibres was 
developed by Li, Luo [17] and Li [18] to 
describe and predict the coupled trans-
port in fabric. The same authors, as well 
as Haghi [8], discuss the boundary and 
initial conditions typical for textile struc-
tures. A similar model of dynamic heat 
and water transfer through layered fabrics 
is discussed by Fohr, Couton and Treguier 
[6]. The one-dimensional transfer within 
porous media is characterised by energy 
and mass balance, which leads to a sys-
tem of differential equations. Different 
physical phenomena characterising cou-
pled heat and mass transfer are described 
by Szekeres and Engelbrecht [22], cf., for 
example cross-coupled heat and moisture 
diffusion, cross-coupled heat and mois-
ture convection, and the coupled diffu-
sion and convection of heat and moisture. 
Chitrphiromsri and Kuznietsov [1] dis-
cuss the energy, enthalpy and equations 
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jected to coupled heat and mass transfer. 
The heat is transported by the conduction 
within the fibres as well as by convec-
tion on the external surfaces of the fibres. 
The radiation, according the Stefan-
Boltzmann Law, is proportional to the 
fourth power of the temperature. The 
values of temperature are small and the 
heat transfer by radiation can be now ne-
glected. We then introduce a change the 
water vapour phase, i.e. the sorption of 
water vapour by the textile material and 
desorption into the interfibrefibre spaces. 
The water vapour diffuses through the 
interfibre spaces, absorbed and desorbed 
by the fibre, and then transferred to the 
surrounding by convection. To simplify 
both the physical and mathematical 
models, Li [18] introduces the following 
assumptions: (i) the volume changes of 
fibres caused by different moisture con-
tent can be neglected; (ii) the moisture 
is transferred through the fibres by sorp-
tion from the surrounding to the material 
and desorption from the fibre to the sur-
roundings; (iii) the orientation of fibres 
within the textile structure plays a mini-
mum role in the mass transport because 
the diameters of the fibres are small and 
water can travel much more rapidly in 
the air than in the fibres; (iv) the instan-
taneous thermal equilibrium between the 
fibres and gas in the interfibre spaces 
is achieved during the process of mass 
transfer, as most textile fibres are of very 
small diameter and have a very large sur-
face/volume ratio. 

The first state equation constitutes the 
mass balance, cf. Li [18]. The left-hand 
side describes the accumulation of water 
vapour in the interfibre spaces filled by 
air, as well as within the material of fi-
bres. The right-hand side determines the 
transport of water vapour through the air 
within the interfibre spaces, cf. Henry 
[10]. The second state equation deter-
mines the conservation of heat energy. 
The left-hand side describes the energy 
caused by the heat conduction within the 
element packed with fibres and the air be-
tween the fibre, as well as by the change 
in the water vapour phase, i.e. the sorp-
tion of water vapour by the textile ma-
terial and desorption into the interfibre 
spaces. The right-hand side determines 
the energy caused by the temperature of 
the fibres and air in the interfibre spaces. 
Both equations have the form

   

(1)

where wa is the water vapour concentra-
tion in the air filling the interfibre void 
space, wf denotes the water vapour con-
centration in the fibres, ε is the porosity 
of the fabric, t denotes real time, ha is the 
diffusion coefficient of water vapour in 
the air, ζ is the effective tortuousness of 
the fabric, T is the temperature, λ is the 
thermal conductivity of the fabric, λw de-
notes the heat sorption of water vapour 
by fibres, c is the volumetric heat capac-
ity of the fabric.

The problem is described by means of 
state variables wa, wf, & T, and we next 
introduce the third state equation to solve 
this problem. Let us assume, according 
David and Nordon [3], that the content of 
water in the fabric is below the saturation 
point within the fibre for normal condi-
tions. We also consider the sorption of 
water vapour by the fibres from the sur-
rounding and desorption to the air within 
the free spaces between fibres, which is a 
typical situation for dry protective cloth-
ing during normal work. The equation 
proposed is an experimental, exponential 
relationship cf. Henry [10]; Li, Luo [17]

(2)

where Ha is the relative humidity of air, 
Hf is the relative humidity of the fibres, 
k1 and k2 are adjustable parameters that 
are predicted or evaluated by compar-
ing the model and measured mass of the 
fabric, cf. Haghi [8], Li and Luo [17], 
Li [18]. For simplicity we assume that 
the water vapour concentration has the 
same value as that measured in practice 
and k1 = k2 = 1. The main difficulty is to 
determine correlations between the water 
vapour concentrations wa, wf and relative 
humidities Ha, Hf for both the fibres and 
air.

