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Abstract
The productivity of the conventional ring spinning process is currently limited by the frictio-
nal heat that occurs in the ring/traveler twisting system. In the framework of a fundamental 
research project from the German Research Foundation (DFG), the levitation principle of 
superconducting magnetic bearing (SMB) was implemented as a twisting element in order to 
eliminate the frictional problem and thus aim, at least, to double the productivity. A mathe-
matical model of the dynamic yarn path has already been presented considering the friction 
free SMB system up to an angular spindle speed of 25.000 r.p.m. In this paper, the existing 
theoretical model, which was developed up to 25.000 r.p.m, was further modified conside-
ring the balloon control ring and yarn elasticity at a higher angular spindle speed, such as 
50.000 r.p.m. The model was solved numerically using the Runge-Kutta method. With this 
model, it is possible to estimate the yarn tension distribution and balloon form considering 
the above-mentioned parameters. The model established was further validated by comparing 
the yarn tension and balloon forms predicted with measured ones up to an angular spindle 
speed of 15.000 r.p.m in a ring spinning tester based on superconducting magnetic bearing.
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n	 Determination of yarn tension distri-
bution in different regions of the yarn 
path with respect to the angular spin-
dle speed 

n	 Investigation of the influence of BCR 
and yarn elasticity on yarn tension and 
balloon geometry.

	 State of mathematical 
modelling

There are different theoretical models of 
the dynamic yarn path in the ring spin-
ning process [6-10]. Fraser [10] con-
sidered the balloon control ring (BCR) 
as a point constraint in the balloon that 
exerts a point force on the yarn. Later on 
he [11] assumed that the motion of the 
yarn slides over the toroidal surface of 
the control ring. He proved that the BCR 
lowers the yarn tension in the balloons 
and helps to stabilise them as well. Tang 
[12] examined the effect on yarn tension 
and balloon flutter stability with respect 
to different diameters and locations of 
BCR. He estimated that the maximum 
yarn tension can be reduced by up to 
two-thirds with the use of a single BCR 
with optimal ring size and position. 
The purpose of the existing models is to 
analyse the yarn tension distribution and 
balloon form in the ring spinning pro-
cess based on the ring/traveler twisting 

	 Introduction
According to the principle of the super-
conducting magnetic bearing (SMB) sys-
tem, a permanent magnet (PM) ring levi-
tates over the superconductor and rotates 
unlike the traveler of the existing twisting 
system to impart twist to the yarn. Thus 
the SMB twisting system replaces the 
existing ring/traveler system and elimi-
nates frictional heat between the ring and 
traveler [1-5]. However, another limita-
tion of ring spinning is the yarn tension, 
which increases together with the angu-
lar spindle speed. In this case, the bal-
loon control rings (BCRs) help to restrict 
the rotating balloon and reduce the yarn 
tension to some extent during the ring 
spinning process at higher speeds. Thus 
the implementation of one or more BCRs 
should improve stability in the SMB ring 
spinning process. Moreover the non-lin-
ear behaviour of yarn and the harmonic 
as well as non-harmonic oscillation of 
the yarn and SMB system play an im-
portant role in the dynamic yarn path at 
a higher angular spindle speed, such as 
50,000 r.p.m. Thus the aims of the math-
ematical modelling of the yarn path pre-
sented in this paper are as follows:
n	 Mathematical formulation of the yarn 

dynamics considering an additional 
BCR and linear yarn elasticity up to an 
angular spindle speed of 50.000 r.p.m. 

system. In the quasi-stationary model, 
a non-dimensional equation of motion 
of yarn has been established to represent 
the physical influences in a more gener-
al way. As the differential equations are 
extremely non-linear, all the parameters 
have not been considered in those mod-
els in order to solve the problem with-
out complexity. Moreover these models 
have described the effect of the BCR in 
a dimensionless form in the conventional 
ring spinning process. In [13-14], the di-
mensioned equation has been taken into 
account and solved numerically using the 
Runge-Kutta method considering differ-
ent angular spindle speeds. Sensitivity 
analysis of the model developed results 
in a valid solution space for the numeri-
cal solution. The model has been further 
optimised with the shooting method to 
minimise residual error in the MATLAB 
program. Thus the yarn tension and bal-
loon form are calculated in the conven-
tional ring spinning process. The model 
with the dimensioned equation has been 
further developed and validated consid-
ering the dynamics of the SMB system, 
replacing the conventional ring/traveler 
twisting element [14]. Moreover a the-
oretical model has been established in 
aquasi-stationary state considering the 
linear elasticity for different materials in 
order to simulate the balloon form and 
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predict yarn tension under given condi-
tions for a small strain (less than 3.7%), 
which helps to reduce the yarn breakage 
in ring spinning [15]. According to this 
model, yarn tension is decreased by elas-
ticity, which causes a slight increase in 
the balloon radius. 

However, the balloon control ring (BCR) 
and yarn elasticity have not been con-
sidered in the theoretical model of the 
SMB ring spinning process. Therefore 
the model [12] has been further devel-
oped considering the influence of the 
BCR and elasticity of yarn in the SMB 
based ring spinning process, especially 
at a higher angular spindle speed, such as 
50.000 r.p.m.

	 Assumptions of the model
In the mathematical formulation of the 
dynamic yarn path, the yarn is consid-
ered as a one-dimensional continuum 
with a homogeneous and circular cross 
section. The other important assumptions 
and limitations of the model presented 
are as follows:
n	 The effect of the balloon control ring 

is considered.
n	 The elasticity of yarn is considered.
n	 The friction between the yarn and 

yarn guide attached to the permanent 
magnet (PM) ring in the SMB ring 
spinning process is measured and con-
sidered in the simulation.

n	 The friction between the yarn and 
BCR is neglected.

n	 The influences of the centrifugal force 
and Coriolis force are considered.

	 Theoretical model considering 
the balloon control ring 
and yarn elasticity 

Definition of the coordinate system 
and mathematical formulation 
The yarn path from delivery rollers 
up to the winding point of the cop can 
be segmented into four regions: region 
I – from the clamping point of delivery 
rollers to the yarn guide, region II – from 
the yarn guide to the PM ring (1st sub re-
gion: between the yarn guide and BCR 
and 2nd sub region: between the BCR 
and PM ring), region III – yarn passage 
through the yarn guide of the PM ring 
and region IV – from the PM ring to the 
winding-point on the cop (Figure 1.a). 
As the yarn path in region I is nearly 
straight, no dynamic force occurs in this 
region. Hence the coordinate system r(s), 
θ(s), z(s) with corresponding unit vec-
tors er, eθ, ez is defined in the yarn path 
in region II i.e. the yarn path between the 

yarn guide and SMB system, as shown 
in Figure 1.b. The BCR in this coordi-
nate system is assumed to be a point con-
straint on the yarn in the balloon that ex-
erts a point force on the yarn at distance  
s = sc (z(sc) = hc) along the thread line 
from the guide eye. hc is the distance be-
tween the yarn guide and BCR. 

As shown in Figure 1.b, if a material 
point M is defined as the position vector 
R(s, t) = rer + zez in region II, an Equa-
tion (1) of yarn dynamics can be formu-
lated according to the well-known equa-
tion of motion [10].

Where, m is the yarn mass in g/km, ωPM 
the angular velocity of the PM ring, 
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As shown in Figure 1.b, if a material point M is defined as the position vector 𝑹𝑹 𝑠𝑠, 𝑡𝑡 = 𝑟𝑟𝑟𝑟𝒓𝒓 +

𝑧𝑧𝑧𝑧𝒛𝒛 in region II, an equation of yarn dynamics can be formulated according to the well-

known equation of motion [8]:

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃
2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕

𝜕𝜕𝜕𝜕  𝑇𝑇
𝜕𝜕
𝜕𝜕𝜕𝜕𝑹𝑹 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (1)

Where, 𝑚𝑚 is the yarn mass in g/km, 𝜔𝜔𝑃𝑃𝑃𝑃  the angular velocity of the PM ring, 𝕯𝕯 the 

differential operator, 𝑻𝑻 the yarn tension at M,  the air drag force per unit length, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒄𝒄 is 

the point force of the BCR exerted on the yarn. 

The equation of motion is further applied in a dimensioned form based on [6]: 

𝑚𝑚 𝑣𝑣2 d2𝑹𝑹
d𝑠𝑠2 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑣𝑣𝒆𝒆𝒛𝒛 × d𝑹𝑹

d𝑠𝑠 + 𝜔𝜔𝑃𝑃𝑃𝑃
2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝑇𝑇′ d𝑹𝑹

d𝑠𝑠 + 𝑇𝑇 d2𝑹𝑹
d𝑠𝑠2 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (2)

Where, 𝑣𝑣 is the delivery velocity of the yarn at the delivery rollers. 

