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Abstract
Extensive research has already been done on visual inspection as well as on the effect of 
different factors on human inspection performance. However, a method should be developed 
to measure their inspection skill based on influencing factors. This study contributes to the 
literature by proposing a competency assessment model based on the influencing factors 
that can classify human labour into its respective skill levels. From the literature review, the 
influencing factors of visual inspection are listed and divided into five observed variables. 
A  team of experts selected the significant factors with respect to the textile and clothing 
industry. The analytical hierarchy process is used to measure their respective weights so 
as to calculate the inspection performance in terms of a competency score. A numerical 
example is presented and the model proposed successfully determined the competency score, 
and inspectors are classified into their respective skill levels according to the well-defined 
cut-off values. This study enables organisations to classify available human labour into its 
skill levels and utilise them according to their capacity. 

Key words: quality control, visual inspection, decision making, inspection skill, competency 
assessment.
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labour is directly or indirectly involved. 
The focus of this study is to highlight 
the importance of human skill during the 
performance of a particular job and how 
performance varies from person to per-
son. In the present era, a quality manage-
ment system is more valuable than before 
because experts believe that the last cen-
tury worked more on productivity while 
the present focuses on quality [5, 6].  
An important part of quality management 
is quality control, in which different con-
trol points and checking methods are used 
to ensure outgoing quality. Inspection is 
seen as a screening or decision making 
process that decides the conformance or 
non-conformance of the product being 
manufactured [7, 8]. Here, the field under 
study is also inspection systems, which 
are performed by human labour. 

The process of inspection mainly de-
pends on the searching and decision mak-
ing abilities of the inspector. Indeed, this 
role may become relatively more impor-
tant as products become more complex 
and customer oriented [9]. Whether the 
product is basic or complex, human abil-
ity to do any repeative job like inspection 
improves with time, and the available 
labour can be segmented into differ-
ent skill levels. Thus, in order to utilise 
a workforce efficiently, maintain a good 
competitive environment among inspec-
tors, and keep expenditures in control, 
the inspection performance of individu-
al inspectors must be measured quanti-
tatively based on influencing factors. In 
the past, researchers studied the effect 

	 Introduction
Since the industrial revolution, techno-
logical and economic developments have 
changed the environment for manufac-
turing and service industries. Although 
the current trend toward automation is 
altering the nature of human involve-
ment, humans still play a major role in 
determining product quality and system 
reliability [1]. Automatic systems can 
perform simple and tedious tasks for an 
extended period of time for which hu-
man labour is poorly suited [2]. Whilst 
automatic systems are task specific and 
inflexible, with a low decision making 
ability; human labour is flexible with 
a strong decision making ability [3]. 
Thus, human labour remains important 
in most manufacturing industries, even 
though automation is increasing. This is 
why modern manufacturing systems try 
to augment human labour along with oth-
er essential components. 

For various reasons, some industries 
still rely on human labour for most of 
their manufacturing activities, for ex-
ample, manufacturing plants and firms 
that make leather goods, textile and gar-
ment factories, and industries ptoducing 
sports items [4]. In a production envi-
ronment, the ability of human labour to 
perform a particular job increases with 
time, which is defined in terms of skill. 
The skill of human labour plays a vital 
role in achieving high efficiency in dif-
ferent processes. In an organisation, there 
are a number of processes where human 

of different factors on visual inspection. 
However, there is a lack of studies on 
developing a method to measure the in-
spection skill numerically based on in-
fluencing factors so that inspectors can 
be classified into their respective skill 
levels. Similary, plenty of work has been 
done in the field of textile to shift con-
ventional visual inspection towards auto-
matic inspection [10, 11]. These studies 
obtained required results as far as fabric 
inspection is concerned [12]. While the 
conventional method of visual inspec-
tion by human labour is still applicable 
in the garment manufacturing industry. 
Thus, the primary goal of this study is to 
propose a competency-based assessment 
model using factors that influence visual 
inspection to measure the inspection skill 
for labour working in garment industry. 
The objectives of studying human-based 
inspection systems are to answer the fol-
lowing questions. 

n	 What are the factors of visual inspec-
tion that affect the performance of an 
inspector?

n	 How can a competency assessment 
model be developed using the influ-
encing factors?

n	 How can human labour at an inspec-
tion station be classified into different 
skill levels?

	 Literature review
Human-based inspection systems have 
been studied extensively with respect to 
different factors that can affect the per-
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formance of individual   inspectors as 
well as the overall inspection station. Pi-
oneering work was done by Harris [13] 
on the nature of industrial inspection. 
He presented a framework to understand 
and improve industrial inspection perfor-
mance. Subsequently, much work was 
done on visual inspection based on the 
results of Harris [13]. A number of factors 
have been considered, and their effect on 
visual inspection performance has been 
evaluated. The objectives were achieved 
by focusing on skills such as visual 
search, decision making ability, and in-
spection strategy through online and 
offline training [14]. In a visual search, 
inspectors carefully search for flaws, 
while decision-making helps to decide on 
the rejection of the item selected. On the 
other hand, inspection performance is as-
sessed on the basis of two measurements, 
inspection speed and inspection accuracy 
[15]. Accuracy is measured in terms of 
the hit rate, percentage of correct detec-
tion, and false-alarm rate, while speed can 
be measured as the search time, stopping 
time, and inspection time [2]. 

