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Abstract
This paper is the second part of a series reporting the recent development of a computeri-
sed method for automatic mosaic sequential yarn images. In our earlier work, an effective 
method for stitching sequence slub yarn images automatically was developed based on 
image processing and the normalised cross correlation (NCC) method. 100 image pairs of 
two kinds of slub yarn were measured in certain specific conditions, such as the frame rate, 
size of stitching template, etc., and the measurement results were evaluated with the manual 
method. In this paper, the effects of various influencing factors are numerically examined, 
including the stitching template size, threshold value, frame rate, and computing time of 
the mosaic algorithm. The feasibility and accuracy of the fully computerized method were 
evaluated further under the various influencing parameters. One hundred percent cotton ring 
spun single slub yarns of 27.8, 15.6, and 9.7 tex were prepared and used for the evaluation. 
The measurement results obtained by the method proposed are analysed and compared with 
those measured manually by Adobe Photoshop. The experimental results show that the method 
proposed can accurately find the stitch position and has a high consistency with the manual 
method when the matching template is 100 × N pixels, the threshold value T1 ∈ [20, 40]  
and T2 ∈ [51, 80], and the frame rate is greater than 40 fps.
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eters of slub yarn are extremely signif-
icant for designing the aesthetic prop-
erties of fabric. The traditional method 
for analysing the slub-yarn parameters 
is to count slubs in the yarn based on 
the black boards, which demands spe-
cial experience from the workers and is 
a time-consuming and very complicated 
task for them. Actually in recent research 
[7-10], the image analysis method seems 
more appropriate for detecting the pa-
rameters of slub-yarn. In these methods, 
slub yarns are captured by a scanner or 
area-scan CCD camera. However, the 
scanning method cannot be used to ob-
tain a sufficient length of slub yarn to an-
alyse the overall performance. Although 
the area-scan CCD camera method can 
avoid the disadvantages above, the image 
captured by this method needs to overlap 
so as to avert some missing parts of the 
slub yarn. Thus the image mosaic method 
has to be employed to seamlessly stitch 
them together into a panorama for detect-
ing the geometric parameters of slub yarn 
accurately.

In recent years, a large number of image 
mosaic algorithms have been applied in 
many fields, including the speeded up ro-
bust feature (SURF) [11], scale invariant 
feature transform (SIFT) [12] and phase 
correlation [13]. There is also some ex-
isting mosaic software available, such as 
Panorama Maker [14], Microsoft ICE, 
Photoshop, and AutoStitch [15]. How-
ever, most of the existing methods or 

	 Introduction
Studies of slub yarn are critically impor-
tant because fabrics woven from them 
have special aesthetic properties [1-4], 
which are due to the slub effects formed 
by the variation in linear density in the 
slub yarn. The aesthetic characteristics 
of slub yarn fabric are determined by the 
apparent parameters of the yarn as fancy 
yarns have a special structure property 
[5-6]. Therefore the geometrical param-

software are only generally suitable for 
stitching nature images or images with 
significant features [16]. 

For the successive yarn images consid-
ered in this study, due to the instability 
of the light source, the intensity values 
of the same region in different images 
or different regions in the same image 
are different. Moreover yarn images are 
extremely like each other because the 
yarn core is the largest part in the image, 
and the operation time of the stitching 
method required is as little as possible. 
Therefore the stitching methods or soft-
ware above cannot be used to splice se-
quential slub yarn images automatical-
ly. In our earlier work [17], an effective 
method was presented for the automatic 
mosaic of sequential slub yarn images. 
After the image acquisition and preproc-
essing, the normalised cross correlation 
(NCC) method was utilised to calculate 
the stitching position, which consists of 
matching row MR and matching column 
MC. The two position parameters were 
employed to evaluate the quality of the 
image mosaic for each neighboring pair 
of yarn images. Relative errors EMR and 
EMC were adopted to evaluate the error 
of the image mosaic in the vertical and 
horizontal directions. Another parameter 
C was employed to assess the consisten-
cy of the stitching orientation in the hori-
zontal direction for the manual method 
and that proposed. 100 image pairs of 
two kinds of slub yarn were measured 
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in certain specific conditions and the re-
sults compared with those of the manual 
method.

In order to verify the accuracy of the 
method proposed, the effects of vari-
ous influencing factors are numerically 
analysed in this study. Different stitch-
ing template sizes, threshold values and 
frame rates, as well as the computing 
time, will be discussed in this study to 
evaluate the image mosaic method pro-
posed. In this paper, one hundred percent 
cotton ring spun single slub yarns of 27.8, 
15.6, and 9.7 tex were prepared and used 
for evaluation of the automatic mosaic 
computerised method under the influence 
of the parameters above. Measurement 
results of the stitching positon obtained 
by the method proposed are assessed and 
analysed in comparison to those meas-
ured manually by Adobe Photoshop.