 Mathematical formulation considering the elasticity of the yarn 

The definition of strain is consistent with the usual definition of strain in linear-elasticity 

theory as the ratio of elongation with respect to the original length. If E is Young’s modulus,

T is the tension at  point M, and A is the cross-sectional area of unstretched yarn, which 

leads to the following equation 

𝜀𝜀 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 1 = 𝑇𝑇

𝐴𝐴𝐴𝐴 (3)

If the yarn strain is 𝜀𝜀 along the yarn length, the difference in the position vector at point M 

can be expressed as 

𝑑𝑑𝑹𝑹 = 𝑑𝑑𝑑𝑑(1 + 𝜀𝜀) (4)

Thus replacing the inextensibility assumption can be formed as follows [13]: 

 
the differential operator, T the yarn ten-
sion at M, F the air drag force per unit 
length, and Fc is the point force of the 
BCR exerted on the yarn.

The Equation (2) of motion is further ap-
plied in a dimensioned form based on [6].

Where, ν is the velocity of the yarn at the 
delivery rollers.

Figure 1. Definition of: a) yarn path and b) coordinate system in region II considering the balloon control ring. Region I – from the clamping 
point of the delivery rollers to the yarn guide, Region II – from the yarn guide to the PM ring (IIA: between yarn guide and BCR and IIB: 
between BCR and PM ring), Region III – yarn passage through the yarn guide of the PM ring, and Region IV – from the PM ring to the 
winding-point on the cop.
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As shown in Figure 1.b, if a material point M is defined as the position vector 𝑹𝑹 𝑠𝑠, 𝑡𝑡 = 𝑟𝑟𝑟𝑟𝒓𝒓 +

𝑧𝑧𝑧𝑧𝒛𝒛 in region II, an equation of yarn dynamics can be formulated according to the well-
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2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
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𝜕𝜕
𝜕𝜕𝜕𝜕𝑹𝑹 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (1)

Where, 𝑚𝑚 is the yarn mass in g/km, 𝜔𝜔𝑃𝑃𝑃𝑃  the angular velocity of the PM ring, 𝕯𝕯 the 

differential operator, 𝑻𝑻 the yarn tension at M,  the air drag force per unit length, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒄𝒄 is 

the point force of the BCR exerted on the yarn. 

The equation of motion is further applied in a dimensioned form based on [6]: 

𝑚𝑚 𝑣𝑣2 d2𝑹𝑹
d𝑠𝑠2 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑣𝑣𝒆𝒆𝒛𝒛 × d𝑹𝑹

d𝑠𝑠 + 𝜔𝜔𝑃𝑃𝑃𝑃
2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝑇𝑇′ d𝑹𝑹

d𝑠𝑠 + 𝑇𝑇 d2𝑹𝑹
d𝑠𝑠2 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (2)

Where, 𝑣𝑣 is the delivery velocity of the yarn at the delivery rollers. 

 Mathematical formulation considering the elasticity of the yarn 

The definition of strain is consistent with the usual definition of strain in linear-elasticity 

theory as the ratio of elongation with respect to the original length. If E is Young’s modulus,

T is the tension at  point M, and A is the cross-sectional area of unstretched yarn, which 

leads to the following equation 

𝜀𝜀 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 1 = 𝑇𝑇

𝐴𝐴𝐴𝐴 (3)

If the yarn strain is 𝜀𝜀 along the yarn length, the difference in the position vector at point M 

can be expressed as 
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(1)

(2)

Equations (1) and (2).
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guide of the PM ring and region IV – from the PM ring to the winding-point on the cop 

(Figure 1.a). As the yarn path in region I is nearly straight,  no dynamic force occurs in this 

region. Hence the coordinating system 𝑟𝑟 𝑠𝑠 ,𝜃𝜃 𝑠𝑠 , 𝑧𝑧(𝑠𝑠) with corresponding unit vectors 

𝑒𝑒𝑟𝑟 , 𝑒𝑒𝜃𝜃 , 𝑒𝑒𝑧𝑧  is defined in the yarn path in region II i.e. the yarn path between the yarn guide and 

SMB system, as shown in Figure 1.b. The BCR in this coordinating system is assumed to 

be a point constraint on the yarn in the balloon that exerts a point force on the yarn at 

distance s=sc (z(sc) = hc) along the thread line from the guide eye. hc is the distance 

between the yarn guide and  BCR.   

 

 

                                (a)                     (b) 

Figure 1. Definition of (a) Yarn path and (b) coordinate system in region II considering the balloon 

control ring. Region I – from the clamping point of the delivery rollers to the yarn guide, Region II- from the 

yarn guide to the PM ring, Region III - yarn passage through the yarn guide of the PM ring, and Region IV – 

from the PM ring to the winding-point on the cop 
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Mathematical formulation 
considering the elasticity of the yarn
The definition of strain is consistent 
with the usual definition of strain in lin-
ear-elasticity theory as the ratio of elon-
gation with respect to the original length. 
If E is Young’s modulus, T is the tension 
at point M, and A is the cross-sectional 
area of unstretched yarn, which leads to 
the following Equation (3):
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As shown in Figure 1.b, if a material point M is defined as the position vector 𝑹𝑹 𝑠𝑠, 𝑡𝑡 = 𝑟𝑟𝑟𝑟𝒓𝒓 +
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d𝑠𝑠 + 𝜔𝜔𝑃𝑃𝑃𝑃
2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝑇𝑇′ d𝑹𝑹

d𝑠𝑠 + 𝑇𝑇 d2𝑹𝑹
d𝑠𝑠2 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (2)

Where, 𝑣𝑣 is the delivery velocity of the yarn at the delivery rollers. 

 Mathematical formulation considering the elasticity of the yarn 

The definition of strain is consistent with the usual definition of strain in linear-elasticity 

theory as the ratio of elongation with respect to the original length. If E is Young’s modulus,

T is the tension at  point M, and A is the cross-sectional area of unstretched yarn, which 

leads to the following equation 

𝜀𝜀 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 1 = 𝑇𝑇

𝐴𝐴𝐴𝐴 (3)

If the yarn strain is 𝜀𝜀 along the yarn length, the difference in the position vector at point M 

can be expressed as 

𝑑𝑑𝑹𝑹 = 𝑑𝑑𝑑𝑑(1 + 𝜀𝜀) (4)

Thus replacing the inextensibility assumption can be formed as follows [13]: 

   (3)

If the yarn strain ε is along the yarn 
length, the difference in the position vec-
tor at point M can be expressed as Equa-
tion (4):
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Where, 𝑣𝑣 is the delivery velocity of the yarn at the delivery rollers. 

 Mathematical formulation considering the elasticity of the yarn 

The definition of strain is consistent with the usual definition of strain in linear-elasticity 

theory as the ratio of elongation with respect to the original length. If E is Young’s modulus,
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𝐴𝐴𝐴𝐴 (3)

If the yarn strain is 𝜀𝜀 along the yarn length, the difference in the position vector at point M 
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Thus replacing the inextensibility as-
sumption can be formed as follows [15]:
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
𝜕𝜕𝜕𝜕  𝑇𝑇. 1

(1 + 𝜀𝜀) ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (6)

Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)

   (5)

The elasticity of the material is depend-
ent on its type , which influences the yarn 
tension distribution as well. Considering 
the elasticity of yarn, the unit tangent 
vector to the yarn path in Equation (1) 
will be 
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2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 
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1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔
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. Thus Equation (1)  
is modified considering the yarn elastic-
ity and balloon control ring as follows 
Equation (6). 

Where, 
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2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)

R the Coriolis accel-
eration and 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
𝜕𝜕𝜕𝜕  𝑇𝑇. 1

(1 + 𝜀𝜀) ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (6)

Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)

 the yarn 
centrifugal acceleration relating to the 
rotating reference frame. 

The drag force per yarn length F can be 
expressed as follows [10] Equation (7).

Dn describes the air drag constant, vn the 
normal component of the yarn velocity at 

point M, ρ the air density in kg/m3, d the 
yarn diameter in m, cd the air drag coef-
ficient, and ρm is the density of yarn in 
kg/m3.

The component equations of Equa-
tion (6) are described as follows Equa-
tions (8), (9), (10).