The content of water within the fabric 
is below the saturation point within the 
fibre, and the water vapour is absorbed 
from the air, which describes the absorp-
tion coefficient η. The water vapour con-
centration within the porous structure is 
characterised acc. [2] by means of the 
following physical parameters: (i) water 
vapour pressure e; (ii) relative humidity 
(the water vapour concentration) w; (iii) 

absolute humidity H; (iv) temperature T. 
Following [2], we have

Ha > Hf; Hf/Ha = h < 1;

H = e/E.100%; w = 38582.80e/T   
(3)

According to Henry/David and Nordon 
[3], we can assume the following: (i) the 
temperature of the surrounding air is the 
same as that on the surface of the fibres 
Ta=Tf; (ii) the saturated vapour pressure 
of the water has the same value in case 
of air and fibre surface Ea=Ef. Based on 
the above assumptions, we formulate the 
proportions of the physical parameters as 
follows

(4)

Let us next introduce the absorption 
coefficient η as time-independent. 
Differentiating Equations (4) with 
respect to the real time t we obtain  
dHf/dt = hdHa/dt; dwf/dt = hdwa/dt.

 . 

Introducing Equation (2) into the set of 
Equations (1), we formulate the correla-
tions

        

(5)

Let us next consider that the textile struc-
ture analysed undergoes normal condi-
tions. The isolation layer of air comes 
into contact with the skin and undergoes 
slight changes in the assumed atmos-
phere. The values of state variables on 
the skin’s surface are known i.e. first-
kind conditions exist on the boundaries 
ΓT and Γ1 for x = 0. Both the tempera-
ture T and moisture concentration wf are 
characterised, for example, by Więźlak 
et. al. [24]. Let us next consider the con-
vective nature of the fabric as well as 
the heat and mass exchange between the 
fabric and surrounding air. The bounda-
ries ΓC and Γ3 for x = L are characterised 
by third-kind conditions. We formulate 
the mixed conditions at both ends of the 
model; compare Figure 1.
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(6)

where h is the heat convection coeffi-
cient, hw the mass convection coefficient, 
T∞ the surrounding temperature, and 
w∞ the water vapour concentration of 
the surrounding. Fourth-kind boundary 
conditions are defined on the common 
surface of two structures or two material 
phases in contact. Thus the conditions 
are of practical importance for multilayer 
composite structures. The state variables 
as well as the heat and mass flux densi-
ties are continuous. The initial conditions 
are the prescribed temperature and water 
vapour concentration at the beginning of 
the process. All conditions have the form

     (7)

The optimisation can be simplified by 
introducing the same cross-section of the 
textile structure and conditions of heat and 
mass transfer. The problem is analysed in 
an optional cross-section of the structure 
as a 1D problem, cf. Figure 1. Let us 
assume that the textile is an integrated 
composite structure i.e. the isolation lay-
ers of air between the internal material 
layers can be neglected. Only one isola-
tion layer of air comes into contact with 
the human skin and first layer of cloth-

ing, cf. Figure 1. The thickness of the 
layer was assumed as equal to d = 10-3m.

	 First-order sensitivity  
of an arbitrary functional

Let us next locate the material phases by 
means of the vector of design parame-
ters b, cf. Figure 1. We define an arbitrary 
behavioral functional associated with the 
problem as the Equation 8, where Ψ1, Ψ2, 
γ1, γ2 are continuous and differentiable 
functions of the listed arguments. The in-
tegrands γ1, γ2 are considered as the sum 
at both ends of the 1D model analysed.

The first variation of the objective func-
tional with respect to design parameters 
has the form dF = DF/Dbp . dbp; p = 1…P;  
where Fp = DF/Dbp is the material deriv-
ative of the functional F, assumed as the 
first-order sensitivity of this functional. 