In the following analysis, the experimen-
tal details, which include sample prepara-
tion, image acquisition set-up and the au-
tomatic mosaic method proposed in our 
earlier work, are first described. And then 
the influencial parameters, which consist 
of the stitching template size, threshold 
value, frame rate, and computing time, 
are analysed and discussed in detail to as-
sess the performance of the computerised 
method in the laboratory experiments. 
Finally the conclusion is given in the last 
section.

	 Experimental details
Sample preparation
In this experiment, 100% cotton ring 
spun single slub yarns of 27.8, 15.6, and 
9.7 tex were used for evaluation of the 
automatic mosaic method. For each yarn 
sample, 101 specimens were prepared 
and tested. Details of the different yarn 
samples are listed in Table 1. In the ex-
periment, stitching position information 
of all of the slub yarn images will be au-
tomatically recognised and measured by 
the computerised method proposed.

Experimental set-up
The image acquisition set-up is impor-
tant in capturing a suitable image of the 
sequence slub yarn. As reported in an 
earlier study [18, 19], sequence yarn 
images were taken in succession along 
the yarn by an area-scan CCD camera 
with a resolution of 1024 × 768 pixels. 
A closed imaging box was used as the 
image acquisition platform to shield 

Figure 1. Yarn image acquisition set-up: (1) closed imaging box, (2) area-scan CCD camera 
sensor, (3) yarn, (4) light source, (5) yarn guiding devices, (6) camera lens, (7) yarn tension 
control panel, (8) touch screen, (9) output rollers with servo motor.

Table 1. Three kinds of slub yarn samples.

Sample  
number Base yarn count, tex Spinning method Material

#1 9.7 Ring spinning Cotton
#2 15.6 Ring spinning Cotton
#3 27.8 Ring spinning Cotton
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Figure 1. Yarn image acquisition set-up: (1) closed imaging box; (2) area-scan CCD camera 

sensor; (3) yarn; (4) light source; (5) yarn guiding devices; (6) camera lens; (7) yarn tension 

control panel; (8) touch screen; (9) output rollers with servo motor. 
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Figure 2. Images captured: (1) background image and three kinds of sub yarn images:  
a) background image, b) #3 slub yarn – part image of base yarn, c) #2 slub yarn – part 
image of base yarn, d) #1 slub yarn – part image of base yarn; (2) Image pairs of #1 slub 
yarn captured at different frame rates: a1)-a2) 40 fps, b1)-b2) 60 fps, c1)-c2) 80 fps, d1)-d2) 
100 fps.
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Figure 2. The captured images: (a) the background image and three kinds of sub yarn images: 

a) background image; b) #3 slub yarn-- base yarn part image; c) #2 slub yarn-- base yarn part 

image; d) #1 slub yarn--base yarn part image; (b) Image pairs of#1 slub yarn captured under 

different frame rates: a1)-a2) 40fps; b1)-b2) 60fps; c1)-c2) 80fps;d1)-d2) 100fps. 

Figure 3. Image processing results of two example images: a1)-a2) images removed 

background; b1)-b2) binary images with clear hairiness; c1)-c2) yarn core images; d1)-d2) 

binary-hairiness images; e1)-e2) gray-hairiness images (TEST1 and TEST 2 image).
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the disturbance of ambient light. Mean-
while a special light source was set up 
in a closed box. A yarn winding mecha-
nism, servo motor, and tension controller 
were employed to draw the yarn and sta-
bilize the yarn tension. Figure 1 shows 
the integrated structure of the image ac-
quisition set-up.

Image acquisition
As shown in Figure 1, thousands of slub 
yarn images can be captured with differ-
ent frame rates using the image acqui-
sition set-up above, where neighboring 
images should contain a certain level of 
overlapping area during acquisition. In 
this experiment, frame rates of 40, 60, 
80 and 100 fps were set to capture the 
overlap images. The speed of the image 
acquisition device was uniformly set 
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Figure 2. The captured images: (a) the background image and three kinds of sub yarn images: 

a) background image; b) #3 slub yarn-- base yarn part image; c) #2 slub yarn-- base yarn part 

image; d) #1 slub yarn--base yarn part image; (b) Image pairs of#1 slub yarn captured under 

different frame rates: a1)-a2) 40fps; b1)-b2) 60fps; c1)-c2) 80fps;d1)-d2) 100fps. 