Where, T0 is the yarn tension at the yarn 
guide, μc the co-efficient of friction be-
tween the yarn and balloon control ring, 
and Fr and Fz are the component forces 
that are exerted from the control ring on 
the yarn. 

Boundary conditions of the modelling
The boundary conditionsvat the upper 
yarn guide as illustrated  in Figure 1.b are:
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1
(1+𝜀𝜀)  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2 𝑧𝑧′′ = 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑚𝑚𝑟𝑟′𝑧𝑧′ − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

3 𝑟𝑟′2 + 𝑧𝑧′2 ∙ 𝜃𝜃′𝑧𝑧′ )- 𝐹𝐹𝑧𝑧 (10)

Where, 𝑇𝑇0 is the yarn tension at the yarn guide, 𝜇𝜇𝑐𝑐 the co-efficient of friction between the 

yarn and balloon control ring, and 𝐹𝐹𝑟𝑟  and 𝐹𝐹𝑧𝑧  are the component forces that are exerted from 

the control ring on the yarn.  

Boundary conditions of the modelling 

For the guide eye (𝑂𝑂 (Figure 1.b), the boundary conditions are 

𝑟𝑟 0 = 10−3 m , 𝜃𝜃 0 = 0 , 𝑧𝑧 0 = 0. (11)

The boundary conditions due to the integration of the BCR are the geometrical constraints 

at s=sc :

𝑟𝑟 𝑠𝑠𝑐𝑐 = 𝑐𝑐, 𝑧𝑧 𝑠𝑠𝑐𝑐 = ℎ𝑐𝑐 (12)

where, c is the radius of the BCR, and hc is the vertical distance between the yarn guide 

and BCR. The first boundary conditions at the yarn guide of the PM ring, 𝑁𝑁 (Figure 1.b) are 

𝑟𝑟 𝑠𝑠𝑙𝑙 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑧𝑧 𝑠𝑠𝑙𝑙 = ℎ (13)

𝑠𝑠𝑙𝑙  describes the length of the yarn between the yarn guide and the yarn guide of the PM 

ring at N, and ℎ is the balloon height (Figure 1.b). 

The 2nd boundary condition at the yarn guide of the PM ring i.e. in region III, is defined from 

the equation of motion of the PM ring:  

𝑇𝑇1 𝑔𝑔 sin𝜙𝜙 −𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃′(𝑠𝑠𝑙𝑙) 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑅𝑅𝜔𝜔𝑃𝑃𝑃𝑃 (14)

𝑇𝑇1 is the yarn tension at the yarn guide of the PM ring on the balloon side, 𝑔𝑔 (=  𝑒𝑒𝜇𝜇𝑦𝑦𝛼𝛼 ) the 

frictional parameter between the yarn and yarn guide of the PM ring, dR the damping 

constant of rotation of the rotating PM ring and ()′ ≡ 𝑑𝑑() 𝑑𝑑𝑑𝑑 . The yarn tension at the yarn 

(11)
The boundary conditions due to the inte-
gration of the BCR are the geometrical 
constraints at s = sc:
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1
(1+𝜀𝜀)  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2 𝑧𝑧′′ = 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑚𝑚𝑟𝑟′𝑧𝑧′ − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

3 𝑟𝑟′2 + 𝑧𝑧′2 ∙ 𝜃𝜃′𝑧𝑧′ )- 𝐹𝐹𝑧𝑧 (10)

Where, 𝑇𝑇0 is the yarn tension at the yarn guide, 𝜇𝜇𝑐𝑐 the co-efficient of friction between the 

yarn and balloon control ring, and 𝐹𝐹𝑟𝑟  and 𝐹𝐹𝑧𝑧  are the component forces that are exerted from 

the control ring on the yarn.  

Boundary conditions of the modelling 

For the guide eye (𝑂𝑂 (Figure 1.b), the boundary conditions are 

𝑟𝑟 0 = 10−3 m , 𝜃𝜃 0 = 0 , 𝑧𝑧 0 = 0. (11)

The boundary conditions due to the integration of the BCR are the geometrical constraints 

at s=sc :

𝑟𝑟 𝑠𝑠𝑐𝑐 = 𝑐𝑐, 𝑧𝑧 𝑠𝑠𝑐𝑐 = ℎ𝑐𝑐 (12)

where, c is the radius of the BCR, and hc is the vertical distance between the yarn guide 

and BCR. The first boundary conditions at the yarn guide of the PM ring, 𝑁𝑁 (Figure 1.b) are 

𝑟𝑟 𝑠𝑠𝑙𝑙 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑧𝑧 𝑠𝑠𝑙𝑙 = ℎ (13)

𝑠𝑠𝑙𝑙  describes the length of the yarn between the yarn guide and the yarn guide of the PM 

ring at N, and ℎ is the balloon height (Figure 1.b). 

The 2nd boundary condition at the yarn guide of the PM ring i.e. in region III, is defined from 

the equation of motion of the PM ring:  

𝑇𝑇1 𝑔𝑔 sin𝜙𝜙 −𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃′(𝑠𝑠𝑙𝑙) 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑅𝑅𝜔𝜔𝑃𝑃𝑃𝑃 (14)

𝑇𝑇1 is the yarn tension at the yarn guide of the PM ring on the balloon side, 𝑔𝑔 (=  𝑒𝑒𝜇𝜇𝑦𝑦𝛼𝛼 ) the 

frictional parameter between the yarn and yarn guide of the PM ring, dR the damping 

constant of rotation of the rotating PM ring and ()′ ≡ 𝑑𝑑() 𝑑𝑑𝑑𝑑 . The yarn tension at the yarn 

   (12)

where, c is the radius of the BCR, and hc 
is the vertical distance between the upper 
yarn guide and BCR. The first boundary 
conditions at the yarn guide of the PM 
ring, N (Figure 1.b) are
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1
(1+𝜀𝜀)  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2 𝑧𝑧′′ = 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑚𝑚𝑟𝑟′𝑧𝑧′ − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

3 𝑟𝑟′2 + 𝑧𝑧′2 ∙ 𝜃𝜃′𝑧𝑧′ )- 𝐹𝐹𝑧𝑧 (10)

Where, 𝑇𝑇0 is the yarn tension at the yarn guide, 𝜇𝜇𝑐𝑐 the co-efficient of friction between the 

yarn and balloon control ring, and 𝐹𝐹𝑟𝑟  and 𝐹𝐹𝑧𝑧  are the component forces that are exerted from 

the control ring on the yarn.  

Boundary conditions of the modelling 

For the guide eye (𝑂𝑂 (Figure 1.b), the boundary conditions are 

𝑟𝑟 0 = 10−3 m , 𝜃𝜃 0 = 0 , 𝑧𝑧 0 = 0. (11)

The boundary conditions due to the integration of the BCR are the geometrical constraints 

at s=sc :

𝑟𝑟 𝑠𝑠𝑐𝑐 = 𝑐𝑐, 𝑧𝑧 𝑠𝑠𝑐𝑐 = ℎ𝑐𝑐 (12)

where, c is the radius of the BCR, and hc is the vertical distance between the yarn guide 

and BCR. The first boundary conditions at the yarn guide of the PM ring, 𝑁𝑁 (Figure 1.b) are 

𝑟𝑟 𝑠𝑠𝑙𝑙 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑧𝑧 𝑠𝑠𝑙𝑙 = ℎ (13)

𝑠𝑠𝑙𝑙  describes the length of the yarn between the yarn guide and the yarn guide of the PM 

ring at N, and ℎ is the balloon height (Figure 1.b). 

The 2nd boundary condition at the yarn guide of the PM ring i.e. in region III, is defined from 

the equation of motion of the PM ring:  

𝑇𝑇1 𝑔𝑔 sin𝜙𝜙 −𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃′(𝑠𝑠𝑙𝑙) 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑅𝑅𝜔𝜔𝑃𝑃𝑃𝑃 (14)

𝑇𝑇1 is the yarn tension at the yarn guide of the PM ring on the balloon side, 𝑔𝑔 (=  𝑒𝑒𝜇𝜇𝑦𝑦𝛼𝛼 ) the 

frictional parameter between the yarn and yarn guide of the PM ring, dR the damping 

constant of rotation of the rotating PM ring and ()′ ≡ 𝑑𝑑() 𝑑𝑑𝑑𝑑 . The yarn tension at the yarn 
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1
(1+𝜀𝜀)  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2 𝑧𝑧′′ = 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑚𝑚𝑟𝑟′𝑧𝑧′ − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

3 𝑟𝑟′2 + 𝑧𝑧′2 ∙ 𝜃𝜃′𝑧𝑧′ )- 𝐹𝐹𝑧𝑧 (10)

Where, 𝑇𝑇0 is the yarn tension at the yarn guide, 𝜇𝜇𝑐𝑐 the co-efficient of friction between the 

yarn and balloon control ring, and 𝐹𝐹𝑟𝑟  and 𝐹𝐹𝑧𝑧  are the component forces that are exerted from 

the control ring on the yarn.  