The shape modification is described for 
1D model of the structure by means of 
the transformation velocity field vp(x,t,b), 
associated with the design parameter 
bp, treated as a time-like parameter, cf. 
Korycki [13]. We next formulate the fol-
lowing correlations for any continuous 
function g and its gradient, cf. Haug, 
Choi, Komkov [9]

gp = gp + g,x vp;
(g,x)p = (gp),x - g,x vp,x            

(9)

where gp = Dg/Dbp is the global (or ma-
terial) derivative of the function g with 
respect to the design parameter bp and  
gp = ∂g/∂bp denoting the local (or partial) 
derivative of the function g with respect 
to the design parameter bp. The first-order 
sensitivity of an arbitrary functional F can 
be expressed with respect to Equation (8), 
Equations (9) and the material derivative 
of the length element in the basic form, 
cf. Dems, Mróz [4], Dems, Korycki [5] 
(Equation 10).

The sensitivity is analysed by means of 
the direct approach, which is the most 
useful for calculating the sensitivities of 
the entire response field with respect to 
a few design variables. Dems, Mróz [4], 
Dems, Korycki [5] and Korycki [13] ana-
lysed the direct approach. The first-order 
sensitivities are formulated by means of 
additional heat and mass transfer prob-
lems associated with the variation of each 
design parameter bp; p = 1,…P. The ad-
ditional structure has the same shape as 
well as properties of heat and mass trans-
fer as the primary one. The correlations 
are determined by the differentiation of 
primary equations with respect to design 

Figure 1. Schematic representation of a cross-section of a textile structure and boundary 
conditions for primary problem1 – human skin; 2 – isolation layer of air between skin and 
textile structure; 3, 4, 5 – layers of textile structure; 6 – surrounding.

Equations 8, 10.

(10)

(8)

(8)
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Let us first determine the state equations 
by the differentiation of Equations (5). 
Assuming that the material parameters 
are independent design parameters, we 
obtain the correlations

     (11)

Our next goal is to determine the bounda-
ry and initial conditions for the additional 
structure by means of the mixed condi-
tions, cf. Equations (6) and Equations (7), 
cf. Figure 1.

(12)

We next formulate the sensitivity ex-
pression of the functional described 

by Equation (8). Applying Equations 
(9) to Equation (10) and integrating by 
parts and in time adequate terms within 
the correlation obtained, we formulate 
the first-order sensitivity presented by 
Equation (13).

To determine the state variables, we solve 
one primary and the set of additional prob-
lems. The number of problems is the same 
as the number of parameters, i.e. for de-
sign parameters P we should solve (P + 1)  
problems of the heat and mass transfer. 
Each additional problem is defined by 
Equations (11) and Equations (12).

	 Problems of optimisation  
and identification

Shape optimisation is the minimisa-
tion of the objective functional with a 
constraint imposed on the material cost. 
Assuming the homogeneous 1D textile of 
the unit cost u, the cost is proportional to 
the width of structure L, which is deter-
mined

   minimise F or minimise (– F) for 
C - C0 = uL - C0 = 0       (14)

We introduce the Lagrange functional  F’ = F + c(C - C0), where c is the 
Lagrange multiplier. Following the sta-
tionarity of the above functional, the sta-
tionarity conditions are defined as

  (15)

Consequently, we introduce the first-order 
sensitivity expression, cf. Equation  (13) 
and define the most used objective func-

tionals. We can introduce the following 
measures

      (16)

where q is the heat flux density and qw 
the mass flux density. Minimisation of 
the above functional corresponds to the 
design of both an optimal heat and mass 
isolator, whereas for a model of a heat ra-
diator and mass transporter, the function-
als should be maximised. The objective 
functional can be the global measure of 
maximum local state variables

   (17)

Mathematically speaking, the problem of 
identification is defined as the minimi-
sation of the objective functional with-
out constraints. Stationary conditions of 
the problem DF/Dbp = 0 are defined by 
means of the first-order sensitivity, cf. 
Equation (13). The temperature of the real 
structure Tm and water vapour concentra-
tion within the fibres wfm are measured 
during the identification at point Gm of 
the 1D structure. The objective function-
al most used are the “distances” between 
the state variables of the model and real 
structure identified

      (18)

The functionals can be the measures of 
state equations at the point Gm, defined 
as follows

   (19)

These functionals are homogeneous and 
can be used during the modification by 
expansion or contraction of the boundary. 
Minimisation of the functionals reduces 
the “distance” between temperatures T 
and Tm and concentrations wf and wfm as 
well as minimises maximum local tem-Equation 13.

