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Design of Lightweight Composite Disks 
Reinforced with Continuous Fibres

Jacek Wiśniewski 

Abstract
The paper presents the results of an investigation in the area of numerical analysis and 
designing of lightweight composite disks reinforced with continuous fibres. The problem 
of the optimal layout of reinforcing fibres in the matrix domain in order to obtain the mini-
mal weight of the disk with assumed mechanical properties is considered. The case of the 
creation of linear and curvilinear fibres is discussed. An adequate model of the composite 
structure is presented as well as the optimisation task for this type of design problem, and 
the method of solving this task is formulated in the paper. The design problem is illustrated 
by a simple numerical example.

Key words: composite disk, continuous fibres, layout of reinforcement, lightweight struc-
ture, optimal design.

the properties of the composite structure 
and can be treated as the design variables 
during the design process.

The weight minimisation of composite 
structures is the subject of many scien-
tific papers, for example [3 - 8], and this 
problem constitutes a very important 
area of research. Many researches have 
attempted to make better use of material 
either by minimising the structure thick-
ness or by finding the discrete value of 
the fibre orientation angle, thus reducing 
the weight of the composite. However, 
the intensive development of composite 
materials technology makes it necessary 
to find new solutions that can often lead 
to both cheaper and better results. They 
can constitute an alternative approach to 
the existing solutions, or can supplement 
them.

	 Object of analysis and basic 
assumptions

The object of analysis is a thin, two-di-
mensional and linearly elastic composite 
disk, shown in Figure  1. The disk has 

n	 Introduction
Composite materials have a long history 
of usage. Man was aware, even from the 
earliest times, of the concept that combin-
ing materials could be advantageous. For 
example, straw was used by the ancient 
Egyptians to strengthen mud bricks. But 
it is only in the last half century that com-
posite materials have gained popularity 
in high-performance products that need 
to be lightweight and yet strong enough. 
These materials are mainly meant for the 
manufacturing of aerospace components, 
boat hulls, bicycle frames, racing car 
bodies, sport equipments or products for 
the protection of human health and life.

The optimal design of composite struc-
tures is a very complex process  [1, 2]. 
To fulfil the assumed properties of these 
structures, a designer can modify some 
of their structural parameters, such as 
the properties of matrix and reinforc-
ing fibres, the percentage participation 
of fibres in the composite material, fi-
bre shape and orientation as well as the 
stacking sequence, number and thick-
ness. Each of these parameters influences 
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Figure 1. Composite disk subjected to service load.
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uniform thickness  t and is supported on 
the boundary portion  SU and loaded by 
a body force f within a domain A and by 
an external traction  T acting along the 
boundary portion ST.

The disk is made of a fibrous composite 
which consists of a ply of continuous fi-
bres suspended in a matrix. The fibres are 
the principal reinforcing or load-carrying 
agent. They are strong and stiff. The func-
tion of the light matrix is to support and 
protect the fibres as well as to provide a 
means of distributing the load among and 
transmitting it between the fibres.

The basic assumptions for the compo-
nents of the composite material are the 
following:
n	 The matrix is homogeneous, isotropic 

and linearly elastic. The density of the 
matrix is  γm, and the material prop-
erties are characterised by Young’s 
modulus Em and the Poisson ratio νm.

n	 The fibres are homogeneous, isotropic 
and linearly elastic and their density 
is γw. They all have the same strength, 
and Young’s modulus and the Poisson 
ratio of the fibres are denoted by Ew 
and νw, respectively.

n	 The reinforcing fibres have uniform 
circular cross-sections and are regu-
larly spaced and perfectly aligned in 
the matrix.

n	 The bonds between the matrix and fi-
bres are perfect.

Moreover let us assume that:
n	 The composite is treated at a macro-

scopic level as a plane, homogeneous, 
orthotropic and linearly elastic mate-
rial.

n	 The composite is initially stress-free.