Boundary conditions of the modelling 

For the guide eye (𝑂𝑂 (Figure 1.b), the boundary conditions are 

𝑟𝑟 0 = 10−3 m , 𝜃𝜃 0 = 0 , 𝑧𝑧 0 = 0. (11)

The boundary conditions due to the integration of the BCR are the geometrical constraints 

at s=sc :

𝑟𝑟 𝑠𝑠𝑐𝑐 = 𝑐𝑐, 𝑧𝑧 𝑠𝑠𝑐𝑐 = ℎ𝑐𝑐 (12)

where, c is the radius of the BCR, and hc is the vertical distance between the yarn guide 

and BCR. The first boundary conditions at the yarn guide of the PM ring, 𝑁𝑁 (Figure 1.b) are 

𝑟𝑟 𝑠𝑠𝑙𝑙 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑧𝑧 𝑠𝑠𝑙𝑙 = ℎ (13)

𝑠𝑠𝑙𝑙  describes the length of the yarn between the yarn guide and the yarn guide of the PM 

ring at N, and ℎ is the balloon height (Figure 1.b). 

The 2nd boundary condition at the yarn guide of the PM ring i.e. in region III, is defined from 

the equation of motion of the PM ring:  

𝑇𝑇1 𝑔𝑔 sin𝜙𝜙 −𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃′(𝑠𝑠𝑙𝑙) 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑅𝑅𝜔𝜔𝑃𝑃𝑃𝑃 (14)

𝑇𝑇1 is the yarn tension at the yarn guide of the PM ring on the balloon side, 𝑔𝑔 (=  𝑒𝑒𝜇𝜇𝑦𝑦𝛼𝛼 ) the 

frictional parameter between the yarn and yarn guide of the PM ring, dR the damping 

constant of rotation of the rotating PM ring and ()′ ≡ 𝑑𝑑() 𝑑𝑑𝑑𝑑 . The yarn tension at the yarn 

  (13)

sl describes the length of the yarn be-
tween the upper yarn guide and the yarn 
guide of the PM ring at N, and h is the 
balloon height (Figure 1.b).

The 2nd boundary condition at the yarn 
guide of the PM ring i.e. in region III, is 
defined from the Equation (14) of mo-
tion of the PM ring: 
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1
(1+𝜀𝜀)  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2 𝑧𝑧′′ = 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑚𝑚𝑟𝑟′𝑧𝑧′ − 1
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3 𝑟𝑟′2 + 𝑧𝑧′2 ∙ 𝜃𝜃′𝑧𝑧′ )- 𝐹𝐹𝑧𝑧 (10)

Where, 𝑇𝑇0 is the yarn tension at the yarn guide, 𝜇𝜇𝑐𝑐 the co-efficient of friction between the 

yarn and balloon control ring, and 𝐹𝐹𝑟𝑟  and 𝐹𝐹𝑧𝑧  are the component forces that are exerted from 

the control ring on the yarn.  

Boundary conditions of the modelling 

For the guide eye (𝑂𝑂 (Figure 1.b), the boundary conditions are 

𝑟𝑟 0 = 10−3 m , 𝜃𝜃 0 = 0 , 𝑧𝑧 0 = 0. (11)

The boundary conditions due to the integration of the BCR are the geometrical constraints 

at s=sc :

𝑟𝑟 𝑠𝑠𝑐𝑐 = 𝑐𝑐, 𝑧𝑧 𝑠𝑠𝑐𝑐 = ℎ𝑐𝑐 (12)

where, c is the radius of the BCR, and hc is the vertical distance between the yarn guide 

and BCR. The first boundary conditions at the yarn guide of the PM ring, 𝑁𝑁 (Figure 1.b) are 

𝑟𝑟 𝑠𝑠𝑙𝑙 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑧𝑧 𝑠𝑠𝑙𝑙 = ℎ (13)

𝑠𝑠𝑙𝑙  describes the length of the yarn between the yarn guide and the yarn guide of the PM 

ring at N, and ℎ is the balloon height (Figure 1.b). 

The 2nd boundary condition at the yarn guide of the PM ring i.e. in region III, is defined from 

the equation of motion of the PM ring:  

𝑇𝑇1 𝑔𝑔 sin𝜙𝜙 −𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃′(𝑠𝑠𝑙𝑙) 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑅𝑅𝜔𝜔𝑃𝑃𝑃𝑃 (14)

𝑇𝑇1 is the yarn tension at the yarn guide of the PM ring on the balloon side, 𝑔𝑔 (=  𝑒𝑒𝜇𝜇𝑦𝑦𝛼𝛼 ) the 

frictional parameter between the yarn and yarn guide of the PM ring, dR the damping 

constant of rotation of the rotating PM ring and ()′ ≡ 𝑑𝑑() 𝑑𝑑𝑑𝑑 . The yarn tension at the yarn 

(14)

T1 is the yarn tension at the yarn guide 
of the PM ring on the balloon side, 
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1
(1+𝜀𝜀)  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2 𝑧𝑧′′ = 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑚𝑚𝑟𝑟′𝑧𝑧′ − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

3 𝑟𝑟′2 + 𝑧𝑧′2 ∙ 𝜃𝜃′𝑧𝑧′ )- 𝐹𝐹𝑧𝑧 (10)

Where, 𝑇𝑇0 is the yarn tension at the yarn guide, 𝜇𝜇𝑐𝑐 the co-efficient of friction between the 

yarn and balloon control ring, and 𝐹𝐹𝑟𝑟  and 𝐹𝐹𝑧𝑧  are the component forces that are exerted from 

the control ring on the yarn.  

Boundary conditions of the modelling 

For the guide eye (𝑂𝑂 (Figure 1.b), the boundary conditions are 

𝑟𝑟 0 = 10−3 m , 𝜃𝜃 0 = 0 , 𝑧𝑧 0 = 0. (11)

The boundary conditions due to the integration of the BCR are the geometrical constraints 

at s=sc :

𝑟𝑟 𝑠𝑠𝑐𝑐 = 𝑐𝑐, 𝑧𝑧 𝑠𝑠𝑐𝑐 = ℎ𝑐𝑐 (12)

where, c is the radius of the BCR, and hc is the vertical distance between the yarn guide 

and BCR. The first boundary conditions at the yarn guide of the PM ring, 𝑁𝑁 (Figure 1.b) are 

𝑟𝑟 𝑠𝑠𝑙𝑙 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑧𝑧 𝑠𝑠𝑙𝑙 = ℎ (13)

𝑠𝑠𝑙𝑙  describes the length of the yarn between the yarn guide and the yarn guide of the PM 

ring at N, and ℎ is the balloon height (Figure 1.b). 

The 2nd boundary condition at the yarn guide of the PM ring i.e. in region III, is defined from 

the equation of motion of the PM ring:  

𝑇𝑇1 𝑔𝑔 sin𝜙𝜙 −𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃′(𝑠𝑠𝑙𝑙) 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑅𝑅𝜔𝜔𝑃𝑃𝑃𝑃 (14)

𝑇𝑇1 is the yarn tension at the yarn guide of the PM ring on the balloon side, 𝑔𝑔 (=  𝑒𝑒𝜇𝜇𝑦𝑦𝛼𝛼 ) the 

frictional parameter between the yarn and yarn guide of the PM ring, dR the damping 

constant of rotation of the rotating PM ring and ()′ ≡ 𝑑𝑑() 𝑑𝑑𝑑𝑑 . The yarn tension at the yarn 

 the frictional parame-
ter between the yarn and yarn guide of 
the PM ring, dR the damping constant 
of rotation of the rotating PM ring and  
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Where, 𝑇𝑇0 is the yarn tension at the yarn guide, 𝜇𝜇𝑐𝑐 the co-efficient of friction between the 

yarn and balloon control ring, and 𝐹𝐹𝑟𝑟  and 𝐹𝐹𝑧𝑧  are the component forces that are exerted from 

the control ring on the yarn.  