Visual search is very much affected by 
the speed and rigidity of pacing. In terms 
of accuracy, the effects of per-lot and 
per-item pacing were evaluated based 
on inspection performance. Pacing speed 
proved to be a significant factor for the 
accuracy of both per-item and per-lot; 
however, per-item is considered more 
favorable to industry [16]. The accuracy 
of visual inspection is particularly impor-
tant for the inspection of sensitive prod-
ucts, such as nuclear weapons. Recently, 
see [17], visual inspection reliability was 
measured for precision manufactured 
parts of nuclear weapons. Multiple in-
spections, the inspector confidence rat-
ing, workload, and the stress of visual in-
spection were considered to measure the 
reliability in terms of accuracy and time. 
It was also concluded that inspection is 
a workload intensive task dominated by 
mental demand and effort [17]. 

The performance of human inspectors is 
also influenced by organisational, physi-
cal, and individual factors [14, 18]. Or-
ganisational factors include the training 
conducted, work methods, work proce-
dures, policies, and social aspects. Physi-
cal factors are the tools, aids, equipment, 
and layout of a workplace that support 
the process of inspection. The individ-
ual factors are the interest, attitudes, 
knowledge, and skills. Improvement in 
performance depends on the learning be-

haviour, which vairies systematically for 
people or groups of people of different 
ages, genders, levels of education, and/or  
cultural background [19]. Researchers 
considered the effects of gender and age 
on visual inspection to determine the dif-
ference in inspection performance. How-
ever, their studies did not find significant 
differences in accuracy for either gender 
or age [19-21]. The experience of a qual-
ity inspector is also an important individ-
ual factor that contributes positively to 
improving inspection performance. Chan 
and Chiu [22] worked on experienced 
and inexperienced inspectors to inves-
tigate visual lobe shape characteristics 
and investigate their effect on inspec-
tion performance. Visual lobe roundness 
was evident in those inspectors who had 
long experience as compared to inexpe-
rienced students. Visual performance de-
pends very much on visual capabilities, 
hence it is always considered a suitable 
parameter for the selection of labour 
for an inspection process. Some stud-
ies have been conducted to evaluate the 
effect of visual strength, the visual lobe 
shape, and fatigue. Visual fatigue and 
inspection accuracy were studied to im-
prove inspection performance using two 
types of wafer coatings (Nano and gold) 
and two monitor sizes (14 and 19 inch-
es). A reduction in visual fatigue and 
improvement in accuracy was observed 
with a 19 inch monitor size and gold 
coating conditions [22, 23]. 

Other than the aforementioned factors, 
the nature of the job and the complexity 
of a task also affect the performance of 
a human inspector. A pioneering study of 
task complexity in visual inspection was 
done by Gallwey and Drury [24]. Three 
types of inspection complexity were test-
ed based on different fault types. It was 
concluded that inspection performance 
is reduced due to the complexity, which 
significantly affects search error, mis-
judgment of fault size, and decision er-
ror. Multitasking is another scenario that 
increases task complexity and affects 
inspection performance. A hybrid system 
was evaluated with inspectors perform-
ing a single task, three multiple tasks, 
and five multiple tasks. It was conclud-
ed that multiple defect types along with 
multitasking had a negative effect on 
performance [25]. Similar results were 
also achieved by Master, Jiang [26], who 
worked on human trust over time in hy-
brid systems. Their results showed that 
human trust is sensitive to the type of er-
ror made by a system. 

 In order to reduce task complexity, fac-
tors such as the defect distribution, de-
fect probability, defect complexity, and 
number of defect types, were studied to 
evaluate the performance of visual search 
and decision-making. Results showed 
a negative influence of defect complexity 
and a positive influence of defect prob-
ability on the response factors [26, 27]. 
Tetteh, Jiang [28] investigated the effect 
of search strategy, task complexity, and 
pacing on inspection performance. A sys-
tematic search strategy results in superior 
performance and decreases the inspec-
tion time. Moreover, task complexity 
was also observed as a significant factor, 
because the easier the task, the faster and 
more accurate were the inspectors. Simi-
lar results were obtained by Watanapa & 
Kaewkuekool [29], who worked on the 
effect of defect complexity on inspec-
tion performance. They suggested that 
inspectors must be trained based upon 
various product complexities to increase 
performance and save training costs. 

When improvement in the quality of hu-
man inspection is required, training is 
considered to be the primary intervention 
strategy [30, 31]. For the first time, Czaja 
and Drury [21] highlighted that training 
is a neglected area when discussing im-
provement in inspection performance. 
Their results were based on detailed 
experimental reports rather than only 
general training principles. The task per-
formance of three different age groups 
was observed, and it was concluded that 
inspection errors were reduced due to 
active training, while decrements in per-
formance due to age were also observed, 
albeit smaller in magnitude. After that, 
different types of training methods were 
formulated for visual inspection, and 
their effect on inspection performance 
was measured [15, 28, 32]. They con-
cluded that a proper training program 
based on sound principles of training 
design and a well-defined methodology 
can bring significant improvements in 
inspection performance. Various training 
methods are used for industrial inspec-
tion, including instructional training, 
online training, computer-based training 
with feedback training, and feedforward 
training [15, 27, 28, 32-34]. Compared to 
offline training, online training was more 
valuable because it considered real world 
situations [34]. Similarly, feedforward 
provides prior information regarding 
concepts, goals, and rules to inspectors 
in the form of physical/verbal guidance 
and demonstration before the inspection 
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process [15, 35]. Feedback training, on 
the other hand, provides inspectors with 
information about their previous per-
formance in the process in terms of the 
search time, search error, and decision 
error [15, 30]. 