Figure 3. Image processing results of two example images: a1)-a2) images removed 

background; b1)-b2) binary images with clear hairiness; c1)-c2) yarn core images; d1)-d2) 

binary-hairiness images; e1)-e2) gray-hairiness images (TEST1 and TEST 2 image).

Figure 3. Image processing results of two example images: a1)-a2) image removed background, b1)-b2) binary images with clear hairiness, 
c1)-c2) yarn core images, d1)-d2) binary-hairiness images, and e1)-e2) gray-hairiness images (TEST 1 and TEST 2 image).

at 6 m/min. The background image and 
three kinds of slub yarn images at four 
frame rates were captured by the device. 
These images cropped to a suitable width 
to allow faster processing are shown in 
Figure 2 at the size of 600 × 768 pixels. 
According to image calibration, a pixel in 
the horizontal direction occupies 5.21 μm 
in the image. The real length of yarn in 
this image is approximately 4 mm. 

Image processing and stitching 
As reported in our earlier work [17], 
the procedure of image processing and 
stitching can be concluded in the follow-
ing part. Take Figures 2.a1 and 2.a2 as 
examples of displaying details of the au-
tomatic image mosaic method. The spe-
cific steps and results of this method are 
as follows:

n	 Remove background information. In 
this part, the background information 
is subtracted from all the yarn images 
to eliminate the impact of non-uni-
form brightness. The resulting im-
ages after background image Figure 
2.a is subtracted from Figures 2.a1 
and a.2 are shown in Figures 3.a1 
and a.2.

n	 Segment the resulting images above 
and extract the yarn core images. In 
this part, two threshold values T1, 
T2 and judgment template traversal 
are applied to process the sequential 
images to obtain binary images, as 
shown in Figures 3.b1-3.b2 and 3.c1-
3.c2. A threshold value T1 is set to get 
the first binary image which has clear 
hairiness (Figures 3.b1 and 3.b2). An-
other threshold value T2 is applied to 
segment the original image to obtain 
a second binary image which has less 
hairiness. Subsequently two judgment 
templates are used to remove the little 
hairiness from the second binary im-
age to obtain yarn core images (Fig-
ures 3.c1 and 3.c2).

n	 Eliminate the yarn core from the binary 
image and execute dot multiplication 
to obtain a test image (TEST image). 
The resulting images of Figure 3.b1 
minus Figure 3.c1 and Figure 3.b2)
minus Figure 3.c2 are shown in Fig-
ures 3.d1 and 3.d2. TEST images of 
Figures 3.d1, 3.d2 dot multiplication 
of the original images (Figures 2.a1 

Figure 4. Computation principle of NCC method for yarn image pairs.
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Figure 4. The compute principle of NCC method for yarn image pairs. 

Figure 5. The stitch position informationand mosaic result of two TEST images. 

Figure 6. Different MR and up values under different template heightbased on two calculated 

methods.  
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and 2.a2) are shown in Figures 3.e1 
and 3.e2, respectively.

n	 The NCC method is applied to calcu-
late the stitch position between TEST 1 
image and TEST 2 image. A specific 
matrix T with a size of H × W (H = 1, 
2...M, W = 1, 2...N, M and N are the 
height and width of the original im-
age) in the TEST 2 image is selected as 
the calculated template, as shown in 
Figure 4. H and W are two adjustable 
parameters which represent the height 
and width of the template, respective-
ly. Let T(x, y) be the intensity value 
of T at pixel (x, y), and f(x, y) be the 
intensity value of f at pixel (x, y). f is 
a movement matrix in TEST 1 image , 
whose size is as same as T. The NCC 
method is evaluated at every point (u, 
v) for f and T, which has been shifted 
over the TEST 1 image by u-steps in 
the x-direction and v-steps in the y-di-
rection. If the matrix f just consists 
of a part of the intensity value of the 
TEST 1 image (shown as blue rectan-
gles in Figure 4), the remaining parts 
in matrix f are zero-filled. All the NCC 
coefficients are stored in a correlation 
matrix γ(u, v) as defined by [20-22] 
Equation (1).

Where 
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can be calculated as: 
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Here if u-x < 0 or v-y < 0 then f(u-x, 
v-y) = 0, and f(0, 0) = TEST 1 (1, 1),  
f(0, 1) = TEST 1 (1, 2), and so on.

