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Shape Determination of Elastica Subjected 
to Bending by Means of Displacements

Piotr Szablewski,  
Ryszard Korycki

Abstract
Free folding of flat textiles can be determined using elastica for the same shape, loads and 
folding conditions across the product. The paper presents a general theory concerning 
shape determination of coplanar elastica subjected to static bending by means of  displace-
ments. The displacements are described by the coordinates of points of initially unbending 
elastica and the  loads imposed. The physical behavior of elastica is described using some 
simplifications by both physical and mathematical models. The mathematical model can be 
discussed using a solution of six nonlinear differential equations with  appropriate bounda-
ry conditions. Three relationships are the equations of equilibrium, and the other describes 
the displacements along the particular axis, the change in curvature and the physical law.

Key words: bending; elastica; displacement method; numerical analysis; shooting method; 
large deflections.

cal methods in respect of specific prob-
lems existing in  textile engineering was 
also discussed. More recent investiga-
tions of elastica and nonlinear problems 
can be found in [10 - 14].

References [15, 16] provide a number of 
results for the  tensile deformation of fi-
bres with planar waviness (crimp). Semi-
circular arcs connected with sinusoidal 
shapes subjected to small loads were 
analyzed. Large deformation problems 
of filaments were also applied to study 
the deformation behavior of collagen fi-
bres in connective tissue [17 - 19]. Some 
problems concerning the behavior of fi-
bres subjected to different loads are dis-
cussed in [20 - 23].

The  work presented applies to statical-
ly loaded elastica subjected to bending. 
The main goal is to determine the shape 
of the deflected curve as a function of the 
original undeformed shape and  loads im-
posed. The solution depends on the nor-
mal and tangential displacement of points 
located on the initially undeformed 
curve. The novelty elements are the pre-
sented advanced description of elastica 
deflections using the non-linear differ-
ential equations as well as the sensitivity 
analysis of the  dependences obtained in 
respect of some selected parameters.

In this paper some assumptions are intro-
duced to simplify the problem. 
i)	 The elastica axis is coplanar. 
ii)	 The material is homogeneous, iso-

tropic and subject to Hooke’s law. 
iii)	The cross-section of elastica is circu-

lar, of constant diameter, and small in 
comparison with the radius of curva-
ture and the length of the axis. 

Several papers published in recent years 
concern the large deflection of thin rods 
using the Bernoulli-Euler law. Most of 
them are described in [1], including some 
numerical methods to solve the  prob-
lems selected. General equations are 
considered by Scott, Carver, and Kan [2] 
using the method of return to the origi-
nal state, which leads to solutions in the 
form of a non-linear equation in a rec-
tangular coordinate system in the case of 
vertical forces. Assuming the solutions as 
functions expanded in an infinite series, 
the  nonlinear equations are reduced to 
a  system of linear equations, which can 
be solved by integration. Some numeri-
cal examples are also included.

Chicurel and Suppiger [3] have recently 
applied the energy methods to find the 
large deflection of statically loaded tex-
tile fibres. For circular fibres acting as 
a cantilever with a horizontal force and 
moment applied to the free end, the solu-
tions were determined in terms of elliptic 
integrals. Several other problems were 
solved numerically using a digital com-
puter. The problem of large deflection 
can be solved by means of both physical 
and mathematical models of the  planar 
bending curve and elastica (Love [4], 
Szablewski [5, 6], Bickley [7], FrischFay 
[1]). Interesting information about elas-
tica was published by Levien [8]. This 
report traces the history of  elastica from 
its first precise formulation by James 
Bernoulli in 1691 through to the present.
A mathematical model of elastica and so-
lution methods of differential equations 
are presented, for example, by Szablews-
ki [9], including a shooting method for 
numerical analysis of Peirce’s cantilever 
test. Moreover the application of numeri-
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n	 Introduction
Textiles  usually have the same cross-
section as well as repeatable loads and 
folding conditions across the product. 
Thus the  free folding of flat textile 
products can be determined using elas-
tica i.e. within its optional cross-section. 
The problem is complicated and the flat 
deflection curve described as heavy elas-
tica is formulated under the decisive in-
fluence of the force of gravity.