Another effective method to improve 
inspection performance along with train-
ing is the use of job aids for visual in-
spection. A job aid means to assist the 
inspector during the inspection process 
with some type of support, such as a list, 
check sheet, picture, or manual. Stud-
ies have been conducted that included 
job aids in training for visual inspection 
[28, 32, 36]. A job aiding tool accompa-
nied by training in inspection systems 
was evaluated by Tetteh & Jiang [28]. 
Their results showed that a job-aiding 
tool improves inspection performance 
with a higher detection rate in less time. 
In a recent study, it was concluded that 

prior experience can be helpful in fol-
lowing and designing efficient and easy-
to-use job aids [36]. This comprehensive 
literature review has highlighted a num-
ber of factors that affect the inspection 
performance of inspectors. They are brief-
ly summarised and explained in the rest 
of this paper and will be used to devel-
op a competency assessment model for 
a human-based inspection system. 

Table 1 summarises the studies pub-
lished on visual inspection that were 
reviewed above. The focus of previ-
ous studies is classified into inspection 
performance measures and prominent 
factors concerning visual inspection. 
The performance measures that are used 
to judge inspection performance are 
visual search, decision-making, accura-
cy, and inspection time. The prominent 
factors are task complexity, the defect 
rate, defect type, search strategy, work-

load, stress, fatigue, job aid, and training, 
which have received the consideration 
of researchers in the past. It is evident 
that researchers have focused on eval-
uating the effect of different factors on 
the visual inspection of human labour. 
However, there has been a lack of stud-
ies on developing a method to measure 
the inspection skill numerically so that 
different inspectors can be classified into 
their respective skill levels. This study 
contributes to the literature by proposing 
a competency assessment model using 
the most influential factors of visual in-
spection.

	 Research methodology
In manufacturing industries where most 
of the work is carried out by human la-
bor, the skill and performance of individ-
ual workers affects the outcome of pro-
cesses significantly. The reason behind 
this affect is the diversification in the 
skills of human labour, which varies from 
low to high. In this senerio, work must 
be assigned according to the level of the 
worker. However, such manufacuturing 
industries do not have classified human 
labour based on working capacity. Thus, 
a competency assessment model needs 
to be developed based on the influencing 
factors. The model will not only classi-
fy the available human labour into its 
respective skills but help to promote an 
environment of competition among the 
labour. In this regard, a human based 
inspection system was considered, and 
published literature helped to identify the 
influencing factors of visual inspection. 
Based on the literature review, five ob-
served variables: personal factors, system 
factors, physical/mental factors, inspec-
tion task factors, and organisational fac-
tors that are considered responsible for 
inspector performance were identified. 
Figure 1 shows the conceptual frame-
work that was followed in this study. 
Each variable observed and its respective 
indicators affect the inspection perfor-
mance and can be used for competency 
assessment in terms of a numerical value. 
This value will help to classify quality in-
spectors into their skill levels according 
to their inspection performance. 

The selected observed variables, con-
sisting of multidimensional indicators 
that affect the inspection skill of quality 
inspectors, are summarised in Table 2. 
The objective of this study is to devel-
op a Competency Assessment Model 
(CAM) that can classify quality inspec-

Table 2. List of identified observed variables and their indicators.

Observed 
variables Indicators References

Personal 
factors (PF)

Age of the quality inspector, Interest level in current job, School/
higher school education, Length of relevant experience, Good 
health, Relevant knowledge of the inspection process, Attitude 
toward work, Awareness of quality standards

[18, 19, 23, 
27, 28, 34, 35]

System factors 
(SF)

Increase in the number of items coming from a manufacturing 
line, Increase in the fault percentage coming from a sewing line, 
Increase in the number of defect types, Fault complexity coming 
from a sewing line

[14, 15, 20, 
25, 26, 29]

Physical/
mental factors 
(PMF)

Personal fatigue during the inspection process, Inspection quantity 
per day, Inspection time per item, Inspection errors per day, Poor 
hand-eye coordination, Excessive work load at an inspection station, 
Eye fatigue/poor eye sight, Noise and disturbance at the work-place, 
Decision making, Well defined work method and procedure

[2, 20, 21, 25, 
31, 35, 36]

Inspection task 
factors (ITF)

Number of inspection tasks to be performed, More complex items 
to be inspected, Inspection procedure (random or systematic), 
Inspection of multiple products

[16, 19-21,  
24-26, 30, 32]

Organizational 
factors (OF)

Proper data recording and reporting system, Proper communication, 
Work aids to support the inspection process, Monitoring the 
performance of the quality inspector, Incentive system and benefits, 
Proper layout of the inspection station, Special training programs for 
inspectors, Proper lighting arrangement for work stations

[2, 17, 20, 26, 
30-32, 35]

Figure 1. Conceptual framework of proposed model.
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Table 1. Comparison of proposed model with previous literature.

