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Abstract
In this paper the problem of the transmission of vibration through a textile layer is presen-
ted. A mathematical model of a two degree of freedom system containing a textile layer and 
excited to vibrate by an electromagnet is formulated. The numerical simulation showsthat 
the textile layer increases the resonance frequency. 

Key words: transmission of vibration, textile layer. 

Jerzy Zajączkowski

Lodz University of Technology,
Żeromskiego 116, 90-924 Łódź, Poland

E-mail: jzaj@onet.pl

The dependence between the force Fkc 
acting on the fibrous layer and its deflec-
tion w was found in work [6] to be in the 
form of Equation (1).

In Figure 1 wu and wd denote coordinates 
of the upper and lower mass, respective-
ly. Constants (ku, kd) denote elastic and 

(cu, cd) damping parameters of the up-
per (u) and lower (d) spring, respective-
ly. Constants (k, L1) denote elastic and  
(c, H1) damping parameters of the non-
linear characteristic of the textile layer, 
defined in paper [1]. The parameters can 
be determined experimentally. 	 Introduction 

In order to protect the health of machine 
operators from the effect of machine vi-
brations, various textile elements placed 
between the human body and rigid ma-
chine elements are used. In this problem 
we have to deal with such machines as 
electric or pneumatic hand tools and 
mobile machines. Vibration protecting 
elements such as gloves, armrests, seats 
and backrests are subject to oscillating 
compression. The compression charac-
teristics of fibrous assemblies were ex-
plored in works [1,2]. The modelling and 
computer simulation of such systems 
can be found in work [3]. The compres-
sion behaviour of fabrics was studied in 
works [4,5]. The dependence between 
the force acting on the fibrous layer and 
the magnitude of its compression was 
proposed in work [6]. It was assumed 
that the gradual increase in the mutual 
contact areas of fibres which takes place 
during the compression of the fibre layer 
causes a reduction in the flexible bend-
ing portion of the fibres, which increas-
es the layer stiffness. As the layer thick-
ness decreases, its side surface through 
which the fluid is squeezed out decreas-
es, causing an increase in the resistance 
to flow. The purpose of the present paper 
is to gain knowledge of the transmission 
of vibrations by textile elements.

	 Equations of motion
The system considered is shown in Fig-
ure 1. It consists of two masses, md and 
mu, separated by a textile layer k, two 
springs of stiffness ku and kd and a elec-
tromagnet of inductance L. 

Figure 1. Model of vibrating masses separated by a textile layer and excited to vibrate by 
an electromagnet.
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In Figure 1 wu and wd denote coordinates of the upper and lower mass, respectively. Constants 

(ku, kd) denote elastic and (cu, cd) damping parameters of the upper (u) and  lower (d) spring, 

respectively. Constants (k, L1) denote elastic and (c, H1) damping parameters of the nonlinear 

characteristic of the textile layer,  defined in paper [1]. The parameters can be determined 

experimentally.  

The equations of  motion of masses mu and md (Figure 1) are found to be of the form (2). 
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Assume the excitation force of the electromagnet to be described by equations (3). 
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The equations of motion of masses mu 
and md (Figure 1, see page 131) are 
found to be in the form of Equations (2).

Assume the excitation force of the electro-
magnet to be described by Equations (3).

In Equations (3), i is the current intensi-
ty, R the resistance of the circuit, u feed 
voltage, x the position of the core centre, 
having its origin in the centre of the coil, 
and δ is the distance from the centre of 
the core to the centre of the coil at rest. 

The methods of determination of the 
inductance L are described in papers  
[7-10]. Here the experimental method 
[7, 11] is explained in detail. For the 
stationary electromagnet, having a coil 
of resistance R, supplied with voltage 
u = Usinωt, we measure the current I and 
calculate the inductance L as a function 
of the mutual position of the armature 
and electromagnet see Equations (4).

Using the results of measurements, we 
approximate the inductance function L 
by the function describing the intensity 
of the magnetic field H (Equations (5)) 
of the stationary coil (Figure 2) and by 
choosing proper parameters. 

In Equations (6), defining the inductance 
L and its derivative dL/dx (Figure 3), the 
x coordinate specifies the position of the 
movable core centre and has its origin in 
the centre of the coil; l denotes half of the 
computational length of the coil; r0 the 
computational radius of the coil; Lmax is 
the maximum inductance of the coil, that 
is when the centre of the core coincides 
with the centre of the coil, and Lmin is the 
minimum inductance of the coil when the 
core is in the end position. 

	 Results
The set of differential Equations (2), 
(3) was solved numerically using the 

β1

β2
x

2l

r0

0

Figure 2. Scheme for calculating the 
intensity of the magnetic field of the sta-
tionary coil, having z turns, at distance 
x from its centre.

(6)

Figure 3. First derivative of inductance  dL/dx as a function of coordinate x, having its origin in the centre of coil, 

approximated by the magnetic field intensity function for R=7, 2l=0.056m, r0=0.032m, Lmax=0.364319H, 

Lmin=0.04H. 
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In formulas (6), defining the inductance L and its derivative dL/dx (Figure 3), the x coordinate 

specifies the position of the movable core centre and has its origin in the centre of the coil; l

denotes half of the computational length of the coil; r0 the computational radius of the coil; 

Figure 3. First derivative of inductance  dL/dx as a function of coordinate x, having its origin in the centre of coil, 

approximated by the magnetic field intensity function for R=7, 2l=0.056m, r0=0.032m, Lmax=0.364319H, 

Lmin=0.04H. 
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In Figure 1 wu and wd denote coordinates of the upper and lower mass, respectively. Constants 

(ku, kd) denote elastic and (cu, cd) damping parameters of the upper (u) and  lower (d) spring, 

respectively. Constants (k, L1) denote elastic and (c, H1) damping parameters of the nonlinear 

characteristic of the textile layer,  defined in paper [1]. The parameters can be determined 

experimentally.  