Boundary conditions of the modelling 

For the guide eye (𝑂𝑂 (Figure 1.b), the boundary conditions are 

𝑟𝑟 0 = 10−3 m , 𝜃𝜃 0 = 0 , 𝑧𝑧 0 = 0. (11)

The boundary conditions due to the integration of the BCR are the geometrical constraints 

at s=sc :

𝑟𝑟 𝑠𝑠𝑐𝑐 = 𝑐𝑐, 𝑧𝑧 𝑠𝑠𝑐𝑐 = ℎ𝑐𝑐 (12)

where, c is the radius of the BCR, and hc is the vertical distance between the yarn guide 

and BCR. The first boundary conditions at the yarn guide of the PM ring, 𝑁𝑁 (Figure 1.b) are 

𝑟𝑟 𝑠𝑠𝑙𝑙 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑧𝑧 𝑠𝑠𝑙𝑙 = ℎ (13)

𝑠𝑠𝑙𝑙  describes the length of the yarn between the yarn guide and the yarn guide of the PM 

ring at N, and ℎ is the balloon height (Figure 1.b). 

The 2nd boundary condition at the yarn guide of the PM ring i.e. in region III, is defined from 

the equation of motion of the PM ring:  

𝑇𝑇1 𝑔𝑔 sin𝜙𝜙 −𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃′(𝑠𝑠𝑙𝑙) 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑅𝑅𝜔𝜔𝑃𝑃𝑃𝑃 (14)

𝑇𝑇1 is the yarn tension at the yarn guide of the PM ring on the balloon side, 𝑔𝑔 (=  𝑒𝑒𝜇𝜇𝑦𝑦𝛼𝛼 ) the 

frictional parameter between the yarn and yarn guide of the PM ring, dR the damping 

constant of rotation of the rotating PM ring and ()′ ≡ 𝑑𝑑() 𝑑𝑑𝑑𝑑 . The yarn tension at the yarn . The yarn tension at the 
yarn guide of the PM ring on the cop side 
T2 (Figure 1.b) i.e. in region IV is esti-
mated by Euler equation as follows
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guide of the PM ring on the cop side 𝑇𝑇2  (Figure 1.b) i.e. in region IV is estimated by EULER

equation as follows 

𝑇𝑇2 = 𝑇𝑇1 ∙ 𝑒𝑒𝜇𝜇𝑦𝑦𝛼𝛼
(15)

where 𝜇𝜇𝑦𝑦  is the frictional co-efficient between the yarn and yarn guide of the PM ring, and 𝛼𝛼

is the angle, shown in Figure 1.b. The friction between the yarn and  yarn guide of the PM 

ring was measured with a CTT (constant tension transport) friction tester and was used for 

simulation of the model. 

4. Numerical solution of the theoretical model  

The Eqn. (6) is a 2nd order differential equation of the dynamic yarn path considering the 

BCR and yarn elasticity. The components of equations (8-10) are integrated with the 

RUNGE-KUTTA method with a spatial step size of 0.0001 using the MATLAB program and 

are further optimised using the shooting method so that the above-mentioned boundary 

conditions in (Eqn. 11-14) are fulfilled. Finally an iterative optimisation method: ‘Levenberg-

Marquardt algorithm’ has been applied to minimise the squared error residual sum of the 

reformulated boundary conditions. The algorithm minimises the non-linear least square 

problem to establish the local minimum and satisfy the convergence criteria of the 

algorithm. The solution of  equations (8-10), due to their high non-linearity, is strongly 

dependent on the initial values. Hence a sensitivity analysis in terms of the initial values is 

necessary to find an optimal solution with the above- mentioned iterative optimisation 

algorithm [11]. The minimisation of the residual error for a set of initial trial values T0 and 

r′ (0) is calculated from the sensitivity analysis, which delivers an optimal set of trial values 

which fulfil the boundary conditions. 

For the numerical solution,  boundary conditions (Eqn. 11-14)  are considered. The yarn 

path from the delivery rollers up to the winding point of the cop is assumed to be continuous 

    (15)

where μy is the frictional co-efficient 
between the yarn and yarn guide of the 
PM ring, and α is the angle, shown in 
Figure 1.b. The friction between the 
yarn and yarn guide of the PM ring was 
measured with a CTT (constant tension 
transport) friction tester and was used for 
simulation of the model.

	 Numerical solution  
of the theoretical model 

The Equation (6) is a 2nd order differen-
tial equation of the dynamic yarn path 
considering the BCR and yarn elasticity. 
The components of Equations (8)-(10) 
are integrated with the Runge-Kutta 
method with a spatial step size of 0.0001 
using the MATLAB program and are fur-
ther optimised using the shooting method 
so that the above-mentioned boundary 
conditions in (Equations (11)-(14)) are 
fulfilled. Finally an iterative optimisation 
method: ‘Levenberg-Marquardt algo-
rithm’ has been applied to minimise the 
squared error residual sum of the refor-
mulated boundary conditions. The al-
gorithm minimises the non-linear least 
square problem to establish the local 
minimum and satisfy the convergence 
criteria of the algorithm. The solution 
of Equations (8)-(10), due to their high 
non-linearity, is strongly dependent on 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
𝜕𝜕𝜕𝜕  𝑇𝑇. 1

(1 + 𝜀𝜀) ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (6)

Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)

Equations (6), (7), (8), (9) and (10).
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
𝜕𝜕𝜕𝜕  𝑇𝑇. 1

(1 + 𝜀𝜀) ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (6)

Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 
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Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)

with
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
𝜕𝜕𝜕𝜕  𝑇𝑇. 1

(1 + 𝜀𝜀) ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (6)

Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)

and
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
𝜕𝜕𝜕𝜕  𝑇𝑇. 1

(1 + 𝜀𝜀) ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (6)

Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
𝜕𝜕𝜕𝜕  𝑇𝑇. 1

(1 + 𝜀𝜀) ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (6)

Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)

(6)

(7)

(8)

(9)

(10)
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
𝜕𝜕𝜕𝜕  𝑇𝑇. 1

(1 + 𝜀𝜀) ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (6)

Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)

 
 

7 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (1 + 𝜀𝜀)2 (5)

The elasticity of the material is dependent on its type , which influences the yarn tension 

distribution as well. Considering the elasticity of yarn, the unit tangent vector to the yarn 

path in eqn. (1) will be 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 /(1 + 𝜀𝜀). Thuseqn. (1) is modified considering the yarn elasticity 

and balloon control ring as follows: 

𝑚𝑚 𝕯𝕯𝟐𝟐𝑹𝑹 + 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 + 𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  = 𝜕𝜕
𝜕𝜕𝜕𝜕  𝑇𝑇. 1

(1 + 𝜀𝜀) ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑭𝑭 + 𝑭𝑭𝒄𝒄 (6)

Where, 𝕯𝕯𝟐𝟐𝑹𝑹 denotes the yarn acceleration, 2𝜔𝜔𝑃𝑃𝑃𝑃𝑒𝑒𝑧𝑧 × 𝕯𝕯𝕯𝕯 the Coriolis acceleration and 

𝜔𝜔𝑃𝑃𝑃𝑃2 𝒆𝒆𝒛𝒛 ×  𝒆𝒆𝒛𝒛 × 𝑹𝑹  the yarn centrifugal acceleration relating to the rotating reference frame.  

The drag force per yarn length 𝑭𝑭 can be expressed as follows [8] : 

𝑭𝑭 = −𝐷𝐷𝑛𝑛𝑣𝑣𝑛𝑛𝒗𝒗𝒏𝒏(1 + 𝜀𝜀). with 𝐷𝐷𝑛𝑛 = 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 and 𝑑𝑑 =  𝜋𝜋𝜋𝜋𝜌𝜌𝑚𝑚 (7)

𝐷𝐷𝑛𝑛  describes the air drag constant, 𝑣𝑣𝑛𝑛  the normal component of the yarn velocity at point 𝑀𝑀,

𝜌𝜌 the air density in kg/m3, 𝑑𝑑 the yarn diameter in m, 𝑐𝑐𝑑𝑑 the air drag coefficient, and  𝜌𝜌𝑚𝑚  is 

the density of yarn in kg/m3. 