In this example, we set H = 100 pixels 
and W = N. After the calculation, the 
matrix γ(u, v) is obtained as shown in 
Figure 5.a. In the figure, there is a quite 
distinct peak at point P, denoting that the 
position of point P is the optimum match-
ing position of the two adjacent yarn im-
ages. Suppose the position of point P is 
(up, vp), then the matching position in 
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Equation (1).
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the TEST 1 image, that is, the matching 
row MR and matching column MC in the 
TEST 1 image, can be calculated as:
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MR and MC are adopted to find the over-
lapping line between two adjacent yarn 
images for stitching the yarn images. 
Finally the original image of TEST 1 is 
separated based on MR and MC, and the 
panoramic image is obtained as shown in 
Figure 5.b, in which the black regions, 
which represent the width of MC, are lo-
cated in the bottom right corner and top 
left corner of the panoramic image. It 
means that MC is a positive value. Con-
versely MC is a negative value.

	 Parameter discussion  
and data analysis

In our earlier work [17], the accuracy of 
the image stitch was discussed when the 
template size was set to 100 × N pixels 
and the frame rate to 40 fps. In this part, 
the influence of a different template size, 
segment threshold value and frame rate 
on the precision of stitch results are ana-
lysed. The computation time is also com-
pared with the manual method. 101 se-
quence images of three kinds of slub yarn 
were used to assess the effect under dif-
ferent parameters, and Adobe Photoshop 
CS2 software was also applied to stich 
the yarn images for comparing with the 
method proposed. 

Template size
In order to analyse the influence of dif-
ferent template sizes on the accuracy of 
yarn image matching and determine the 
optimal size of the template, the template 
height H is set from 1 pixel to M (the 
height of the sequence image) pixels by 
step 1 pixel. In this paper, the width of 
template W is set equal to N (the width 
of the sequence image) because the tem-
plate cannot be a zero matrix based on 
the NCC method and must include yarn 
hairiness information. This can guaran-
tee the maximum level of inspection ac-
curacy. Take the result in Figure 5.b as 
an example, the influence of a different 
template height can be concluded in Fig-
ure 6. Here the image pairs are captured 
at 40 fps. Figure 6.a and 6.b denote the 
different MR values and various up values 
(up = MR + H) when using different tem-
plate heights H to match the next image 
based on the automatic method proposed 
and the manual method. 

From Figure 6.a it can be seen that the 
MR values are similar for both methods 
at different template heights. They all 
decrease with the increasing of the tem-
plate height H. It seems that the height 
of template H from 1 to M pixels can all 
be utilised to match the next image, and 
it can have a good result. However, there 
are some negative values of MR in this 
figure. It means the template height H is 
greater than the height of the total over-
lap region between the two TEST imag-

a) b)

Figure 5. Stitch position information and mosaic result of two TEST images.
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Figure 4. The compute principle of NCC method for yarn image pairs. 

Figure 5. The stitch position informationand mosaic result of two TEST images. 

Figure 6. Different MR and up values under different template heightbased on two calculated 

methods.  

a)

b)

Figure 6. Different MR and up values at different template heights based on two calculating 
methods. 

es. In order to avoid a negative value, up 
values are shown in Figure 6.b, in which 
the difference between the two methods 
is close when H is small, and with an in-
crease in H, the up values are constant. 
It can also be seen that the distance be-
tween the two methods is 2-3 pixels, and 
thus it can be accepted. 

From the single image pair, we can-
not determined the optimal H. Thus the 
up values and MC values of 100 image 
pairs are measured further to ensure the 
optimal H. To observe the deviation de-
gree of up values and MC values for the 
two methods in 100 image pairs directly, 
two distance curvilinears DC are drawn 
as defined in Equations (6) and (7), and 
shown Figure 7. 
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deviation degree of up values and MC values for the two methods in 100 image pairs directly, 

two distance curvilinears DC are drawn as defined in equations (6) and (7), and shown Figure 

7.   

A M
x p pDC u u  (6) 

A M
yDC MC MC  (7) 

Where uA
p, uM

p and MCA, MCM are the up values and MC values of the automatic method 

proposed and manual method, respectively.  

    (6)
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Where uA
p, uM

p and MCA, MCM
 are the up 

values and MC values of the automatic 
method proposed and manual method, 
respectively. 