The application of fibres in different 
structures and as reinforcement in com-
posite materials requires, in most cases, 
quantitative analysis of their mechani-
cal properties. The adoption of  perfect 
fibres made of a homogeneous material 
of constant circular cross-section leads 
to an analysis of the bending, analogous 
to the  analysis of bending concerning 
the homogeneous elastica. Because of 
elastica properties, methods of analy-
sis resulting from the classical theory 
of the  strength of materials are useless. 
Even the classical linear theory of elas-
ticity, because of the adoption of small 
displacements and deformations, is not 
suitable during the analysis in respect of 
large deformations. Most of the works 
concerning the bending of elastica are 
based on the Bernoulli-Euler law. 
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where, r* is the radius of curvature of 
elastica subjected to bending, r the ra-
dius of curvature of the  initially unbend-
ing curve, M the bending moment in the 
cross-section of elastica, and EI is the 
bending stiffness.
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iv)	 The cross-sections of elastica are al-
ways planes. 

v)	 The normal stresses perpendicular to 
the axis of elastica are negligible. 

vi)	 Elastica is inextensible. Mathemati-
cally speaking, the result of the anal-
ysis is a system of six nonlinear dif-
ferential equations describing  elas-
tica subjected to bending.

n	 Modeling and methods
Analysis of displacements
Let us introduce two infinitesimal ele-
ments of statically loaded elastica of the 
coplanar axis: ds in the  initial state (i.e. 
undeformed shape) and ds* in the  de-
formed shape subjected to bending, cf. 
Figure 1. The symbols without stars 
refer to the undeformed curve, whereas 
the symbols marked with an asterisk (*) 
apply to the deflected curve.

Let us first determine the relationship 
between the tangent strains and displace-
ments. The location of an optional point 
P on the elastica curve is described by 
the tracing vector r , cf. Figure 2.

We can denote according to Figure 2 

the measure of  vector r r= . Introduc-
ing the geometrical correlations, the fol-
lowing equation can be derived: 

dr
ds

t= ,                       (2)

where, t  is the unit vector tangent to un-
deformed elastica of the positive sense 
compatible with the growth direction of 
arc variable s. From Equation 2 we ob-
tain:

dr ds t
dr ds

= ⋅

=

,
.

                    (3)

Let us determine the displacement of 
an optional point P  →  P* described by  
vectors r  and r *, respectively. Thus the 
following symbols are now introduced: 
v – normal displacement, u – tangent dis-
placement, e – relative strain.

The variable position of point P is de-
termined by  vector r * in the form (Fig-
ure 3): 

,* nvturwrr ⋅+⋅+=+=         (4)

where, n  is the unit vector directed 
from the center point of curvature along 
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The Frenet equations [24] for the plane 
curve are as follows:
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where, κ is the curvature. Because 
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=  then   then introducing Equa-

tion 6 into Equation 5 and separating the 
variables, we obtain the equivalent for-
mulation.
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The measure of vector *rd can be conse-
quently described as follows:

using Using *
*

*

t
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Equation 8.
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The relative strain can be defined in ac-
cordance with the definition: 

e =
−

= −
ds ds

ds
ds
ds
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Equation  8 can be included in Equa-
tion 9, which allows to determine the rel-
ative strain:
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The elastica is inextensible, i.e. e = 0  and 
ds
ds

*

 = 1, which allows to formulate.
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Equation 11 takes the form after reduc-
tion: 
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This is a condition of inextensibility, ex-
pressed by means of the displacements. 

Figure 1. Infinitesimal elements ds  of un-
deformed and ds*of deformed elastica.

Figure 2. Undeformed plane curve with 
point P determined by tracing vector r .

Figure 3. Part of undeformed and deformed 
elastica with displacements of point P.
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not change with the variation of the an-
gle of inclination  between the  horizon-
tal and tangential  to the  elastica at any 
point of the curve. Alternatively the load 
can work in the tracing direction, that is, 
the direction changes when the tangent to 
the elastica changes. The second case is 
shown in Figure 5.

According to the figure, the direction 
of continuous load is determined by 
the constant angle  measured to the nor-
mal direction n . Moreover the angle of 
inclination between the vertical axis y 
and the normal direction n  is equal to. 
Of course, the normal direction varies 
along the elastica with a change in any 
point on the curve specified by the arc 
variable s. Therefore the tracing continu-
ous load q has a variable direction along 
the deformed curve. It is characterized by 
ta constant angle  in respect of the normal 
n . In the case of a fixed continuous load, 

its deviation from the normal direction is 
not considered.

In this case, the angle   represents the de-
viation from the vertical direction. An ex-
ample of this load can be the gravitational 
field i.e. the downwardly directed linear 
weight of the angle  = 0. The balance of 
an infinitesimal elastica element (Fig-
ure  5) allows to formulate the balance 
equations.