The component equations of  equation (6) are described as follows: 

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟′′ − 𝑟𝑟𝜃𝜃′2 

= 𝜔𝜔2( 1
(1+𝜀𝜀)2 ∙ 𝑚𝑚𝑚𝑚𝑟𝑟′

2 − 𝑚𝑚𝑚𝑚 − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙

1
(1+𝜀𝜀)2 ∙ 𝑟𝑟3 𝑟𝑟′2 + 𝑧𝑧′2𝑟𝑟′𝜃𝜃′ )- 𝐹𝐹𝑟𝑟

(8)

1
 1 + 𝜀𝜀  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2  𝑟𝑟𝜃𝜃′′ + 2𝑟𝑟′𝜃𝜃′ 

= 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑟𝑟2𝑟𝑟′𝜃𝜃′ + 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

2 𝑟𝑟′2 + 𝑧𝑧′2 )𝟑𝟑+𝜇𝜇𝑐𝑐  𝐹𝐹𝑟𝑟2 + 𝐹𝐹𝑧𝑧2 
(9)
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1
(1+𝜀𝜀)  𝑇𝑇0 −

1
2𝑚𝑚𝜔𝜔

2𝑟𝑟2 𝑧𝑧′′ = 𝜔𝜔2

(1+𝜀𝜀)2 (𝑚𝑚𝑚𝑚𝑟𝑟′𝑧𝑧′ − 1
2 𝜌𝜌𝜌𝜌𝑐𝑐𝑑𝑑 ∙ 𝑟𝑟

3 𝑟𝑟′2 + 𝑧𝑧′2 ∙ 𝜃𝜃′𝑧𝑧′ )- 𝐹𝐹𝑧𝑧 (10)

Where, 𝑇𝑇0 is the yarn tension at the yarn guide, 𝜇𝜇𝑐𝑐 the co-efficient of friction between the 

yarn and balloon control ring, and 𝐹𝐹𝑟𝑟  and 𝐹𝐹𝑧𝑧  are the component forces that are exerted from 

the control ring on the yarn.  

Boundary conditions of the modelling 

For the guide eye (𝑂𝑂 (Figure 1.b), the boundary conditions are 

𝑟𝑟 0 = 10−3 m , 𝜃𝜃 0 = 0 , 𝑧𝑧 0 = 0. (11)

The boundary conditions due to the integration of the BCR are the geometrical constraints 

at s=sc :

𝑟𝑟 𝑠𝑠𝑐𝑐 = 𝑐𝑐, 𝑧𝑧 𝑠𝑠𝑐𝑐 = ℎ𝑐𝑐 (12)

where, c is the radius of the BCR, and hc is the vertical distance between the yarn guide 

and BCR. The first boundary conditions at the yarn guide of the PM ring, 𝑁𝑁 (Figure 1.b) are 

𝑟𝑟 𝑠𝑠𝑙𝑙 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑧𝑧 𝑠𝑠𝑙𝑙 = ℎ (13)

𝑠𝑠𝑙𝑙  describes the length of the yarn between the yarn guide and the yarn guide of the PM 

ring at N, and ℎ is the balloon height (Figure 1.b). 

The 2nd boundary condition at the yarn guide of the PM ring i.e. in region III, is defined from 

the equation of motion of the PM ring:  

𝑇𝑇1 𝑔𝑔 sin𝜙𝜙 −𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃′(𝑠𝑠𝑙𝑙) 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑅𝑅𝜔𝜔𝑃𝑃𝑃𝑃 (14)

𝑇𝑇1 is the yarn tension at the yarn guide of the PM ring on the balloon side, 𝑔𝑔 (=  𝑒𝑒𝜇𝜇𝑦𝑦𝛼𝛼 ) the 

frictional parameter between the yarn and yarn guide of the PM ring, dR the damping 

constant of rotation of the rotating PM ring and ()′ ≡ 𝑑𝑑() 𝑑𝑑𝑑𝑑 . The yarn tension at the yarn 

ezez Rez F FcR R
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the initial values. Hence a sensitivity 
analysis in terms of the initial values is 
necessary to find an optimal solution with 
the above- mentioned iterative optimisa-
tion algorithm [13]. The minimisation of 
the residual error for a set of initial trial 
values T0 and r′(0) is calculated from the 
sensitivity analysis, which delivers an 
optimal set of trial values which fulfil the 
boundary conditions.

For the numerical solution, boundary 
conditions (Eqations (11)-(14)) are con-
sidered. The yarn path from the delivery 
rollers up to the winding point of the cop 
is assumed to be continuous at the BCR. 
In comparison to the numerical solution 
of the free balloon, the balloon form has 
been calculated in two steps. In the first, 
the equation of motion has been integrat-
ed using the shooting method to solve the 
balloon form between the yarn guide and 
BCR considering the boundary conditions 
(Eqations (11)-(12)). The results i.e. the 
yarn tension and coordinate system, deter-
mine the initial values of yarn tension at 
the yarn guide T0 and the gradient of the 
balloon form. In the 2nd step, the balloon 
form between the BCR and PM ring has 
been predicted considering the boundary 
conditions from Eqations (13)-(14). Both 
solutions should satisfy the conditions for 
geometrical continuity of the thread line at 
the BCR and also the boundary conditions 
at the guide eye and PM ring. The input 
parameters considered for the numerical 
solution and for the experiments are list-
ed in Table 1. As a result of the numerical 
solution, the yarn tension in regions I-IV 
and the balloon form considering the bal-
loon control ring and yarn elasticity are 
determined with respect to different angu-
lar spindle speeds.

	 Results and discussion
In Figure 2 the yarn tensions predicted 
in region I-IV have been illustrated con-
sidering the balloon control ring and yarn 
elasticity with respect to angular spindle 
speeds from 5.000-50.000 r.p.m. 

Yarn tensions increase in all regions 
along with the angular spindle speed. 
The highest tension occurs in region IV 
for a certain spindle speed. 

The corresponding geometry of the bal-
loon have been presented in relation to 
the different spindle speeds, from 5.000-
50.000 r.p.m. (Figure 3). The balloon 
forms also increase due to the centrifugal 
forces with respect to different angular 

Figure 2. Prediction 
of yarn tension con-
sidering the balloon 
control ring and yarn 
elasticity with respect 
to different angular 
spindle speeds in the 
SMB ring spinning 
process. Region I: 
between the delive-
ry rollers and yarn 
guide; Region II: be-
tween the yarn guide 
and PM ring: Region 
III: through the guide 
at the PM ring: Re-
gion IV: between the 
yarn guide at the PM 
ring and the winding 
point of the cop.

Table 1. Process parameters considered for the numerical solution and experiments. 

Parameter Value Unit
Material 100% cotton
Staple length 28 mm
Roving count 565 tex, g/km
Yarn count, m 20 tex, g/km
Spindle speed, ns 5000, 10000, 15000 rpm
Delivery speed, v 7.1, 14.3, 21.4 m/min
Twist 700 T/m
Balloon height, h 180 mm
Diameter of balloon control ring 44 mm

Friction between yarn and yarn guide  
of PM ring, μy

5000; 10000; 15000
(0.21; 0.23; 0.24)

30000; 40000; 50000
(0.26; 0.26; 0.27) 

Mass of PM ring, mPM 241±1 g
Inner diameter of PM ring, aiPM 43 mm
Outer diameter of PM ring, aaPM 80 mm
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at the BCR. In comparison to the numerical solution of the free balloon, the balloon form 

has been calculated in two steps. In the first , the equation of motion has been integrated 

using the shooting method to solve the balloon form between the yarn guide and BCR 

considering the boundary conditions (Eqn. 11-12). The results i.e. the yarn tension and 

coordinate system, determine the initial values of yarn tension at the yarn guide T0 and the 

gradient of the balloon form. In the 2nd step, the balloon form between the BCR and PM ring 

has been predicted considering the boundary conditions from Eqn. (13-14). Both solutions 

should satisfy the conditions for  geometrical continuity of the thread line at the BCR and 

also the boundary conditions at the guide eye and PM ring. The input parameters 

considered for the numerical solution and for the experiments are listed in Table 1 

(Appendix). As a result of the numerical solution, the yarn tension in regions I-IV and the 

balloon form considering the balloon control ring and yarn elasticity are determined with 

respect to different angular spindle speeds. 

5. Results and discussion 

In Figure 2 the yarn tensions predicted in region I-IV have been illustrated considering the 

balloon control ring and yarn elasticity with respect to angular spindle speeds from 5,000-

50,000 r.p.m.  
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spindle speeds from 5.000 to 50.000, as 
shown in Figure 3. According to Fig-
ure 3, the yarn balloon changes to a lit-
tle extent in the range of angular spindle 
speed 30.000-50.000 r.p.m. The yarn 
elasticity behaviour at such a higher ten-
sion and angular spindle speed does not 
follow the linear elasticity rules. 