In Figure 7, the dot lines represent DC 
values equal to 5 pixels, with the oth-
er solid lines denoting the DC values of 
100 image pairs. From Figure 7.b, we 
can see that there are many large vari-
ations in the DCy values when H < 100. 
Subsequently the data remain constant, 
which means that a large range of the 
template height can be used to meas-
ure the MC values. However, there is 
a mutate value when H equals about  
400 pixels in Figure 7.a. Therefore 
it can be concluded that the deviation 
distance of up and MC testing for the 
two methods is less than 5 pixels as 
H changes in the interval [100, 400]. 
Since the computation time is related 
to the number of data in the matching 
template, the larger the template height 
H is, the longer the computation time. 
Hence the optimal size of the matching 
template is 100 × N pixels.

Threshold values
In the automatic image mosaic method, 
an easy threshold value T1 is set to get 
the first binary image which has clear 
hairiness. Then another threshold T2 is 
applied to segment the original image to 
obtain a second binary image which has 
little hairiness. Subsequently the little 
hairiness is removed from the second 
binary image with two judgment tem-
plates. There are two threshold values 
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Figure 7. Two DC values results of 100 image pairs under different H values: a) DCx; b) DCy. 

Figure 8. The different segmentation results with different T1 values: a11)-a21) 0; a12)-a22) 

20; a13)-a23) 40; a14)-a24) 60; a15)-a25) 80. 
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Figure 7. Two DC values results of 100 image pairs under different H values: a) DCx; b) DCy. 

Figure 8. The different segmentation results with different T1 values: a11)-a21) 0; a12)-a22) 

20; a13)-a23) 40; a14)-a24) 60; a15)-a25) 80. 
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Figure 8. Different segmentation results with different T1 values: a11)-a21) 0, a12)-a22) 20, a13)-a23) 40; a14)-a24) 60; a15)-a25) 80.

Figure 9. MR and MC measurement results at different T2 values based on the two methods inspected: a) MR measurement results,  
b) MC measurement results.
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that need to be discussed to determine 
their impact on the matching precision. 
Due to the first binary image needing to 
contain more hairiness, the second bina-
ry image needs to contain less hairiness, 
and the template image cannot be a zero 
matrix; the values of T1 and T2 can only 
be a small part of the range from 0 to 
255. In order to avoid unnecessary pa-
rameter discussion, the range of T1 can 
be determined first. Take Figures 2.a1 
and 2.a2 as an example, the different 
segmentation results with varying T1 are 
shown in Figure 8.

From Figure 8, it can be seen that the 
level of hairiness in the segmentation im-
ages decreases as the T1 value increases, 
and more hairiness can be obtained when 
T1 ≤ 40. Long hairiness information is 
almost removed when T1 = 60 in two 
yarn images, and the discussion will be 

meaningless if the first binary image does 
not contain more hairiness detail. Hence 
the initial scope of T1 can be set as [0, 
40]. From Figure 8, we can also see that 
there are much background noise when 
T1 < 20. This can produce a certain ef-
fect on the accuracy of automatic image 
matching. Finally the range of [20, 40] 
can be used to segment the yarn image 
which has clear hairiness. Moreover the 
selection of T1 in the interval [20, 40] has 
little impact on the selection of T2 and the 
stitching results. Therefore, T1 is set as 30 
in the following discussion.

In order to determine the optimum 
scope of T2, 100 image pairs of #1 yarn 
at a 40 fps frame rate, T1 = 30, and 
100 × N pixel template size were meas-
ured as T2 changes in the interval [0, 255]. 
MR and MC detection results of 25 image 
pairs are shown in Figure 9.

In Figure 9, the red dot lines represent 
measurement results of the manual meth-
od at different T2 values, and the blue sol-
id lines denote the results of the automat-
ic method with T1 = 30 and T2 changing 
from 0 to 255. From Figure 9.a, it can 
be found that there are two big changes 
(having quite a distance from the red dot-
ted line) in MR measurement. These two 
big changes vacillate in the interval of T2 
∈ [20, 50] and [120, 255]. In MC meas-
urement, the automatic method shows 
a big difference from the manual method 
when T2 ∈ [130, 200]. Combining these 
unusual intervals, the optimal range of T2 
can probably be determined as [0, 19] and 
[51, 119]. This means that the result de-
tected will be accurate when the threshold 
value is T2 ∈ [0, 19] 

∩

 [51, 119].

In the image processing, a second bina-
ry image with little hairiness is required. 

Figure 10. DCz and DCy curves as T2 ∈ [51, 119]: a) DCz curves, b) DCy curves.
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Figure 10. DCz and DCy curve as T2∈[51, 119]. 
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(b) Images captured under 60 fps and the mosaic results. 

(c) Images captured under 80 fps and the mosaic results. 

(d) Images captured under 100 fps and the mosaic results. 

