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Abstract
In this paper a new technique has been proposed for cotton bale management using fuzzy 
logic. The fuzzy c-means clustering algorithm has been applied for clustering cotton bales 
into 5 categories from 1200 randomly chosen bales of the J-34 variety. In order to cluster 
bales of different categories, eight fibre properties, viz., the strength, elongation, upper half 
mean length, length uniformity, short fibre content, micronaire, reflectance and yellowness of 
each bale have been considered. The fuzzy c-means clustering method is able to handle the 
haziness that may be present in the boundaries between adjacent classes of cotton bales as 
compared to the K-means clustering method. This method may be used as a convenient tool 
for the consistent picking of different bale mixes from any number of bales in a warehouse.
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grouped on the basis of individual fibre 
properties, the number of category com-
binations will be enormously high. As 
a consequence, it becomes an impossible 
task to select a consistent bale mix for 
consecutive laydowns from such a huge 
population of bale groups. In order to 
simplify the bale management system, 
some overall quality indices of cotton fi-
bre based on the multivariate regression 
model viz., Fiber Quality Index (FQI), 
Spinning Consistency Index (SCI) and 
Premium Discount Index (PDI) have 
been developed for grouping bales into 
only a few categories [1-5]. These in-
dices were formulated based on certain 
types of cotton fibres which are seldom 
generalised to all cotton varieties. 

Only a few works have been reported on 
the categorization of cotton using clus-
tering techniques [6-7]. Ghosh et. al. [8] 
proposed the K-means square clustering 
technique of cotton bale management, 
in which a set of cotton bales were clus-
tered into a few groups by minimising 
the within-group Euclidean distance of 
each member in a cluster to its cluster 
centre and maximising the Euclidean dis-
tance between the cluster centres. Eight 
HVI fibre properties of each cotton bale 
were considered in the study. Basically 
the K-means square clustering method 
is used to classify cotton bales in a crisp 
sense, i.e. each bale will be assigned to 
one and only one class, and each class 
has a hard boundary. Nevertheless ad-
jacent classes of cotton bales may have 
hazy and overlapping boundaries, which 
thus make crisp-boundary methods in-
effective for cotton bale classification. 
Fuzzy logic is specialised to deal with 
such a kind of ambiguity in cotton bale 
classification. 

Considering the above-mentioned draw-
backs of the K-means square clustering 
algorithm, in this work a fuzzy c-means 
(FCM) algorithm has been used for cot-
ton bale clustering which is a more re-
liable way of grouping cotton bales by 
eliminating the hard boundary problems 
associated with cotton bale clustering.  

	 Concept of fuzzy logic
The concept of fuzzy logic was fathered 
by Lotfi A. Zadeh [9] at the University 
of California at Berkeley, USA. A clas-
sical crisp set is a container that wholly 
includes or wholly excludes any given 
element. Suppose that we have a crisp set 
A which contains individual elements x. 
Mathematically,
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where ( )A x indicates the unambiguous membership of element x in set A. Obviously ( )A x  is 

either 0 or 1. On the contrary, the fuzzy set contains elements with only a partial degree of 
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3   Concept of Cluster Analysis 

Cluster analysis involves categorization: dividing a large group of observations into smaller groups 

so that those within each group are relatively similar and they possess largely the same 

characteristics. The observations in different groups are relatively dissimilar. In other words,  

cluster analysis aims at grouping data objects of a similar kind into respective categories or clusters 

in such a way that the degree of association between two objects is maximum if they belong to the 

same group and minimum otherwise [10].  

The K-means square clustering algorithm is one of the simplest unsupervised learning algorithms 

that solve the well-known clustering problem [11-12]. The procedure follows a simple and easy 

way to classify a given set of data. The first step is to select a K number of clusters, define K

centroids, one for each cluster, and then find  the Euclidian distance of each data from the K

centroids. In the next step each data point associate it to the nearest centroid and include it in that 

cluster. The process continues until there is no change in the cluster.
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    (3)

	 Introduction
The world textile industry has under-
Cotton fibres have very high variability 
in their characteristics, and therefore it 
is a challenging issue for every spinning 
industry to convert cotton fibres into 
yarns with consistent quality throughout 
the year. Only a sound bale management 
system can enable to tackle the issue of 
consistent yarn quality. The bale man-
agement technique for a consistent end 
product demands the grading of each and 
every bale in the population on the basis 
of fibre properties. If the cotton bales are 
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	 Concept of cluster analysis
Cluster analysis involves categoriza-
tion: dividing a large group of observa-
tions into smaller groups so that those 
within each group are relatively similar 
and they possess largely the same char-
acteristics. The observations in different 
groups are relatively dissimilar. In other 
words, cluster analysis aims at group-
ing data objects of a similar kind into 
respective categories or clusters in such 
a way that the degree of association be-
tween two objects is maximum if they 
belong to the same group and minimum 
otherwise [10]. 