In order to understand the influence of the 
BCR and yarn elasticity, the yarn tensions 
in regions I and IV have been compared 
with and without considering the balloon 
control ring and yarn elasticity. As shown 
in Figure 4, the yarn tension considering 
the BCR and yarn elasticity is 10% less 
than that not considering the BCR at an 
angular spindle speed of 50.000 r.p.m.

	 Characterisation of dynamic 
yarn path 

In order to characterise the dynamic yarn 
path in the model presented, the yarn ten-
sions were measured in regions I and II. 
Moreover the balloon forms were record-

ed with a high speed camera considering 
the balloon control ring.

Yarn tension between delivery rollers 
and yarn guide (Region I)
A modified 3-point sensor from Tenso-
metric Messtechnik GmbH was used for 
the measurement of tension in region I at 
different angular spindle speeds from 
5.000-15.000 r.p.m. (Figure 5.a). In or-
der to measure the yarn tension, the sen-
sor was modified by replacing the guid-
ing and measuring elements with rotating 
rollers. Thus the twist could further prop-
agate from the SMB twisting system to 
the delivery rollers without causing any 
end-breakages. 

During calibration, dead weights of 10 g 
and 20 g are hung over with spun yarn to 
set the scale in the data acquisition pro-
gram. The experiment is repeated to ver-
ify the values measured for a constant an-
gular spindle speeds. Mean values of yarn 
tension for different spindle speeds were 
recorded with a LabView Signal Express. 
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Figure 2: Prediction of yarn tension considering the balloon control ring and yarn elasticity with 

respect to different angular spindle speeds in the SMB ring spinning process. Region I: between the

delivery rollers and yarn guide; Region II: between the yarn guide and PM ring: Region III: through the guide

at the PM ring: Region IV: between the yarn guide at the PM ring and the winding point of the cop

Yarn tensions increase in all regions  along with the angular spindle speed. The highest 

tension occurs in region IV for a certain spindle speed.  

The corresponding geometry of the balloon have been presented in relation  to the different 

spindle speeds, from 5,000-50,000 r.p.m (Figure 3). The balloon forms also increase due to 

the centrifugal forces with respect to different angular spindle speeds from 5,000 to 50,000, 

as shown in Figure 3. According to  Figure 3, the yarn balloon changes to a little extent in 

the range of angular spindle speed 30,000-50,000 rpm. The yarn elasticity behaviour at 

such a higher tension and angular spindle speed does not follow the linear elasticity rules.    
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Figure 4: Calculated balloon forms with respect to angular spindle speeds from 5,000-50,000 r.p.m
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regions I and IV have been compared with and without considering the balloon ring and 
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elasticity is 10% less than that not considering the BCR at an angular spindle speed of 
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Figure 3. Calculated balloon forms with respect to angular spindle speeds from 5.000-50.000 r.p.m.
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Figure 4: Calculated balloon forms with respect to angular spindle speeds from 5,000-50,000 r.p.m
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According to Figure 5.b, the yarn tension 
increases with a higher angular spindle 
speed. As the spindle speed increases 
(such as to 15.000 r.p.m.), the vibration of 
the PM ring and movement of the ring rail 
cause yarn tension variation.

Balloon form (Region II)
The balloon forms were recorded with 
a high speed camera (Photron Fastcam 
Ultima SA-3, frame rate 12.5 KHz for 
1024×1024 Pixel) at different spindle 
speeds from 5.000 to 15.000 r.p.m. with 
the built-in balloon control ring (Fig-
ure 6). The recording of balloon forms 
was carried out on an SMB ring spin-
ning tester to find out the influence of 
the balloon control ring on the balloon 
form. 

At a higher spindle speed, the maximum 
radius of the balloon locates in the mid-
dle of the balloon control ring and PM 
ring due to the higher centrifugal force 
(Figure 7). Images of the balloon form 
recorded were analysed to measure the 
maximum balloon diameter using Image 
J software. Each maximum balloon form 
for a defined spindle speed was measured 
several times with this program. 

Yarn tension between yarn guide 
and PM ring (Region II)
Measurement of yarn tension in region 
II was conducted with the SMB system 
from the balloon forms recorded with the 
high speed camera. In this case, a meth-
od of measuring the deformation of yarn 

from the balloon forms recorded was 
used [16]. In the first step, the defor-
mation behaviour (strain %) of the yarn 
was measured from the balloon form re-
corded using digital image analysis soft-
ware. In the second step, the spun yarn 
was tested to determine the stress-strain 
curve. Finally the yarn tension was calcu-
lated comparing the deformation of yarn 
in the balloon measured with that from 
the stress-strain diagram tested. 

Figure 8 shows the measurement of yarn 
deformation at different positions of the 
balloon form using contrast fibers at an 
angular spindle speed of 10.000 r.p.m.

The corresponding stress-strain diagram 
from the same spun yarn measured with 
a tensile testing machine – Uster Tenso-
rapid 3 is shown in Figure 9.a. 

Thus the yarn deformation measured 
(strain %) from the balloon form record-
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Figure 5: (a) Measurement set-up for yarn tension in region I between delivery rollers and yarn guide 

and (b) Mean values of yarn tension in region I at different spindle speeds. 

 

During calibration,  dead weights of 10 g and 20 g are hung over with spun yarn to set the 

scale in the data acquisition program. The experiment is repeated to verify the values 

measured for a constant angular spindle speeds. Mean values of yarn tension for different 

spindle speeds were recorded with a LabView Signal Express. According to Figure 5(b), the 

yarn tension increases with a higher angular spindle speed. As the spindle speed increases 

(such as to 15,000 rpm), the vibration of the PM ring and  movement of the ring rail cause  

yarn tension variation. 
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and (b) Mean values of yarn tension in region I at different spindle speeds. 
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Figure 5. a) Measurement set-up for yarn tension in region I between delivery rollers and yarn guide and b) mean values of yarn tension 
in region I at different spindle speeds.
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frame rate 12.5 KHz for 1024×1024 Pixel) on an SMB ring spinning tester to find out the 

influence of the balloon control ring on the balloon form.  

 

 

 

Figure 6: Recording o thef balloon form with a high speed camera  on an SMB ring spinning tester 

considering the balloon control ring 

 

At a higher spindle speed, the maximum radius of the balloon locates in the middle of the 

balloon control ring and PM ring due to the higher centrifugal force (Figure 7). Images of the 

balloon form recorded were analysed to measure the maximum balloon diameter using  

Image J software. Each maximum balloon form for a defined spindle speed was measured 

several times with this program.  

 

 

Figure 6. Recording the balloon form with a high speed camera on an SMB ring spinning 
tester considering the balloon control ring.

5000 r.p.m.
10000 r.p.m.
15000 r.p.m.



38 FIBRES & TEXTILES in Eastern Europe  2018, Vol. 26,  5(131)

 
 

16
 

5,000 r.p.m 10,000 r.p.m 15,000 r.p.m

Figure 7: Balloon forms recorded with a high speed camera with respect to different angular spindle 

speeds of 5,000-15,000 rpm considering the balloon control ring

6.3 Yarn tension between yarn guide and PM ring (Region II) 

Measurement of yarn tension in region II was conducted with the SMB system from the 

balloon forms recorded with the high speed camera. In this case, a method of measuring 

the deformation of yarn from the balloon forms recorded was used [14]. In the first step, the 

deformation behaviour (strain %) of the yarn  was measured from the balloon form recorded 

using digital image analysis software. In the second step, the spun yarn was tested to 

determine the stress-strain curve. Finally the yarn tension was calculated comparing the 

deformation of  yarn in the balloon measured with that from the stress-strain diagram 

tested.
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Figure 7: Balloon forms recorded with a high speed camera with respect to different angular spindle 

speeds of 5,000-15,000 rpm considering the balloon control ring
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balloon forms recorded with the high speed camera. In this case, a method of measuring 

the deformation of yarn from the balloon forms recorded was used [14]. In the first step, the 

deformation behaviour (strain %) of the yarn  was measured from the balloon form recorded 

using digital image analysis software. In the second step, the spun yarn was tested to 

determine the stress-strain curve. Finally the yarn tension was calculated comparing the 

deformation of  yarn in the balloon measured with that from the stress-strain diagram 
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Figure 7: Balloon forms recorded with a high speed camera with respect to different angular spindle 

speeds of 5,000-15,000 rpm considering the balloon control ring

6.3 Yarn tension between yarn guide and PM ring (Region II) 

Measurement of yarn tension in region II was conducted with the SMB system from the 

balloon forms recorded with the high speed camera. In this case, a method of measuring 

the deformation of yarn from the balloon forms recorded was used [14]. In the first step, the 

deformation behaviour (strain %) of the yarn  was measured from the balloon form recorded 

using digital image analysis software. In the second step, the spun yarn was tested to 

determine the stress-strain curve. Finally the yarn tension was calculated comparing the 

deformation of  yarn in the balloon measured with that from the stress-strain diagram 

tested.

a) b) c)

Figure 7. Balloon forms recorded with a high speed camera with respect to different angular 
spindle speeds of 5.000-15.000 rpm considering the balloon control ring: a) 5.000 r.p.m., 
b) 10.000 r.p.m., b) 15.000 r.p.m.