Figure 11.The consecutive yarn images captured under different frame rate and their 

panoramic images stitched by two methods: a1)-d1) tenth image; a2)-d2) ninth image; a3)-d3) 

eighth image; a4)-d4) seventh image; a5)-d5) sixth image; a6)-d6) fifth image; a7)-d7) fourth 
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Figure 10. The DCz and DCy curve as T2∈[51, 119]. 
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Figure 11. The consecutive yarn images captured at different frame rates and their panoramic images stitched by the two methods: a1)-d1) 
tenth image, a2)-d2) ninth image, a3)-d3) eighth image, a4)-d4) seventh image, a5)-d5) sixth image, a6)-d6) fifth image, a7)-d7) fourth image, 
a8)-d8) third image, a9)-d9) second image, a10)-d10) first image, a11)-d11) stitching result images by the automatic method proposed, and 
a12)-d12) stitching result images by the manual method.
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(2) Images captured at 60 fps and mosaic results.
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(b) Images captured under 60 fps and the mosaic results. 

(c) Images captured under 80 fps and the mosaic results. 
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(3) Images captured at 80 fps and mosaic results.
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(b) Images captured under 60 fps and the mosaic results. 

(c) Images captured under 80 fps and the mosaic results. 

(d) Images captured under 100 fps and the mosaic results. 
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panoramic images stitched by two methods: a1)-d1) tenth image; a2)-d2) ninth image; a3)-d3) 
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However, the second binary image will 
contain more hairiness when T2 is a small 
value. The computation time will in-
crease significantly when using the judge 
template method to remove yarn hairi-
ness. Thus the optimum interval of T2 can 
be set as [51, 119]. To observe the devi-
ation degree of MR and MC results for 
the two methods directly as T2 changes 
from 51 to 119, distance curvilinears DCy 
and DCz are drawn in Figure 10. DCz is 
defined as:
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the second binary image will contain more hairiness when T2 is a small value. The 

computation time will increase significantly when using the judge template method to remove  

yarn hairiness. Thus the optimum interval of T2 can be set as [51, 119]. To observe the 

deviation degree of MR and MC results for the two methods directly as T2 changes from 51 to 

119,  distance curvilinears DCy and DCz are drawn in Figure 10.  DCz is defined as: 

A M
zDC MR MR  (8) 

Where MRA & MRM are  MR values of the automatic method proposed and manual method, 

respectively.  

Figure 10. DCz and DCy curves as T2∈[51, 119]. 

In Figure 10, the red dotted lines represent DC values equal to 5 pixels. In Figure 10-b), 

   (8)

where, MRA & MRM
 are MR values of the 

automatic method proposed and manual 
method, respectively. 

In Figure 10, the red dotted lines rep-
resent DC values equal to 5 pixels. In 
Figure 10.b, all the DCy values are less 
than 5 pixels. However, some DCz values 

(4) Images captured at 100 fps and mosaic results.

are greater than 5 pixels in Figure 10.a, 
such as the sub-figure located at line 3 
column 3, line 4 column 1 and line 4 col-
umn 2. From these sub-figures, we can 
see that some DC values are greater than 
5 pixels when T2 > 85. Thus the range of 
T2 can be further narrowed. After analys-
ing all the image pairs of three kinds of 
slub yarn, the range of T2 is determined 
as [51, 80]. 

Different frame rate
In the pre-work phase, the images cap-
tured at 40 fps were measured to detect 
the accuracy of matching position infor-
mation. In the above section, a template 
size of 100 × N pixels is selected as the 
optimal. Hence the overlapping parts of 
neighbouring images must be greater 
than 100 pixels. Due to the frame rate 
being unstable in the process of image 
capture, the minimum frame rate is set 

as 40 fps to maximally avoid detection 
errors at a yarn speed of 6 m/min. In this 
section, 100 image pairs of three kinds 
of slub yarn acquired at 40, 60, 80, and 
100 fps were measured by the manual 
method and automatic method proposed. 
A panoramic image matching row MR 
and matching column MC was obtained 
at a template size of 100 × N pixels, 
T1 = 30, and T2 = 60. The panoramic im-
ages, which are stitched by the automat-
ic method and manual method based on 
10 consecutive yarn images of yarn #1 
captured at 40, 60, 80, and 100 fps, are 
shown in Figure 11.