Research Visual 
search

Decision 
making Accuracy Time Task 

complexity
Defect 

rate /type
Search 
strategy

Work load/
fatigue

Job aid/
training Study objective 

Harris [13]     
Framework for industrial 
inspection 

Czaja and Drury [21]   
Summarize different 
training programs

Gallwey and Drury [24]  ü ü ü ü
Effect of task complexity 
on inspection 

Wang, Lin [33] ü ü ü ü ü
Training for strategy 
in visual search

Gramopadhye and 
Wilson [34] ü ü ü ü

Effect of feedback 
training and noise

Kaufman, 
Gramopadhye [15]    

Improve inspection 
quality by training

Pesante, Williges [25]    
Effect of multi-tasking 
on inspection

Garrett, Melloy [16]   
Study the effect of pacing 
on inspection

Ma, Drury [37]   
Impact of feedback 
training 

Chabukswar, 
Gramopadhye [32] ü ü ü ü ü

Use of aiding and 
feedback training

Jiang,  
Gramopadhye [2] ü ü ü ü ü

Evaluation of the best 
system for inspection

Master, Jiang [26] ü ü
Measurement of trust 
over time

Drury, Green [38] ü ü  ü
Effect of fatigue factors 
on performance

Nalanagula, 
Greenstein [35] ü ü ü ü

Evaluation of 
feedforward training

Rao, Bowling [27] ü ü ü ü
Influence of task factors 
on inspection

Bhuvanesh and 
Khasawneh [39] ü ü ü ü

Assessment of human 
performance

Sadasivan and 
Gramopadhye [30] ü ü ü

Use of technology 
to train inspectors

Tetteh, Jiang [28] ü ü ü ü ü ü
Evaluation of job aiding 
tools

Sadasivan and 
Gramopadhye [31] ü ü

Use of technology for 
inspection

Mitzner, Touron [40] ü ü
Evaluate age related 
differences

Chan and Chiu [22] ü ü
Effect of inspection 
experience

Watanapa, 
Kaewkuekool [29] ü ü ü

Influence of training 
and reward

Wu and Lin [20] ü ü ü ü
Evaluation of defect 
complexity

See [14] ü ü ü ü ü
Review paper on visual 
inspection

Heidl, Thumfart [19]  
Gender differences in 
visual inspection

Lin, Chen [23]  
Reduce fatigue problems 
of inspection

Charles, Johnson [36] ü ü
Use of job aids to assist 
inspection

See [17] ü ü ü ü
Determination of 
inspection reliability 

This study ü ü ü ü ü ü  ü ü ü
Competency assessment 
of inspectors

tors into their skill levels. This division 
is based on influencing factors that cause 
performance variation among inspectors. 
For this purpose, we need to select the 
significant indicators from Table 2 and 
then measure the weight of all observed 
variables and their indicators using the 
multi-criteria decision making method – 
AHP. 

In order to find out the significanant indi-
cators of each observed variable, a struc-
tureal survey was conducted in the textile 
and clothing industry. 130 respondents 
(with a response rate of 52.0%) took part 
in the study. After anlysis, three signifi-
cant factors from each observed variable 
were selected [41]. These indicators will 
be used in the development of this com-

petency assessment model as described 
below.

	 Application of analytical 
hierarchy process

The objective of this study is to model 
different influencing factors of inspec-
tion performance into one performance 
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indicator. For this purpose, a mathemat-
ical model, the Analytical Hierarchy Pro-
cess (AHP) developed by Saaty [42], was 
used. AHP is a simple decision making 
tool that consists of decomposing com-
plex problems into components that are 
organised into sets and then finally the 
sets into levels to generate a hierarchal 
structure [43]. The method is based on 
a theory of measurement through pair-
wise comparisons relying on the judge-
ment of experts to derive priority scales. 
These scales measure the intangibles and 
tangibles in relative terms using a scale 
of absolute judgement. It represents how 
much one element dominates another 
with respect to a given attribute [44]. 
A complete flow chart of the AHP pro-
cess is shown in Figure 2, and an exam-
ple of each step as applied to this paper is 
detailed below.

Definition of the objective
The objective of this study is to develop 
a competency assessment model based 
on the factors of visual inspection so that 
inspectors can be classified into their re-
spective skill levels. 

Selection of experts for assessment
A manufacturing sector is nominated for 
the selection of experts where the process 
of inspection is performed by human la-
bour. For this purpose, the value added 
sector of the textile industry was select-
ed, which includes garment manufactur-
ing (knitwear, denim, woven, etc.) and 
home textiles. A decision group of eight 
people was selected with the minimum 
designation of a manager who direct-
ly looks after the process of inspection.  
An academic researcher and an expert 
trainer of human labour from a service 
organisation accompanied this decision 
group. Thus, a team of experts was final-
ised that conducted the complete process 
of AHP as described in Figure 2. 

Selection of the significant indicators
The decision group selected three signif-
icant factors for each observed variable 
from Table 2 based on their industrial ex-
perience and the impact of the indictors 
on the human inspection skill. The re-
sults are summarised in Table 3. 