( ) jαj cossin ⋅−+⋅−= pq
ds

dF x ,   (23)

( ) jαj sincos ⋅++⋅−= pq
ds

dF y ,  (24)

jj cossin yx FF
ds

dM
+= .     (25)

An optional problem concerning elastica 
of large deflection of initial curvature 

rκ 1=  is determined by Equations 23 
& 25 (i.e. equations of equilibrium) ac-
companied by Equations 12, 18 and 22 
(i.e. equations connecting the displace-
ments and conditions of equilibrium) as 
well as the Bernoulli-Euler law - Equa-

Introducing once again the Bernoulli-
Euler law into Equation  16, we obtain 
immediately: 
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In order to find an expression for the rota-
tion angle in terms of displacements, we 
must consider the following dot products:
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tion 7 and Figure 4 we have the vector 
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The rotation angle j is now defined by 
Equation 22.

Equations of equilibrium
The problem can be additionally supple-
mented by equilibrium conditions. Thus 
we consider an elastica element of  length 
ds, whereas the loads are applied accord-
ing to Figure 5. 

The internal forces within the cross-sec-
tion of elastica are reduced to the  hori-
zontal force Fx,  vertical force Fy as well 
as the bending moment M. The exter-
nal forces (i.e. the loading forces) are 
the  continuous load q and  tangential 
load  p. However, the continuous load 
q does not always exists within the  real 
elastica. This load can be character-
ized by the fixed direction of action i.e. 
the  constant angle. Thus the angle does 

The relationship between the curvature of 
the deformed elastica and displacements 
will be next derived. From Equation 6 it

is known that 
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Due to the condition of inextensibility  
ds = ds*, Equation  14 can be rewritten 
as follows:
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order derivative d r
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assuming that the  initial curvature 
rκ 1=  is constant.

We have to consider the Bernoulli-
Euler law (1) and Equation  15, noting 
the equation
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Figure 4. Normal and tangential vectors 
translated to act through vertex O.

Figure 5. Elementary sector of deformed 
elastica with imposed loads.

ds ds

ds

ds

ds ds ds

ds ds
du

dv

ds EI

ds ds

ds ds

dv

du

EI

ds

ds
du

ds
dv

ds
dF

ds
dF

ds
dM



141FIBRES & TEXTILES in Eastern Europe  2016, Vol. 24,  6(120)

tion 1. All these equations allow for the 
solution of any large deflection problem 
involving fibres. In the case of a con-
tinuous load with a constant direction 
of action, Equations 23 and 24 should 
contain the angle of inclination = 0 in 
trigonometric functions. Additionally 
these equations should be supplemented 
by appropriate boundary conditions, usu-
ally associated with the ends of elastica 
(but not only). 

The unknowns are Fx, Fy, M, j, u, v.  
Generally not all values of unknowns are 
determined at the starting point of the in-
tegration interval. Therefore t appropriate 
methods to solve the  boundary problem 
presents should be applied (e.g. shooting 
method). Let us introduce asimple exam-
ple of elastica (Figure 6) which is fixed 
at  one end and unbounded at the other. 
The shape is rectilinear horizontal and 
loaded with only a continuous constant 
load. Thus the initial curvature 1/r = 0,  
ds = dx whereas the boundary conditions 
are the following.

for x = 0, u = v = j = 0, 
for x = 1, Fx = Fy + M = 0.     (26)

However, these equations are complicat-
ed enough for the general case. The dif-
ficulty can be minimized by means of 
numerical calculations to solve most 

of the problems related to this matter. 
Consider the case of elastica restrained 
at one end and subjected to pure bend-
ing by the bending moment M at the free 
end. The solutions of Equations  23, 
25,  12,  18,  1 can be obtained in finite 
form for the displacements specified. 
These have the form.

xkx
k

u −= sin1 sin kx - x,  ( )1cos1
−= kx

k
v (cos kx - 1),     

where,  
EI
Mk = .               

(27)

n	 Results and discussion
Numerical examples
The set of equations is solved for elas-
tica of the initial rectilinear shape, 
restrained at one end, and for the fol-
lowing parameters: Young’s modulus  
E = 2.1×105 MPa, cross-sectional diam-
eter d = 5×10-4 m, and  length l = 1 m. 
The solution of this boundary value prob-
lem was based on the shooting method. 
The results are graphically presented in 
Figures 7 and 8 for the various types of  
loads selected. 

Figure 7 shows  solutions for the follow-
ing cases: (1) the bending moment M ap-
plied at the free end, (2) the continuous 
load q applied downward along the entire 
length of elastica, (3) both the  bending 
moment M and continuous load q simul-
taneously applied. It is easily seen that 
the adequate bending moment causes 
a circular form of the deformed elastica, 
that is, the shape of the optimal bending 
rigidity. The second problem generates 
the typical shape of a curve subjected 
to a continuous vertical load, which is 
well known for the strength of materials. 
The  loads simultaneously applied give 
a helix elastica of average shape between 
the circle and classical bending line of 
the beam.  