The equations of  motion of masses mu and md (Figure 1) are found to be of the form (2). 
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Assume the excitation force of the electromagnet to be described by equations (3). 
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(ku, kd) denote elastic and (cu, cd) damping parameters of the upper (u) and  lower (d) spring, 

respectively. Constants (k, L1) denote elastic and (c, H1) damping parameters of the nonlinear 

characteristic of the textile layer,  defined in paper [1]. The parameters can be determined 
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The equations of  motion of masses mu and md (Figure 1) are found to be of the form (2). 
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Assume the excitation force of the electromagnet to be described by equations (3). 
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In equations (3), i is the current intensity, R the resistance of the circuit,  u feed voltage, x the 

position of the core centre, having its origin in the centre of the coil, and   is the distance 

from the  centre of the core to the centre of the coil at rest.  

The methods of determination of the inductance L are described in papers [7-10]. Here the 

experimental method [7,11] is explained in detail. For the stationary electromagnet, having a 

coil of  resistance R, supplied with  voltage u=Usint, we measure the current I and calculate 

the inductance L (4) as a function of the mutual position of the armature and  electromagnet. 
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Using the results of measurements, we approximate the inductance function L by the function 

describing the intensity of the magnetic field H (5) of the stationary coil (Figure 2) and by 

choosing proper parameters. 
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Figure 2. Scheme for calculating the intensity of the magnetic field of the stationary coil, having z turns, at  

distance x from its centre. 
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Figure 3. First derivative of inductance dL/dx as a function of coordinate x, having its origin 
in the centre of coil, approximated by the magnetic field intensity function for R = 7 Ω,  
2l = 0.056 m, r0 = 0.032 m, Lmax =0.364319 H, Lmin =0.04 H.Figure 3. First derivative of inductance  dL/dx as a function of coordinate x, having its origin in the centre of coil, 

approximated by the magnetic field intensity function for R=7, 2l=0.056m, r0=0.032m, Lmax=0.364319H, 

Lmin=0.04H. 
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In formulas (6), defining the inductance L and its derivative dL/dx (Figure 3), the x coordinate 

specifies the position of the movable core centre and has its origin in the centre of the coil; l

denotes half of the computational length of the coil; r0 the computational radius of the coil; 
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Runge-Kutta method. The integration 
was carried on until the difference be-
tween each period became negligi-
ble and the solution achieved steady-
state. Calculations were performed for 
u = Umsin(ωut), Um = 24 V, L1 = 0.03 m, 
H1 = 0.03 m, k = 500 and 5000N/m, 
c = 0.1 Ns2/m2, ku = kd = 5000 N/m, 
cu = cd = 0.1 Ns/m, mu = md = 1 kg, g = 9.81 
m/s2, Lmax = 0.364319 H, Lmin = 0.04 H, 
l = 0.028 m, r = 0.032 m, R = 40 Ω, δ = l, 
Um = 24 V. Initial conditions were 
wd(0) = wu(0) = 0, dwddt(0) =  dwudt(0) = 0, 
i(0) = 0, ω = (kd/md)0.5. The results are 
shown in Figures 4.

The peak of the reaction force of the tex-
tile layer Fkc, shown in Figure 4, shows 
the frequency of vibration of the masses 
when they move in the opposite direc-
tion, which results in textile layer com-
pression.

	 Conclusion
In the absence of the textile layer, since 
both oscillators are the same, the reso-
nance frequencies associated with mass 
motion in the same and opposite direction 
are equal. If the textile layer is present, 

those resonant frequencies are different, 
and that variation in resonant frequencies 
increases with an increase in the textile 
layer stiffness. In order to get practical 
results, further studies of the transmis-
sion of vibrations through various textile 
elements are needed.
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Figure 4. Steady-state maximum displacements wd of the lower mass and textile layer reaction force Fkc for increasing frequency of excitation ωu.

Lmax is the maximum inductance of the coil, that is when the centre of the core coincides with 

the centre of the coil, and Lmin is the minimum inductance of the coil when the core is in the 

end position.  

Results 

The set of differential equations (2,3) was solved numerically using the Runge-Kutta method. 

The integration was carried on until the difference between each period became negligible and 

the solution achieved steady-state. Calculations were performed for u=Umsin(ut), Um=24 V,

L1=0.03 m, H1=0.03 m, k=500 and 5000N/m, c=0.1Ns2/m2, ku=kd=5000 N/m, cu=cd=0.1 Ns/m,

mu=md=1 kg, g=9.81 m/s2, Lmax=0.364319 H, Lmin=0.04 H, l=0.028 m, r=0.032 m,  R=40 ,

=l, Um=24 V.  Initial conditions were wd(0)=wu(0)=0, dwddt(0)= dwudt(0)=0, i(0)=0,

= (kd/md)0.5. The results are shown in Figures 4. 
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