Development of the hierarchy 
framework
A hierarchical framework was developed, 
as shown in Figure 3. It includes the ob-
served variables, their selected indicators, 
and the levels of each indicator. It is ob-

Figure 2. Complete flow chart indicating the application of the AHP process.

Table 3. Selected indicators for each observed variable. 

Observed variables Indicators

Personal factors (PF)

School/higher school education

Length of relevant experience

Relevant knowledge of the inspection process

System factors (SF)

Increase in the number of items coming from the manufacturing line 

Increase in the fault percentage coming from the sewing line

Increase in the number of defect types

Physical /mental factors (PMF)

Inspection quantity 

Inspection time per item

Inspection error 

Inspection task factors (ITF)

Number of inspection tasks to be performed

More complex items to be inspected

Inspection procedure (random or systematic)

Organizational factors (OF)

Incentive system and benefits

Special training programs for inspectors

Monitoring the performance of quality inspectors

11
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assessment of the decision group
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Conduct a consistency test to validate the 
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Pairwise comparison for the options of the sub-criteria and their relative weights
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along with the global values 

The global values are used to determine the competency score of the quality inspectors (alternatives) and 
classify them into their skill levels

Selection of significant indicators for each observed variable by experts according to the selected industry 

The global values are used to determine the competency score of the quality inspectors 
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of the sub-criteria along with the global values 

Conduct a consistency test to validate  
the assessment of the decision group

Calculate the eigenvalue & eigenvector  
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Distribution of an assessment form for constructing judgment matrices

No

Development of a hierarchy framework according to a defined objective
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Relevant literature of AHP and online training 
was provided 

Selection of experts from relevant industries for pairwise comparison

Calculate the eigenvalue and eigenvector 
for all criteria
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Decision process using a fundamental preference scale of absolute numbers

Selection of significant indicators for each observed variable by experts according  
to the selected industry 
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vious from the hierarchy framework that 
the model consists of five hierarchical 
levels. The first level is the objective that 
is referred to as the competency assess-
ment model for the human inspection 
skill. At the second level, the goal is di-
vided into five main criteria or observed 
variables: personal factors, system fac-
tors, physical/mental factors, inspection 
task factors, and organisational factors. 
At the third level, each criterion is then 
divided into three sub-criteria, i.e., the se-
lected indicators by the decision group 
(Table 3). The fourth level consists of 
three options of each sub-criteria that may 
vary with respect to each quality inspec-
tor. These options are different for each 
sub-criterion; for example, the education 
of quality inspectors may be elementa-
ry, middle or high school. Similarly, all 

Figure 3. Hierarchy of the competency assessment model for human inspection skill.

2 to 5 defective types

the other sub-criteria have three options 
each, as shown in Figure 3. However, the 
last level of AHP is normally called the 
alternatives, and in this study each quality 
inspector is considered as an alternative. 
The final weight of each sub-criterion’s 
option will be used to assess the skill level 
of the quality inspectors, i.e., the alterna-
tive, in terms of the competency score, as 
shown in Figure 3. 

Decision process
In AHP, the weights are calculated by 
comparing each pair of criteria based on 
the assessment results that are finalised 
by the decision group. Experts are asked 
to make a pairwise comparison of all the 
elements of the criteria, sub-criteria, and 
options of the sub-criteria using the fun-
damental preference scale of the absolute 

numbers (Table 4). The final membership 
form of each comparison is then convert-
ed to a numerical value according to this 
defined scale.

Pairwise comparison of the criteria 
Table 5 shows the membership functions 
of all the elements of the criteria that 
include the observed variables: PF, SF, 
PMF, ITF, and OF. Based on this infor-
mation, a judgment matrix was devel-
oped that indicates the interrelationship 
of each observed variable taking into ac-
count the human inspection skill. For ex-
ample, experts considered PF to be three 
times more important for the human in-
spection skill compared to SF, and two 
times more important compared to ITF. 
Similarly, PF is two times less important 
compared to PMF and OF.
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Table 4. Fundamental preference scale of absolute numbers. Source: [44].

Intensity  
of importance Definition Explanation

1 Very low (VL) Two activities contribute equally to the human inspection skill

3 Low (L) One activity has a low contribution to the human inspection 
skill compared to the other activities

5 Moderate (M) Experience and judgement strongly favour one activity over 
another while assessing the human inspection skill

7 High (H) One activity is ranked high over another in terms of the human 
inspection skill

9 Very high (VH) Evidence favouring one activity over another is of the highest 
possible order of affirmation 

2, 4, 6, 8 IL, IM, IH, IVH Intermediate values

Reciprocals  
of above

If the first activity has the above non-zero numbers assigned to it when compared 
with the second activity, then the second activity has the reciprocal value when 
compared with the first (a reasonable assumption).

in the matrix. Since the value of CRHIS is 
less than the threshold value of 0.10, the 
judgement made by the decision group is 
consistent, and the elements are properly 
compared. Similarly, the eigenvalue and 
eigenvector are computed for the sub-cri-
teria and the options of the sub-criteria to 
determine their respective weights taking 
into acount their effect on the human in-
spection skill. 