Figure 8. Measurement of deformation behaviour of yarn i.e. strain, % (ϵ) from balloon form recorded at an angular spindle speed of 
10.000 r.p.m
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Figure 8: Measurement of deformation behaviour of yarn i.e. strain% (ϵ) from balloon form recorded at 

an angular spindle speed of 10,000 r.p.m 

 Figure 8 shows the measurement of yarn deformation at different positions of the balloon 

form using contrast fibers at an angular spindle speed of 10,000 r.p.m.

The corresponding stress-strain diagram from the same spun yarn measured with a tensile 

testing machine - Uster Tensorapid 3 is shown in Figure 9(a).  

Figure 9: (a) Stress-strain diagram of spun yarn, (b) yarn tension calculated by comparing the yarn 

strain measured from the balloon form with that from the stress-strain diagram at an angular spindle 

speed of 10,000 r.p.m

ϵ
ϵ ϵ

ϵ

ϵ
ϵ

A

St
re

ss
[N

]

Close view of (A)

Strain [%]
(b)

Strain [%]

S
tre

ss
[c

N
]

(a)

Table 2. Comparison between the max. balloon diameter and that calculated and measured. 

Spindle speed,
 r.p.m.

Max. balloon diameter 
calculated, mm

Max. balloon diameter 
measured, mm

Absolute error,
mm

5000 67.4 43.42 23.98
10000 69.4 46.64 22.76
15000 75 50.88 24.12

ed is considered to determine the corre-
sponding values of yarn tension from the 
stress-strain diagram (Figure 9.b). 

	 Validation of the model 
developed

For validation of the yarn tension values 
calculated in regions I and II as well as 
the corresponding balloon forms, they are 
compared to the measured ones at angular 
spindle speeds from 5.000 to 15.000 r.p.m. 
Figure 10 illustrates the results for yarn 
tension measured with the sensor com-
pared to the calculated ones at different 
angular spindle speeds. It is clear that the 
simulated values display good correlation 
with the values measured and confirm the 
prediction of yarn tensions at different an-
gular spindle speeds. 

However, the experimentally deter-
mined yarn tensions are generally high-
er than the calculated ones, especially at 
higher angular spindle speeds, such as 
15.000 r.p.m., because some factors such 
as the vibration of the PM ring during the 
spinning process and the resulting vibra-
tion of the yarn are not considered in the 
mathematical modelling. The difference 
between the calculated and measured 
yarn tensions might be increased due to 
the vibration of the PM for all regions, es-
pecially at higher angular spindle speeds.

The calculated balloon forms (from  
Figure 4) and measured ones (from 
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Figure 7) can be compared with regard 
to angular spindle speeds from 5.000 to 
15.000 r.p.m.,which shows a good corre-
lation between the calculated and meas-
ured balloon forms.

Moreover the maximum values of the 
balloon diameters are quantitatively 
compared in Table 2 for different spindle 
speeds. 

The errors in Table 2 can be attributed 
to the numerical solution method in the 
model presented. In this model, the bal-
loon form has been calculated in two 
steps considering the balloon between the 
yarn guide and BCR (1st balloon) as well 
as between the BCR and PM ring (2nd bal-
loon). In the numerical calculation for the 
2nd balloon, the initial values such as the 
yarn tension and slope of the 1st balloon at 

the balloon control ring are considered to 
calculate the 2nd balloon. Thus regarding 
the BCR, the balloon is bigger than that 
without the balloon control ring. How-
ever, the aim of using the balloon con-
trol ring is to decrease the balloon form, 
which can be seen from the balloon form 
recorded, shown in Figure 7.

	 Conclusions and outlook
The friction free SMB system eliminates 
the frictional problem of the existing 
ring/traveler system in the ring spinning 
process. However, the yarn tension in-
creases with respect to the angular spin-
dle speed due to the centrifugal force of 
the rotating balloon. The balloon control 
ring reduces the yarn tension by divid-
ing the component of yarn tension in the 
rotating balloon. In this paper, a theo-

Figure 9. a) Stress-strain diagram of spun yarn, b) yarn tension calculated by comparing the yarn strain measured from the balloon form 
with that from the stress-strain diagram at an angular spindle speed of 10.000 r.p.m.

Figure 10. Comparison of measured and calculated yarn tension values for (a) region I – delivery roller to yarn guide and b) region II – 
yarn guide to permanent magnet ring.

retical model of the dynamic yarn path 
has been established for a quasi-station-
ary case considering the balloon control 
ring and yarn elasticity in the SMB ring 
spinning process. As the solution of the 
equations are extremely nonlinear, a sen-
sitivity analysis was conducted to find 
a valid set of initial values which fulfil 
the boundary conditions. The 2nd order 
differential equations were integrated 
with the Runge-Kutta method using the 
MATLAB program. The residual error of 
the numerical solution was further opti-
mised with the ‘Levenberg-Marquardt 
algorithm’, which satisfies the conver-
gence criteria for the valid initial val-
ues. According to the numerical results, 
the yarn tension increases along with 
the increased angular spindle speeds. 
The yarn tension when using a BCR in 
the SMB ring spinning process decreases 
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Figure 8: Measurement of deformation behaviour of yarn i.e. strain% (ϵ) from balloon form recorded at 

an angular spindle speed of 10,000 r.p.m 

 

 Figure 8 shows the measurement of yarn deformation at different positions of the balloon 

form using contrast fibers at an angular spindle speed of 10,000 r.p.m. 

The corresponding stress-strain diagram from the same spun yarn measured with a tensile 

testing machine - Uster Tensorapid 3 is shown in Figure 9(a).  
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Thus the yarn deformation measured (strain %) from the balloon form recorded is 

considered to determine the corresponding values of yarn tension from the stress-strain 

diagram (Figure 9(b)).   

 

7. Validation of the model developed 

For validation of  the yarn tension values calculated in regions I and II as well as the 

corresponding balloon forms, they are compared to the measured ones at angular spindle 

speeds from 5,000 to 15,000 r.p.m. Figure 10 illustrates the results for  yarn tension 

measured with the sensor compared to the calculated ones at different angular spindle 

speeds. It is clear that the simulated values display good correlation with the values 

measured and confirm the prediction of yarn tensions at different angular spindle speeds.  

However, the experimentally determined yarn tensions are generally higher than the 

calculated ones, especially at higher angular spindle speeds, such as 15,000 r.p.m, 

because some factors such as the vibration of the PM ring during the spinning process and 

the resulting vibration of the yarn are not considered in the mathematical modelling. The 
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Figure 10: Comparison of measured and calculated  yarn tension values for (a) region I and (b) region 
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by a minimum of 10% compared to that 
without the BCR.

The elasticity of yarn also reduces the 
yarn tension to some extent, which has 
been shown from the model presented. 
According to the model developed, the 
balloon form increases with respect to 
different angular spindle speeds. This in-
crement is dominant up to an angular spin-
dle speed of 25.000 r.p.m. At an angular 
spindle speed of 30.000 to 50.000 r.p.m., 
the balloon form increases to a certain 
amount. At such a high spindle speed, the 
yarn tension is so great that the yarn does 
not follow the rules of linear elasticity i.e. 
Hooke’s law. Hence the non-linear behav-
iour of the yarn has to be considered in fu-
ture work. The influence of elasticity can 
be further analysed using the nonlinear 
elastic constitutive law. The stress-strain 
curves can be further investigated, which 
are nonlinear. Moreover a high speed 
camera is used to record balloon forms 
considering the balloon control ring with 
respect to an angular spindle speed from 
5.000-15.000 r.p.m. in order to validate 
the model developed. The model will be 
validated after modification of the existing 
SMB ring spinning machine to be com-
patible to an angular spindle speed up to 
50.000 r.p.m. In this case, the friction be-
tween the yarn and yarn guiding elements 
(such as BCR) has to be considered, as it 
influences the spinning process, especially 
for thermoplastic materials.
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