All shapes in Figure 8 have the form of 
a helix. Decisive is the sign of the  in-
clination angle α of continuous load q. 
The  positive values indicate the load 
acting downwards, while the negative – 
operating upwards. The larger the incli-
nation angle, the greater the horizontal 
component of the load. Thus the vertical 
component is getting smaller. 

The greater the positive value of the in-
clination angle, the smaller the local 
radius of helix curvature. The reason is 
the growing influence of the bending 
moment, whereas the impact of the con-

tinuous load increasingly decreases. On 
the  contrary, the greater the negative 
value of the angle, the greater the local 
radius of the helix. Thus the correspond-
ing line is obtained due to the increasing 
load, which operates upwards.

The shapes of deflected elastica subjected 
to pure bending are shown in Figure 9 for 
several values of the bending moment M.
 
It is evident in Figure 9 that the greater 
the bending moment, the smaller the lo-
cal radius of curvature of the elastica. 
The  maximal bending moment creates 
a semicircular shape of elastica i.e. 
the  shape of the convenient bending ri-
gidity.

n	 Conclusions
The problem presented is a model of 
some real practical applications which 
can be found in different approaches 
of textile engineering. Thus textiles af-
ter different finishing procedures need 
the  maximal possible path to ensure 
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Figure 7. Deflection of elastica un-
der various loads: 1) bending moment 
M  =  0.004  Nm at the free end, 2) con-
tinuous load q  =  0.002  N/m (α  =  0),  
3) simultaneously applied bending mo-
ment M = 0.004 Nm and continuous load 
q = 0.014 N/m (α = 0).
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Figure 8. Elastica obtained for si-
multaneously applied bending mo-
ment M  =  0.004  Nm and continuous 
load q  =  0.02  N/m for different incli-
nation angles α: 1)  α  =  0.2)  α  =  35°, 
3) α = 80°,4) α = 35°, 5) α = 80°.
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Figure 9. Shapes of deflected elastica sub-
jected to pure bending for different values 
of bending moment M: M1 = 0,25∙103 Nm, 
M2  =  0,50∙103  Nm, M3  =  1,0∙103  Nm, 
M4 = 2,0∙103 Nm.

Figure 6. Rectilinear horizontal elastica 
fixed at one end and unbounded at the other.
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duced to approximate the current bound-
ary conditions.

This kind of problems can be solved 
by means of various numerical meth-
ods. Some solutions may also introduce 
theory and optimization techniques to 
determine the optimal shape and/or in-
ternal energy of  fibres subjected to large 
deformations. This problem seems to be 
an interesting continuation of this article 
to develop in the future.
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the  correct technology in a relatively 
limited time, see, for example, printing, 
drying etc. The complex 3D problem can 
be reduced to  elastica of different deflec-
tions as well as parameters because the 
boundary values are also variable. 

Additionally  complex textile compos-
ites can be subjected to different loads, 
which is described by means of change-
able deflection curves of the textile struc-
ture. Although the analysis is accurate, 
the equations obtained are relatively un-
complicated and can be solved using a set 
of standard methods. The problem is easy 
enough to model, describe, analyze and 
visualize.

The majority of analysis methods con-
cerning the large deflections of elastica 
introduce  the displacements indirectly. 
Additionally most of these methods re-
quire knowledge of the expression de-
scribing the distribution of the bending 
moment along the entire length of elas-
tica. 

The application of normal and tangen-
tial displacements of the element during 
the analysis allows to determine the de-
flected shape of elastica without knowl-
edge of the bending moment distribu-
tion. However, the equations obtained 
are rather complicated. Some theoretical 
methods allow to formulate solutions in 
the form of elliptic integrals. 

Therefore the problem can be solved nu-
merically. The shooting method applied 
to solve the boundary problem is an ef-
fective, fast and fairly stable tool to gen-
erate the shapes of elastica subjected to 
bending. The shapes obtained are logical 
and consistent with those  by elementary 
calculations.

It should be noted that the assumption 
of inextensible elastica is somewhat lim-
ited. However, this is often introduced 
during analysis of large deflections. Ir-
respective of the above limitation, we 
can solve a number of problems related 
to the  bending of elastica assuming its 
inextensibility. Sometimes it is the only 
possible solution. An interesting question 
is also the repeatable geometry, loads and 
folding conditions across the material. 
The problem is really complicated and  
probability mathematics can be intro- Received 07.03.2016          Reviewed 05.07.2016