The K-means square clustering algorithm 
is one of the simplest unsupervised learn-
ing algorithms that solve the well-known 
clustering problem [11-12]. The proce-
dure follows a simple and easy way to 
classify a given set of data. The first step 
is to select a K number of clusters, define 
K centroids, one for each cluster, and 
then find the Euclidian distance of each 
data from the K centroids. In the next step 
each data point associate it to the near-
est centroid and include it in that cluster. 
The process continues until there is no 
change in the cluster.

	 Fuzzy C-means algorithm
Bezdek [13] developed an extremely 
powerful classification method to accom-
modate fuzzy data. In this algorithm an 
individual can have partial membership 
in more than one class, which is not pos-
sible in the K-means square algorithm. 
A family of fuzzy sets 
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1 1 1 0.50
1 1 27 11 7 11

7 3 7 11

U
 

   
           

41 2 2
2 1 2 1

1 1 1 0.50
1 1 27 3 7 3

7 3 7 11

U
 

   
           

31 2 2
2 1 2 1

1 1 1 0.981 5014 3 4 3
49 494 3 4 11

U
 

   
           

32 2 2
2 1 2 1

1 1 1 0.02
49 1 504 11 4 11

4 3 4 11

U
 

   
           

Equation 16 exemplifies the calculation of the first centroid (c1). 
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5   Application of FCM 

1200 randomly chosen cotton bales of the J-34 variety (suitable for 20’s Ne mixing) were tested in a 

Indian spinning mill using Uster HVI-900 instrument to measure different fibre properties, viz., 

fibre strength (FS),  fibre elongation (FE), upper half mean length (UHML), length uniformity 

index (UI), micronaire (Mic), reflectance (Rd), and yellowness (+b) for each and individual bale. 

The short fibre index (SFI) of each bale was tested by a Uster AFIS instrument. Table 1 represents a 

summary of statistics of the fibre properties of 1200 cotton bales. If there are 5 groups, each of 

which belonging to fibre strength and UHML and 4 groups to fibre elongation, UI, SFI, Mic., Rd

and +b, the cotton bale population can be assumed to comprise  5246, i.e., 102400 varieties of bales. 

It is an unrealistic task to make a consistent selection of a 40-bale mix from such a huge population 

of cotton bales. This apparently impossible task can be handled by employing the FCM cluster 

algorithm for grouping  cotton bales into respective groups. The FCM can also handle the the 

imprecision that may be present in  cotton bale clustering. Hence a single cotton bale may have 

partial membership in more than one class. MATLAB 7.11 coding was used to execute the problem 

on a 2.6 GHz. PC. 

Figure 1 demonstrates the optimisation function values and iteration count. It can be inferred from 

the curve that the fuzzy partition matrix (U) changes rapidly at the beginning, which gives a sudden 

fall of the curve at first few iterations and then gradually settles down as the model converges 

towards the optimum values. The later part of the curve indicates that there were very few changes 

in the clusters from the 10th iterations. The optimization model meets the stopping criteria at the 63rd

iteration, which ends the program. Figure 2 illustrates the belonging of the individual bales into 5 

2 2 2 2

1 2 2 2 2

(0.99) *2 (1) *3 (0.98) *4 (0.50) *7 ...
(0.99) (1) (0.98) (0.50) ...

c    


   

Equations (10), (11), (12), (13), (14), (15) and (16).

(11)

(12)

(13)

(14)

(15)

(10)

(16)

sures, dij, are zero, or extremely small in 
a computational sense. 

Calculation of the fuzzy matrix and cen-
troids are demonstrated with a 1 x 7 data 
matrix i.e. {2; 3; 4; 7; 9; 10; 11}. Suppose 
the initial centroid of two clusters (when 
c = 2) is 3 and 11. Equation (5) was used 
to calculate the fuzzy membership of 1st 
data (i.e. 2) to 1st cluster (U11) and 2nd 
cluster (U12) as shown below Equations 
(10) and (11).

Similarly the fuzzy membership of 2nd 
data (i.e. 3) to 1st cluster (U21) and 2nd 
cluster (U22) was 1 and 0, respectively. 
The fuzzy membership of 3rd data (i.e. 4) 
to 1st cluster (U31) and 2nd cluster (U32) 
was 0.98 and 0.02, respectively, as shown 
Equations (13) and (14).

Equations (14) and (15) determined the 
fuzzy membership of 4th data (i.e. 7) to 
1st cluster (U41) and 2nd cluster (U42), re-
spectively. 

Equation (16) exemplifies the calcula-
tion of the first centroid (c1).
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Table 1. Summary statistics of cotton fibre properties.

Fibre properties Minimum Maximum Mean Standard deviation
FS, cN/tex 24.5 30.2 27.6 0.950
FE, % 3.81 7.75 5.95 0.794
UHML, mm 23.56 28.90 26.20 0.751
UI, % 78.46 84.22 81.18 0.747
SFI, % 4.3 15.1 8.9 1.915
FF, µg/in 3.21 5.50 4.28 0.373
Rd 58.44 78.61 71.31 2.393
+b 5.97 10.80 8.16 0.670

Table 2. Proportion of bales in 5 different clusters.