Under the load applied, the composite 
disk undergoes some deformations de-
scribed by the displacement field u, strain 
field ε and stress field σ. The behaviour 
of this structure can be described by an 
equilibrium equation  [9] given in the 
form:

0=+ fσdiv                   (1)

as well as the kinematical relation [9] be-
tween strain and displacement fields:

uB ⋅=ε                       (2)

where, B is a linear differential operator 
relating the displacement field with the 
strain field. A linear stress-strain relation 
is assumed in the form of generalised 
Hooke’s law [9]:

εσ ⋅= D                     (3)

where, D denotes the extensional stiff-
ness matrix for the model of the compos-
ite material. Besides this, the structure is 
subjected to the boundary conditions [9] 
expressed as follows:
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where, n denotes the normal unit vector 
on the external boundary S of the disk.

	 Architecture of fibrous 
composite

According to the assumptions, a compos-
ite is made of two constituents: fibres and 
a matrix, whose quantities in the mate-
rial are specified by volume ρ and mass m 
fractions as follows:
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Notations V and M are the volume and 
mass, whereas subscripts w, m and  c 
correspond to the fibres, matrix and 
composite material, respectively. In the 
problem discussed in this paper, volume 
fractions will be used because they enter 
the stiffness coefficients for a lamina. 
Furthermore mass fractions are usually 
measured directly during processing or 
an experimental study of the material 
fabricated.

The theoretical density of a composite 
material  γc can be calculated using the 
following equation:

	 ( ) mmwwc γγγrγ +−= 	 (6)

Where, γw and γm are the densities of the 
fibres and the matrix used for fabrication 
of the composite material. It must be add-

ed, that this result is approximate because 
it ignores possible material porosity.

Since the fibres have uniform circular 
cross-sections, there exists the ultimate 
fibre volume fraction ρwu, which is less 
than unity and depends on the fibre ar-
rangement. The ultimate fibre arrays 
for typical idealised regular distribu-
tions [10] are presented in Figure 2 and 
Figure 3, and the corresponding ultimate 
fibre volume fractions are:
n	 Square array
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The reinforcing fibres can be linearly or 
curvilinearly spaced in the matrix do-
main, and their layout at any point of the 
composite is defined by the fibre orienta-
tion angle θ.

In the case of a family of straight fibres 
(see Figure 4), the fibre orientation an-
gle is constant in the composite domain, 
and it is directly defined by the angle be-
tween the middle line of the so-called di-

Figure 2. Ultimate fibre array for square 
fibre distribution.

Figure 3. Ultimate fibre array for hexago-
nal fibre distribution.

on

on

Figure 4. Composite reinforced with one family of linear fibres.
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der to obtain the minimal weight of the 
composite disk with the requirements 
imposed in the range of its mechanical 
properties. This problem can be formu-
lated as an optimisation task, expressed 
in a general form:

Weight minimisation of the composite 
material:

( ) mmwwcF γγγr +−=.min     (13)

subjected to global or local behavioural 
constraints:

  

0),(),,,( 0 ≤−












+∫ ∫ GdSdA

A S
T

T

uTbue ΨΓ σ

(14)
0),(),,,( 0 ≤−













+∫ ∫ GdSdA

A S
T

T

uTbue ΨΓ σ

Where, Γ and Ψ are continuous functions 
dependent on the displacement field  u, 
strain field  ε and stress field  σ induced 
in the disk subjected to a service load T 
for configuration of the composite ma-
terial described by design variables  b. 
They can be, for instance, a measure of 
the mean stiffness or compliance of the 
disk, the strength of the disk etc. Here 
notation G0 is the assumed value of these 
measures.

The geometrical parameters defining the 
fibre arrangement in the composite, i.e. 
the fibre orientation angle  θ and fibre 
volume fraction  ρw will only be treated 
as design variables in this optimisation 
task. It must be added that such a defined 
problem allows to release the designer 
from the constraints associated with the 
selection of constituent materials for the 
composite. The designer can make use 
of existing conventional materials with 
properties tailored to suit particular de-
sign requirements.

n	 Optimisation strategy
To solve the design problem defined by 
Equations 13 -14, an optimisation strat-
egy based on the evolutionary algorithm 
with the penalty function approach is 
proposed. A flow chart of this strategy 
is shown in Figure  6, and its detailed 
description is presented, for instance, 
in [14].