Compute the global values of the  
sub-criteria’s options
Finally, based on a pairwise comparison, 
the weights i.e., the local values (LV) of 
the criteria, sub-criteria, and options of 
the sub-criteria are summarised in Ta-
ble 7. These values are used to determine 
the global values (GV) for each option 
of the sub-criteria using the following 
Equation (1):
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Where the value of RI for the 5×5 matrix is 1.12, as mentioned in Table 6, and n indicates the number 
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of an alternative, which is the quality inspectors for this study. The competency score for each 
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values for the different skill levels that must be defined. For this purpose, a normalisation process was 

conducted to define the range of the competency scores. First, the maximum and minimum values 

were determined using the global values of the sub-criteria options mentioned in Table 7. The 

maximum value was 0.60 and the minimum value  0.10. Then, the maximum values (0.60) were 

considered as the normalisation constant, and both the maximum and minimum values were divided 

by this normalisation constant to define the range of the competency score i.e., 0.17 to 1 of the model 
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The resultant global values are also sum-
marised in Table 7 and will be used to 
assess the skill level of the quality in-
spectors working in organisations or 
at inspection stations. In AHP, the last 
level consists of an alternative, which 
is the quality inspectors for this study. 
The competency score for each alterna-
tive (CSAlt) is determined using the fol-
lowing Equation (2): 
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   (2)

The ultimate objective of this study is to 
divide the quality inspectors into their 
skill levels based on their performance 
i.e., their competency score. Before this, 
we need to define the cut-off values for 
the different skill levels that must be 
defined. For this purpose, a normalisa-
tion process was conducted to define the 
range of the competency scores. First, 
the maximum and minimum values were 
determined using the global values of 
the sub-criteria options mentioned in 
Table 7. The maximum value was 0.60 
and the minimum value 0.10. Then, the 
maximum values (0.60) were considered 
as the normalisation constant, and both 
the maximum and minimum values were 
divided by this normalisation constant to 
define the range of the competency score 
i.e., 0.17 to 1 of the model proposed. 
Based on this range, the decision group 
decided the cut-off values of the three 
different skill levels:

Table 5. Assessment of observed variables based on the human inspection skill (HIS).

PF SF PMF ITF OF
PF 1 L IL-1 IL IL-1

SF L-1 1 IL-1 VL IL-1

PMF IL IL 1 L IL
ITF IL-1 VL-1 L-1 1 L
OF IL IL IL-1 L 1

Table 6. Random consistency index. Source: [45].

N 1 2 3 4 5 6 7 8 9 10
Random consistency index (RI) 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Thus, the final judgement matrix based 
on the human inspection skill is as fol-
lows:
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4.6.1. Compute the Eigenvalue and Eigenvector  

From the matrix above, AHIS, the normalised principle eigenvector, and eigenvalue are computed. First, 

we need to normalise the matrix, for  the purpose of which each entry in the column of the matrix AHIS

is divided by the sum of its respective column. The normalised matrix NHIS was developed as follows: 

     

 

 
 
 
 
  
    
 
   
 

 
 
 
 
 

    
    
 

    
   

 
 
 
 
 

    
    
 

    
  

 
 
 
 

               

     

 
 
 
 
           
     
     
     

     
     
     
     
     

     
     
     
     
     

     
     
     
     
     

     
     
     
     
      

 
 
 
 
     

Then eigenvector XHIS is determined by taking the average of all the values in one row of the 

normalised matrix NHIS. This indicates the relative weight of each element present in matrix AHIS.

Similarly, the principle eigenvalue λmax, HIS is determined by the summation of the products of the 

eigenvector XHIS and the sum of the columns of the reciprocal matrix AHIS. The following results were 

obtained.  

                       

 
 
 
 
             
      
      
       

 
 
 
 

4.6.2. Consistency Test  

After calculating the eigenvalue λmax, HIS, and  eigenvector XHIS, a consistency test was conducted to 

verify the assessment of the decision group. For this purpose, the value of CI and CR was calculated,  

the outcomes of which are presented below.  
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Then eigenvector XHIS is determined by 
taking the average of all the values in one 
row of the normalised matrix NHIS. This 
indicates the relative weight of each el-
ement present in matrix AHIS. Similarly, 
the principle eigenvalue λmax, HIS is deter-
mined by the summation of the products 
of the eigenvector XHIS and the sum of the 
columns of the reciprocal matrix AHIS. 
The following results were obtained: 
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Where the value of RI for the 5×5 matrix 
is 1.12, as mentioned in Table 6, and n 
indicates the number of elements present 
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Table 7. Summary of the final weights of the criteria, sub-criteria, and sub-criteria’s options.

Goal Criteria LV Sub-criterion LV Sub-criterion’s options LV  GV

C
om

pe
te

nc
y 

as
se

ss
m

en
t m

od
el

 (C
A

M
) f

or
 h

um
an

 in
sp

ec
tio

n 
sk

ill
 (H

IS
)

P
er

so
na

l f
ac

to
rs

0.20

Education 0.16
Uneducated 0.12 0.004
Basic 0.32 0.010
Above basic 0.56 0.018

Experience 0.59
Less than one year 0.11 0.013
1 to 5 years 0.35 0.041
6 and above 0.54 0.064

Job 
knowledge 0.25

Poor 0.11 0.005
Average 0.26 0.013
High 0.63 0.032

S
ys

te
m

 fa
ct

or
s

0.11

Incoming 
quantity 0.16

50% of Target 0.11 0.002
80% of Target 0.31 0.006
100% of Target 0.58 0.011

Defect type 0.54
One type of defect 0.06 0.004
2 to 5 defect types 0.33 0.020
Above 5 defect types 0.60 0.037