(13)
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perature and water vapour concentration 
values within fibres.

The third form of identification functional 
can be the adaptation of Damage Location 
Assurance Criterion (DLAC), discussed 
for mechanical problems, for example, 
by Krawczuk, Żak, Ostachowicz [14]. 
The criterions now have the following 
form

  (20)

The correlations between temperatures T 
and Tm as well as concentrations wf and 
wfm range from 0 (no correlation between 
state variables) to 1 (full correlation).

n	 Numerical examples
Shape optimisation
Let us optimise the thickness of the com-
posite textile by means of the 1D model 
made of three different materials, cf. 
Figure 2. The internal layer #1 is made 
of cotton and is characterised accord-
ing to Li [18] by the thermal conductiv-
ity of fibres λ  =  54.1·10-2 W/(mK); the 
heat sorption of water vapour by fibres 
λw  =  3552.9·103  J/kg; the volumetric 
heat capacity of dry fibres c = 1863 × 103  
J/(m3K), the effective porosity ε = 0.95; 
the effective tortuousness of fabric  
ζ = 1.50; the density of fibres  
ρ = 1350 kg/m3; the mass convection co-
efficient hw = 0.17 m/s; and the heat con-
vection coefficient h = 105 W/(m2K). 

Isolation layer #2 is made of coated cot-
ton which is the result of the finishing 
procedure. Some parameters are differ-
ent, i.e. the thermal conductivity of fibres 
λ = 58 × 10-2 W/(mK); the heat sorption 
of water vapour by fibres λw = 3100 × 103 
J/kg; the volumetric heat capacity of dry 
fibres c = 1910 × 103 J/(m3K). The other 
values are the same as for layer #1.

External layer #3 is made of polyester 
and the material parameters are the fol-
lowing, cf. Li [18]: the thermal conduc-
tivity of fibres λ = 50 × 10-2 W/(mK); the 
heat sorption of water vapour by fibres 
λw = 2522 × 103 J/kg; the volumetric 
heat capacity of dry fibres c = 1531 × 103  
J/(m3K), the effective porosity ε = 0.98; the 
effective tortuousness of fabric ζ = 1.95;  
the density of fibres ρ = 1255 kg/m3; the 
mass convection coefficient hw = 0.01 m/s;  
and the heat convection coefficient  
h = 120 W/(m2K). 

Let us assume that the temperature of 
skin changes with time according to the 
function T = 309 + exp(0.0005 t); for 
the time parameters t0 = 0; tk = 360 s;  
Dt = 90 s. At the same end of the structure, 
the water vapour concentration within fi-
bres changes with time by means of the 
function wf = 0.05 + 0.25t – 0.001t2; the 
time parameters have the same values.

The optimisation problem can be de-
termined as the search for the material 
thickness, which secures the minimum 
heat and mass transfer throughout the 
textile structure. Mathematically speak-
ing, we maximise the objective function-
al F, i.e. minimise (-F). The optimisation 
functional Equations (16) are defined on 
the external boundary. The first-order 
sensitivity of the optimisation functional 
is determined by Equation (13). 

The constraints are the constant values 
of the maximal and minimal thickness of 
each material layer. The first stage of op-
timisation is the analysis procedure per-
formed by means of the Finite Element 
Net of 50 nodes. The calculations at the 
synthesis stage were determined by ap-
plying the external penalty function. The 
locations of the material phases are deter-
mined in Table 1. The optimal configura-
tion was found in 9 iterations.

The polyester is not laminated with cot-
ton, and due to the not smooth textile 
surface of the material, a small air layer 
between the coated cotton and polyester 
arises. This layer has a very small thick-

ness and can be neglected in relation to 
the layer between the skin and textile. 
From Table 1 we conclude that the layer 
made of polyester is the best to secure 
the minimisation of heat and mass trans-
fer through the multilayer textile struc-
ture. The thickness of both cotton layers 
is reduced in relation to initial values. 
Consequently, the optimal value of the 
objective functional is equal to 87% of 
the initial one.