From the stitching result images, we 
can see that the proposed method results 
agree well with those of the manual meth-
od at different frame rates. The results of 
the two detection methods are visibly the 
same. To objectively evaluate the quali-
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(a1) MR results of yarn #1 

(a2) MC results of yarn #1 

(a3) DCz results of yarn #1 

(a1) MR results of yarn #1 (a2) MC results of yarn #1 

(a3) DCz results of yarn #1 (a4) DCy results of yarn #1 

Table 3. Mosaic results of two methods at 80 and 100 fps based on nine yarn image pairs. 
Note: A – denotes the automatic method proposed; M – denotes the manual method.

x-th 
image
pair

80 fps 100 fps
MR EMR,

%
MC EMC,

%
MR EMR,

%
MC EMC,

%A M A M A M A M
1 439 438 0.13 -2 0 0.33 518 518 0.00 -1 0 0.17

2 422 422 0.00 2 3 0.17 521 526 0.65 1 0 0.17

3 420 422 0.26 0 -1 0.17 327 330 0.39 4 3 0.17

4 430 430 0.00 2 3 0.17 359 354 0.65 3 3 0.00

5 411 414 0.39 -1 -1 0.00 447 446 0.13 -2 -1 0.17

6 418 418 0.00 -2 -1 0.17 475 474 0.13 -4 -5 0.17

7 396 398 0.26 4 3 0.17 496 498 0.26 3 3 0.00

8 409 410 0.13 6 7 0.17 484 482 0.26 -1 -1 0.00

9 413 414 0.13 -4 -5 0.17 446 446 0.00 6 7 0.17

Table 2. Mosaic results of two methods at 40 and 60 fps based on nine yarn image pairs. 
Note: A – denotes the automatic method proposed; M – denotes the manual method.

x-th 
image
pair

40 fps 60 fps
MR EMR,

%
MC EMC,

%
MR EMR,

%
MC EMC,

%A M A M A M A M
1 174 174 0.00 5 3 0.33 354 354 0.00 -3 0 0.50 

2 155 154 0.13 -3 -4 0.17 353 350 0.39 4 3 0.17 

3 228 230 0.26 4 3 0.17 341 342 0.13 -1 -1 0.00 

4 158 162 0.52 1 3 0.33 336 338 0.26 2 3 0.17 

5 164 162 0.26 3 3 0.00 330 330 0.00 -1 -1 0.00 

6 147 146 0.13 8 7 0.17 334 334 0.00 2 3 0.17 

7 167 166 0.13 11 11 0.00 331 330 0.13 2 3 0.17 

8 173 170 0.39 -9 -9 0.00 336 338 0.26 3 3 0.00 

9 203 202 0.13 -4 -1 0.50 344 342 0.26 -2 -1 0.17 

Figure 12. Testing results of three kinds of yarn at four frame rates based on two measurement methods: (a1)-(a4) measuring results of yarn #1.

ties of the image mosaic, MR and MC re-
sults of the two methods at 40, 60, 80 and 
100 fps based on ten consecutive yarn 
images are list in Tables 2 and 3.

In Tables 2 and 3, EMR and EMC represent 
the relative error of the image mosaic 
in the vertical and horizontal directions, 
as defined in Equations (9), (10). M is 
the height of the image and N the width. 
Here, M = 768, N = 600.
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A denotes the automatic method proposed. 
M denotes the manual method. 
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vertical  and horizontal directions, as defined in equations (9)-(10). M is the height of the 

image and N the width. Here, M=768, N=600. 
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From the two tables, it can be seen that the  automatic mosaic method proposed  can 

get good results at 40, 60, 80 and 100fps from the nine image pairs. The values of EMR are less 

than 0.52%, 0.39%, 0.39% and 0.65% at four frame rates, respectively, and EMC are less than 

0.5%, 0.5%, 0.33%, and 0.17%. It means that the error in MR and MC for the two methods is 

no more than 5 pixels, which can be considered acceptable. 

To evaluate the mosaic result further, the MR , MC , DCz and DCy results of all 100 yarn 

image pairs (101 images) of yarns #1, #2 and #3  at four frame rates for the two 

measurement methods are shown in Figure 12. 
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From Tables 2 and b, it can be seen 
that the automatic mosaic method pro-
posed can get good results at 40, 60, 80 
and 100 fps from the nine image pairs. 
The values of EMR are less than 0.52%, 
0.39%, 0.39% and 0.65% at four frame 
rates, respectively, and EMC are less than 
0.5%, 0.5%, 0.33%, and 0.17%. It means 
that the error in MR and MC for the two 
methods is no more than 5 pixels, which 
can be considered acceptable.