Incoming 
defective 
items

0.30
Less than 10 % 0.13 0.004
11 % to 20 0.28 0.009
Above 30% 0.59 0.020

P
hy

si
ca

l/ 
m

en
ta

l f
ac

to
rs

0.34

Inspection 
quantity 0.17

Less than 50% of Target 0.09 0.005
50% to 80% of Target 0.32 0.018
Above 80% of Target 0.59 0.033

Inspection 
time 0.39

Above 60% more than ST 0.08 0.010
31 to 60% more than ST 0.26 0.034
1 to 30% more than ST 0.66 0.085

Inspection 
error 0.44

Less than 5% 0.67 0.099
6 % to 10% 0.24 0.036
Above 10% 0.09 0.013

In
sp

ec
tio

n 
ta

sk
 fa

ct
or

s

0.10

Search 
strategy 0.20

Scanning 0.12 0.002
Measuring 0.32 0.006
Both 0.56 0.011

Inspection 
tasks 0.49

Basic product 0.17 0.008
Complex product 0.39 0.019
Highly complex product 0.44 0.021

Product 
complexity 0.31

Random 0.15 0.005
Symmetric 0.38 0.012
Both 0.47 0.014

O
rg

an
is

at
io

na
l f

ac
to

rs

0.25

Incentive 
systems 0.42

No incentive 0.09 0.010
Reward only 0.29 0.031
Reward and punishment 0.62 0.065

Training 0.46
No training 0.13 0.015
Basic training 0.28 0.032
Advance training 0.59 0.069

Monitoring 0.13
No monitoring 0.08 0.003
Hourly monitoring 0.44 0.014
Bihourly monitoring 0.49 0.016

1.	 For low skill, the competency score 
was greater than 0.17 and less than or 
equal to 0.50

2.	 For medium skill, the competency 
score was greater than 0.50 and less 
than or equal to 0.75

3.	 For high skill, the competency score 
was greater than 0.75

	 Results and discussion
This section presents a numerical ex-
ample to describe the application of the 
global values summarised in Table 7 to 
measure the competency of the human 
labour performing the process of inspec-
tion. For this purpose, the values of each 
sub-criterion are required with respect 
to their respective sub-criteria options. 
Then, the global values were used to de-
termine the competency score for each 
alternative.

Numerical example 
For a numerical example, data for 1000 
quality inspectors are randomly generat-
ed using Microsoft Excel. Random data 
comprise the value for each sub-criterion 
mentioned in Table 7 with respect to its 
respective options. After that, the refine-
ment process of random data is done by 
the decision group to remove any ambi-
guity. Finally, the data generated are used 
to calculate the competency score of all 
the quality inspectors using the global 
values. Figure 4 shows the competency 
score of all quality inspectors that range 
from 0.27 to 0.88. 

The next step is to divide the quality in-
spectors into their skill levels based on 
their competency score. Accordingly, 
the aforementioned cut-off values of the 
three different skill levels in the previous 
section for low, medium and high skill 
quality inspectors were 318, 646, and 36, 
respectively. However, it was observed 
that the cut-off values needed to be re-
defined, as the results of the numerical 
example were not realistic as far as the 
number of high skill inspectors were con-
cerned. For this purpose, first a normality 
test was conducted using IBP-SPSS22. 
The test results (Table 8) were signifi-
cant, and the competency score for all 
the quality inspectors based on randomly 
generated data was normally distributed. 

The experts were involved again to rede-
fine the cut-off values based on the nor-
mally distributed data of the competency 
score (Figure 5). Unlike the actual val-
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This section presents a numerical example to describe the application of the global values summarised 

in Table 7 to measure the competency of the human labour performing the process of inspection. For 

this purpose, the values of each sub-criterion are required with respect to their respective sub-criteria 

options. Then, the global values were used to determine the competency score for each alternative. 

5.1. Numerical Example  
For a numerical example, data for 1000 quality inspectors are randomly generated  using Microsoft 

excel. Random data comprise  the value for each sub-criterion mentioned in Table 7 with respect to its 

respective options. After that, the refinement process of random data is done by the decision group to 

remove any ambiguity. Finally, the data generated are used to calculate the competency score of all 

the quality inspectors using the global values. Figure 4 shows the competency score of all quality 

inspectors that range from 0.27 to 0.88.  

Figure 4 Competency score of the quality inspectors based on randomly generated data 

The next step is to divide the quality inspectors into their skill levels based on their 

competency score. Accordingly, the aforementioned cut-off values of the three different skill levels 

in Section 3.8 for low, medium and high skill quality inspectors were 318, 646, and 36, respectively. 

However, it was observed that the cut-off values needed to be redefined, as the results of the 

numerical example were not realistic as far as the number of high skill inspectors were concerned. For 

this purpose, first a normality test was conducted using IBP-SPSS22. The test results (Table 8) were 
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ues of the competency score,whic ranged 
from 0.27 to 0.88, the experts assumed 
a range from 0.20 to 0.90 because it 
might be very rare that the final compe-
tency score would be lower than 0.20 or 
higher than 0.90. Thus, the revised cut-
off values are described as follows:
1.	 for low skill, the competency score 

was greater than 0.20 and less than or 
equal to 0.45,

2.	 for medium skill, the competency 
score was greater than 0.45 and less 
than or equal to 0.65,

3.	 for high skill, the competency score 
was greater than 0.65.