Shape identification
We assume that the structure is made 
of wool and the textile material has two 
layers, which is the result of the finish-
ing process, cf. Figure 3. Let us assume 
that the first layer is made of pure wool, 
whereas the second layer is of wool coat-
ed by a special substance during the fin-
ishing process.

The pure wool which creates layer #1 
is characterised according to Li and 
Luo [17] by the thermal conductiv-
ity of fibres λ = 38.49·10-2 W/(mK); the 
heat sorption of water vapour by fibres  
λw = 4124.5·103 J/kg; the volumetric heat 
capacity of dry fibres c = 1609.7 × 103  
J/(m3K), the effective porosity ε = 0.925;  
the effective tortuousness of fabric  
ζ = 1.20; the density of fibres ρ = 1320 
kg/m3; the mass convection coefficient 
hw = 0.137 m/s; and the heat convection 
coefficient h = 99.4 W/(m2K). 

The coating substance on the surface of 
layer #2 changes the material character-
istics. The thermal conductivity of the fi-
bres is equal to λ = 42 × 10-2 W/(mK); the 
heat sorption of water vapour by fibres 
λw = 4500 × 103 J/kg; and the volumetric 
heat capacity of dry fibres c = 1700 × 103 
J/(m3K). Other parameters have the same 
values as those of pure wool in layer #1. 

The diffusion coefficient of water vapour 
in air is equal to ha = 2.49 ·10-5 m/s, cf. 
Li [18].

Table 1. Initial and optimal thickness of 
material layers within a textile structure.

Initial/
optimal

Material thickness ·10-3, m
d g1 g2 g3

Initial 1.0 3.0 2.0 2.0
Optimal 1.0 2.12 1.89 2.99

Figure 2. Design variables for optimisation 
problem.

Figure 3. Initial and identified locations of 
the material phases.
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The outer part of the textile structure 
has prescribed values of state vari-
ables. Temperature changes with time 
according to the exponential function  
Tm = 320 + exp(0.002t); for time parame-
ters t0 = 0; tk = 240 0 s; Dt = 60 s. Similarly, 
water vapour concentration within fi-
bres changes with time according to the 
function wfm = 0.05 + 0.25t – 0.001t2;  
for the same time parameters. 

The problem of identification is solved by 
means of the “distances” between the state 
variables, cf. Equations (18). Both state 
variables are measured at boundary point 
Γm, described by the coordinate x = L.  
The first-order sensitivity is defined by 
Equation (13).

The analysis stage was performed using 
a Finite Element Net of 50 nodes. The 
calculations at the synthesis stage were 
determined by the external penalty func-
tion. The locations of the initial and iden-
tified phases are shown in Figure 3. The 
structure was identified in 8 iterations.

n	 Conclusions
Physically speaking, a multilayer tex-
tile structure packed with fibres and gas 
within free spaces gives different con-
ditions of transport phenomena. In the 
paper presented we have analysed the 
mass balance, the conservation of ener-
gy and the experimental relationship for 
the content of water vapour within fab-
ric situated below the saturation point. 
Consequently, we obtain the model in-
troducing the sorption and desorption of 
water during transport. The complicated 
description of the transient coupled heat 
and mass transfer can be simplified. The 
equations are difficult to solve for tran-
sient problems by means of analytical 
methods, and the state variables should 
be determined numerically. 

The steady problem of heat and mass 
transfer is easy to determine because 
we integrate the differential equations 
separately with respect to the length pa-
rameter and introduce a set of boundary 
conditions. The results are functions de-
scribing the distribution of temperature 
and the distribution of water vapour con-
centration within fibres. Both are linear 
with respect to the length parameter x.

The first-order sensitivity of an arbitrary 
behavioral functional is analysed here by 
means of the direct approach. The first-
order sensitivity expression obtained can 

be applied to solve stationary conditions 
of identification. Additionally, we should 
introduce the objective functional which 
defines the necessary form of the first-
order sensitivity correlation.

Thus, the methods discussed can be an 
effective tool for generating state vari-
ables in 1D problems of coupled heat and 
mass transfer as well as for identifying 
the shape.

The problem should be verified by means 
of laboratory tests. Detailed analysis 
of such implementations is beyond the 
scope of this paper and will be studied in 
detail in a consecutive publication.
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