To evaluate the mosaic result further, 
the MR, MC, DCz and DCy results of all 
100 yarn image pairs (101 images) of 
yarns #1, #2 and #3 at four frame rates 

(a1) MR results of yarn #1 

(a2) MC results of yarn #1 

(a3) DCz results of yarn #1 

(a1) MR results of yarn #1 

(a2) MC results of yarn #1 

(a3) DCz results of yarn #1 (a4) DCy results of yarn #1 

(b1) MR results of yarn #2 

(b2) MC results of yarn #2 

Manual Method
Automatic Method

Manual Method
Automatic Method

Manual Method
Automatic Method

Manual Method
Automatic Method

Manual Method
Automatic Method

Manual Method
Automatic Method

Manual Method
Automatic Method

Manual Method
Automatic Method



47FIBRES & TEXTILES in Eastern Europe  2018, Vol. 26,  2(128)

Figure 12. Testing results of three kinds of yarn at four frame rates based on two measurement methods: (b1)-(b4) measuring results of 
yarn #2, (c1)-(c4) measuring results of yarn #3.

(b1) MR results of yarn #2 (b2) MC results of yarn #2 

(b3) DCz results of yarn #2 (b4) DCy results of yarn #2 

(c1) MR results of yarn #3 (c2) MC results of yarn #3 

(c3) DCz results of yarn #3 (c4) DCy results of yarn #3 

Table 4. Comparison of time taken using the automatic method proposed and the manual method at four frame rates based on 100 image pairs.

#1 #2 #3
40 60 80 100 40 60 80 100 40 60 80 100

Automatic/s 32.1 31.9 29.6 32.0 31.7 32.7 32.8 32.7 34.1 33.3 33.5 33.2
Manual/min >37.8 >39.2 >36.5 >39.1 >38.2 >37.6 >40.1 >38.4 >39.5 >40.2 >37.9 >41.3
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for the two measurement methods are 
shown in Figure 12.

In Figures 12.a1-12.c1 and 12.a2-12.c2,  
the dashed line denotes MR and MC re-
sults of the manual method, and the solid 
lines represent the results of the automatic 
method proposed. In Figures 12.a3-12.c3  
and 12.a4-12.c4, the dashed lines rep-
resent DC values equal to 5 pixels, and 
the other solid represent lines DC values 
of 100 image pairs. From these figures, 
it can be seen that the MR and MC re-
sults are about the same for the two 
testing methods at the four frame rates. 
The DCz and DCy results are all less than 
5 pixels. Therefore the automatic method 
proposed for stitching the sequence yarn 
image is effective. 

Computing time analysis
A comparison of the time taken using the 
automatic method proposed and the man-
ual method at the four frame rates based 
on 100 image pairs is shown in Table 4. 
In the manual method, it takes more than 
37 minutes to stitch 101 images into pan-
orama ones. In the computer method pro-
posed, it takes less than 35 seconds for 
the image mosaic. It is also noted that the 
time for the image mosaic includes the 
image segmentation time. All the imple-
mentations were done in MATLAB on 
a Lenovo G480a with 2.6 GHz proces-
sor, 4 GB RAM. The computational time 
is measured in “seconds”. Therefore the 
overall processing time of the approach 
proposed is greatly shorter than that of 
the approach in the manual method, and 
when there are more source images cap-
tured as input of panorama stitching, the 
amount of time saved by the parallel ex-
ecuting feature of the approach proposed 
is more significant. 

	 Conslusions
In an earlier work, an effective method 
for stitching sequence slub yarn images 
automatically was developed based on 
image processing and the NCC method. 
100 image pairs of two kinds of slub yarn 
were measured in certain specific condi-
tions, and the measurement results were 
evaluated with the manual method. In 
this paper, experiments were carried out 
to investigate the feasibility and accuracy 
of the method proposed for the automat-
ic mosaic of sequence slub yarn images. 
Three 100% cotton yarns of 27.8, 15.6, 
and 9.7 tex were prepared and used for 
evaluation. 

In the experiment, the optimum template 
size and threshold values were deter-
mined first based on the experimental 
data. Then the detection results at differ-
ent frame rates and the optimum param-
eters were analysed to evaluate the accu-
racy of image stitching. The computing 
time was also assessed at different frame 
rates for the automatic method proposed 
and the manual method. 

The experimental results show that the 
method proposed can accurately find 
the stitch position and have a high con-
sistency with the manual method when 
the matching template is 100 × N pixels, 
the threshold value T1 ∈ [20, 40] and 
T2 ∈ [51, 80], and when the frame rate 
is greater than 40 fps. Using all these 
optimum parameters, the geometric pa-
rameters of slub yarn can be measured 
precisely. 
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