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Impact of an Object on a Layer  
of Fibres Submerged in a Fluid
Abstract
In this paper the phenomena occurring during the impact of a body falling from a height on 
a layer of fibres submerged in a fluid are studied. The properties of the layer are assumed 
to be determined by both the bending elasticity of the fibres and the resistance to fluid flow 
which is squeezed of the layer. It was found that filling the layer with fluid considerably 
decreases the impact force.
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	 Introduction
A study of the problem of the impact 
of elastic bodies on beams and plates 
with respect to transverse deforma-
tions can be found in paper [1]. In the 
present paper a mathematical model of 
an object impacting on a layer of fi-
bres is formulated. Account is taken of 
both the fluid flow squeezed out of the 
layer and the gradual locking of fibres 
resulting from their increased mutual 
contact, causing an increase in the lay-
er stiffness. Mathematical descriptions 
and experimental results of textiles 
subjected to compressive forces can be 
found in papers [2-14].

	 Theory
Consider an object that is falling from a 
height u on a layer of fibres submerged 
in a fluid. The object is composed of two 
masses, m1 and m2,connected by a spring 
of stiffness k2 and damping coefficient c2. 

The scheme of a model describing this 
configurations is presented in Figure 1.

The motions of the masses are described 
by equations (1).
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The reaction of the spring of stiffness k2 
and damping coefficient c2 to the relative 
motion of the two masses m1 and m2 is 
expressed in the form (2).

(2) 
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In order to determine the reaction of the 
layer to the impacting object, the follow-
ing three assumptions for the fibre layer 
properties are made:

1.	 When a mass pressing the layer moves 
down by y1, then the thickness H of 
the layer decreases (H-y1), and as a 
consequence the area of its free side 
C(H-y1) decreases. Let us assume that 
the volume of the fluid pushed down 
in the layer by a pressing plate of 
area A is equal to the volume of the 
fluid (3), which is released to the free 
sides of the layer in direction x, being 
perpendicular to the direction of the 
pressing plate’s movement y .
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(3)

2. Since the fluid escapes due to the de-
creasing area of the side , its velocity 
in relation to the that of the pressing 
plate must increase. The component 
of the compressive force Fy, which 
overcomes the fluid flow resistance, is 
assumed to be proportional to the sec-
ond power of the fluid velocity (as can 
be seen from equation 4).

3. It is assumed that the fibres in the layer 
simply lie one on the other without 
any other binding. The influence of 
the torsion of the fibres and friction 
forces are not considered in this paper. 
Besides the resistance to fluid flow, 
only the bending stiffness is consid-
ered here. 

Let us assume that the properties of 
each free segment of a fibre can be ap-
proximately found using beam theory. 
The transverse deflection y of a beam of 
length l made of a material of Young’s 
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Equations 4

(4)

Figure 1. Model of a body composed of two 
masses and a spring (m1, m2, k2, c2) falling 
from a height u on a layer of fibres (k1, c1).
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er, and thus the fibre becomes stiffer. It 
is assumed that the not supported span 
length of the fibre L0 decreases by a value 
proportional to its deflection Y (5a).

By summing the deflection for n fibres of 
average properties lying one on the other, 
and then summing the resistance forces 
of N pieces of fibre lying horizontally, 
one gets relationships (5b).
 
Finally, from assumptions (3,4,5b) the 
dependence between the compressive 
force FR and the compression magnitude 
y1 of a collection of fibres is found to 
have form (6). Constants k1, c1, L, H have 
to be determined experimentally. 

	 Numerical results
The set of differential equations (1) 
together with relationships (2) and (6) 
was solved numerically for masses 
m1 = 5 kg & m2 = 40 kg, a gravity ac-
celeration g = 9,81 m/s2, gravity forces 
F1 = m1g & F2 = m2g, a stiffness coeffi-
cient of the layer k1 = 500 N/m, a spring 
damping coefficient c2 = 100 Ns/m, 
a thickness of the layer H = 0.3 m, 
L = H, a height of falling u = 10 m and 

Figure 2. Reaction of layer FR versus the 
time t[s] for a soft spring (k2 = 500 N/m) 
connecting the masses – for a layer 
without fluid c1 = 0 (a), and for a layer 
submerged in fluid c1 = 16 Ns2/m2 (b) & 
c1 = 32 Ns2/m2 (c), and for a hard spring 
(k2 = 5000 N/m) connecting the masses, a 
layer without fluid c1 = 0 (d), and a layer 
submerged in fluid c1 = 16 Ns2/m2 (e).
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Equations 5 and 6
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where:

modulus E with the moment of inertia 
of a cross-section I under the action of a 
concentrated force F is Y=FL0

3/k0, where 
stiffness k0=bEI, and b depends on the 
boundary conditions. The compression 
of a layer of fibres, which have some cur-

vature, results in their flattening due to 
the bending or unbending of each fibre. 
With an increase in the force, the fibres 
gradually come into mutual contact, as a 
result of which the free length of a fibre 
that is undergoing unbending gets short-
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for initial conditions y1(0) = y2(0) = 0, 
dy1/dt(0) = dy2/dt(0) = (2gu)0.5. The re-
sults of calculations for the stiffness of 
the spring connecting masses k2 = (500, 
5000) N/m and fluid parameter associ-
ated with its viscosity c1 = (0, 16, 32) 
Ns2/m2 are shown in Figure 2.

The reaction force FR of the layer relative 
to the gravity of both masses just after 
the impact is presented in Figure 2 for 
a layer without fluid (a,d), a layer sub-
merged in fluid (b,e,c), for a soft spring 
(a,b,c) connecting the masses and for a 
hard spring (d,e). In the figures two com-
ponents of vibration at two different fre-
quencies can be observed. The quickly 
varying component of vibration is asso-
ciated with the smaller mass m1, which 
is in contact with the layer, where fibres 
come into mutual contact, locking one to 
another. The slowly varying component 
of the reaction force results from the de-
layed pressing action of the bigger mass 
m2, which has no direct contact with the 
layer. Comparing the maximum reaction 
force for a layer without fluid and with 
fluid, Figures 2a-b & 2d-e, one can see 
that when the layer is submerged in the 
fluid, the force is significantly decreased. 
Comparing the maximum forces in Fig-
ures 2a-c, one can see that the force is 
smallest for an intermediate value of the 
parameter associated with fluid viscosity.

	 Concluding remarks
1.	 The mathematical model of a layer of 

fibres formulated takes the following 
into account: (I) the gradual locking of 
fibres when coming into mutual con-

tact, (II) the energy absorption due to 
squeezing a fluid out of the layer, and 
(III) the increasing resistance to fluid 
flow caused by the decreasing distanc-
es between fibres and the decreasing 
side area of the layer.

2.	 When fluid is absent in the layer, the 
fibres quickly come into mutual con-
tact, making the layer stiff and the re-
action force acting on a falling object 
high. 

3.	 When fluid is present in the layer, the 
fibres are not locked so tightly, and the 
reaction force is smaller.

4.	 It is possible to choose a value of a 
fluid parameter associated with its 
viscosity in order to minimise the re-
action force acting on a falling object.
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