Cluster No. No. of bales Proportion of bales, %
1 234 19.50
2 254 21.17
3 175 14.58
4 245 20.42
5 292 24.33

bale. The short fibre index (SFI) of each 
bale was tested by a Uster AFIS instru-
ment. Table 1 represents a summary of 
statistics of the fibre properties of 1200 
cotton bales. If there are 5 groups, each 
of which belonging to fibre strength and 
UHML and 4 groups to fibre elongation, 
UI, SFI, Mic., Rd and +b, the cotton bale 
population can be assumed to comprise 
52×46, i.e., 102400 varieties of bales. 
It is an unrealistic task to make a con-
sistent selection of a 40-bale mix from 
such a huge population of cotton bales. 
This apparently impossible task can be 
handled by employing the FCM cluster 
algorithm for grouping cotton bales into 
respective groups. The FCM can also 
handle the the imprecision that may be 
present in cotton bale clustering. Hence 
a single cotton bale may have partial 
membership in more than one class. 
MATLAB 7.11 coding was used to exe-
cute the problem on a 2.6 GHz. PC.

Figure 1 demonstrates the optimisation 
function values and iteration count. It can 
be inferred from the curve that the fuzzy 
partition matrix (U) changes rapidly at 
the beginning, which gives a sudden fall 
of the curve at first few iterations and 
then gradually settles down as the model 
converges towards the optimum values. 
The later part of the curve indicates that 
there were very few changes in the clus-
ters from the 10th iterations. The optimi-
zation model meets the stopping criteria 
at the 63rd iteration, which ends the pro-
gram. Figure 2 illustrates the belonging 
of the individual bales into 5 different 
clusters. The proportion of bales in 5 
different clusters is given in Table 2. 
The number of bales belonging to clus-
ters 1 to 5 are 234, 254, 175, 245 and 292 
respectively. Now the frequency relative 
picking method may be employed for the 
consistent selection of a 40-bale mix for 
30 consecutive lay-downs, which con-
stitutes a ratio of 8 : 8 : 6 : 8 : 10 after 
rounding off.

	 Conclusion
The fuzzy c-means based cotton bale 
management technique gives a consist-
ent selection of cotton bales. The present 
study was conducted on 1200 randomly 
chosen cotton bales of the J-34 variety 
to partition into 5 categories. Hence it 
is possible to prepare a consistent 40-
bale mix for 30 consecutive lay-downs 
using the frequency relative picking 
method. This method is also suitable for 
consistent picking of different bale mix-

Figure 2. Clustering of 1200 bales in 5 clusters.
Figure 2. Clustering of 1200 bales in 5 clusters 

Table 2.  Proportion of bales in 5 different clusters

Cluster No. No. of bales Proportion of bales (%)

1 234 19.50

2 254 21.17

3 175 14.58

4 245 20.42

5 292 24.33

6   Conclusion 

The Fuzzy c-means based cotton bale management technique gives a consistent selection of cotton 

bales. The present study was conducted on 1200 randomly chosen cotton bales of the J-34 variety to 

partition into 5 categories. Hence it is possible to prepare a consistent 40-bale mix for 30 

consecutive lay-downs using the frequency relative picking method. This method is also suitable for 

consistent picking of different bale mixes from any number of bales in a warehouse. The method of 
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1200 randomly chosen cotton bales of 
the J-34 variety (suitable for 20’s Ne 
mixing) were tested in a Indian spinning 
mill using Uster HVI-900 instrument 

(Switzerland) to measure different fibre 
properties, viz., fibre strength (FS), fibre 
elongation (FE), upper half mean length 
(UHML), length uniformity index (UI), 
micronaire (Mic), reflectance (Rd), and 
yellowness (+b) for each and individual 

Figure 1. Objective function minimisation with iterations.

different clusters. The proportion of bales in 5 different clusters is given in Table 2. The number of 

bales belonging to clusters 1 to 5 are 234, 254, 175, 245 and 292 respectively, Now the frequency 

relative picking method may be employed for the consistent selection of a 40-bale mix for 30 

consecutive lay-downs, which constitutes a ratio of  8 : 8 : 6 : 8 : 10 after rounding off. 

Table 1.  Summary statistics of cotton fibre properties

Fibre 
properties

Minimum Maximum Mean Standard 
Deviation

FS (cN/tex) 24.5 30.2 27.6 0.950

FE (%) 3.81 7.75 5.95 0.794

UHML (mm) 23.56 28.90 26.20 0.751

UI (%) 78.46 84.22 81.18 0.747

SFI (%) 4.3 15.1 8.9 1.915

FF (µg/in) 3.21 5.50 4.28 0.373

Rd 58.44 78.61 71.31 2.393

+b 5.97 10.80 8.16 0.670
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es from any number of bales in a ware-
house. The method of bale management 
proposed is more realistic and capable 
of handling the imprecision that may be 
present in the boundaries between adja-
cent classes of cotton bales. 
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