According to the revised cut-off values, 
the quality inspectors were again clas-
sified into their respective skill levels. 
Then, the comparison was summarised 
for the different cut-off values, shown in 
Table 9. This classification seems to be 
realistic and therefore the revised cut-off 
values can be used for the classification 
of quality inspectors or any organisation 
or offline station. 

It can be concluded from the results of 
the numerical examples presented that 

the model proposed has successfully 
measured the human inspection skill by 
determining the competency score using 
randomly generated data. The resultant 
skill level is based on the influencing 
factors of the visual inspection that can 
affect the performance of human labour. 
The numerical example also helped to 
redefine the cut-off values of the three 
different skill levels based on the results. 
Thus, the model proposed is capable of 
determining the competency score and 
can be used to classify the human labour 
of an inspection station into its respective 
skill levels. In this way, an organisation 
will be able to utilise its manpower ac-
cording to its performance capacity. It 
will also help to develop a pay scale 
for human labour based on its compe-
tency score. In conclusion, this method 
proposed will create an atmosphere of 
competition among human labour that 
will improve the individual and overall 
inspection performance. 

	 Conclusions
The primary objective of this research 
was to study a human based inspection 

system with more focus on measuring 
the skills of labour and classify them 
into their respective levels. Previous 
studies have evaluated the effect of dif-
ferent factors on inspection performance. 
However, significant variables were not 
modelled to fully measure the inspection 
performance in terms of skill levels. This 
study identified the influencing factors 
and utilised them to design a scale. In this 
regard, a competency assessment model 
was proposed to determine the score of 
the inspectors based on their performance 
using AHP. The model proposed was ap-
plied to randomly generated data of the 
inspectors and their competency score 
was measured successfully. The results 
helped to define the cut off values for the 
three skill levels of inspectors, i.e., low, 
medium and high skill and all the inspec-
tors were classified into their skill levels 
based on their competency score. 

Firstly, the model proposed provided the 
most effective factors that should be mon-
itored to get the maximum output from 
the inspectors. Secondly, the competency 
assessment enables the organisation to 
measure the inspection skill in the form 
of a competency score, providing a basis 
to rank the available inspectors according 
to their respective skill levels based on 
objective data. In this way, managers can 
efficiently utilise their manpower accord-
ing to its working capacity. It also devel-
ops an atmosphere of competition among 
the labour in which every quality inspec-
tor will be motivated to improve his or 
her competency score by improving their 
inspection performance. Since the model 
proposed is based on a comprehensive 
framework of influencing factors, it en-
ables mangers to focus on deficient areas 
that cause the low performance of an in-
dividual quality inspector. In conclusion, 
this research supports the idea that clas-
sifying human labour into its skill levels 
is more important for organisations to 
improve and achieve overall efficiency, 
because the workforce will be utilised 
and rewarded according to its abilities 
and skills. However, this aspect needs to 
be focused on further and practitioners 
should work to improve the skill levels 
of inspectors so that optimal results can 
be obtained from available manpower. 
It is also recommended that micro level 
studies be conducted in which each ob-
served variable and its respective indica-
tors must be investigated to evaluate their 
effect on inspection performance. 

Table 8. Results of the normality test. Note: a Lilliefors significance correction.

Kolmogorov-Smirnova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

Competency score 0.036 1000 0.004 0.997 1000 0.044

Table 9. Number of quality inspectors based on the initial and revised cut-off values. 

 
According to the initial cut-off values According to the revised cut-off values
Low skill Medium skill High skill Low skill Medium skill High skill

Cut-off values 0.17-0.50 0.50-0.75 0.75 0.20-0.45 0.45-0.65 0.62
No. of inspectors 318 646 36 165 663 172

Figure 5. Normally distributed data of the competency score.
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significant, and the competency score for all the quality inspectors based on randomly generated data 

was normally distributed.  

TABLE 8. Results of the normality test 

Kolmogorov-Smirnova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

Competency score 0.036 1000 0.004 0.997 1000 0.044
a. Lilliefors Significance Correction

The experts were involved again to redefine the cut-off values based on the normally 

distributed data of the competency score (Figure 5). Unlike the actual values of the competency 

score,whic ranged from 0.27 to 0.88, the experts assumed a range from 0.20 to 0.90 because it might 

be very rare that the final competency score would be lower than 0.20 or higher than 0.90. Thus, the 

revised cut-off values are described as follows: 

1) For low skill, the competency score was greater than 0.20 and less than or equal to 0.45 

2) For medium skill, the competency score was greater than 0.45 and less than or equal to 0.65 

3) For high skill, the competency score was greater than 0.65 

Figure 5 Normally distributed data of the competency score 

According to the revised cut-off values, the quality inspectors were again classified into their 

respective skill levels. Then, the comparison was summarised for the different cut-off values, shown 

in Table 9. This classification seems to be realistic and therefore the revised cut-off values can be 

used for the classification of quality inspectors or any organisation or offline station.  
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