The evolutionary algorithm starts from 
a random selection of the initial popula-
tion of N  chromosomes. Each chromo-
some is a coded vector of design param-
eters and describes one possible solution 
to the given problem. This population 
is processed by three main operators of 
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where, y,t and x,t denote the derivatives 
of functions y(t) and x(t) with respect to 
parameter t, respectively. For the case of 
curvilinear fibres, the layout of all other 
fibres in the family is obtained by shift-
ing the directional fibre in the n-direction 
normal to its middle line:
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where, k is the number of current fibres in 
the family and q is the distance between 
two adjacent fibres.

n	 Problem formulation
The problem discussed in this paper 
concerns the design of an optimal fibre 
arrangement in the matrix domain in or-

rectional fibre and the x-axis of the global 
coordinate system x-y. All other fibres in 
the family are obtained by translation of 
the directional fibre in the d-direction, ac-
cording to the rule:

 yi = tg θ . xi + kq             (9)

where, k is the number of current fibres in 
the family and q is the distance between 
two adjacent fibres measured in the  y-
direction.

Besides this, a family of straight fibres, as 
well as a family of curvilinear fibres [11, 
12], can be created (see Figure  5). In 
this case, the shape of the directional fi-
bre is defined using Bezier’s representa-
tion [13] given in the form:
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where, xj and yj are independent coordi-
nates of three nodes of the Bezier poly-
gon. The fibre orientation angle θ varies 
throughout the composite domain and is 
now defined by:

Figure 6. Flow chart of evolutionary algorithm.
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dA dS

Figure 5. Composite reinforced with one family of curvilinear fibres.
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the evolutionary algorithm: deterministic 
selection, heuristic crossover and non-
uniform mutation. By applying these 
three operators, a new population of so-
lutions is created and the single cycle 
of the evolutionary algorithm, which is 
known as a generation, comes to an end. 
Each successive generation contains bet-
ter “partial solutions” than in the previ-
ous generations, and converges towards 
the global optimum. This procedure is 
continued until the best solution is found 
according to the  assumed stop criterion 
or the specified number of generations is 
attained.

As is shown in Figure  6, all chromo-
somes in the current population are eval-
uated using the objective functional in the 
analysis stage of the structural behaviour 
The set of Equations 1 - 4 is solved with 
the aid of the finite element method  [9] 
with two-dimensional eight-node quadri-
lateral elements applied for discretisation 
of the disk domain.

To analyse the structural behaviour, an 
adequate model of the fibrous composite 
must be built. The purpose of the mod-
elling process is to determine the ex-
tensional stiffness matrix  D, appearing 
in  (3), for the composite and to express 
its components in terms of mechanical 
and geometrical properties of the matrix 
and reinforcing fibres.

The extensional stiffness matrix D for the 
assumed model of the composite in the 
global coordinate system x-y can be ex-
pressed by [10]:

T1 −− ⋅⋅= TCTD               (15)

Here matrix C denotes the stiffness ma-
trix for the composite with respect to ma-
terial axes 1 - 2, coinciding with the fibre 
direction and the direction perpendicular 
to the fibre, having the form:
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where, matrix T denotes the transforma-
tion matrix from the global coordinate 
system x-y to the material axes 1 - 2, ex-
pressed as Equation 17:

Matrix  T is considered as the matrix 
function of fibre orientation angle θ. For 

the  case of straight fibres, its compo-
nents are explicitly defined by the angle 
between the fibre line and  x-axis of the 
global coordinate system x-y. When the 
fibre line is described by  (10), sinθ and 
cosθ follow from  (11), expressed in the 
form:
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The components of the matrix C depend 
on so-called engineering constants for 
orthotropic lamina, where E1 and E2 are 
the apparent Young’s modules in the fibre 
direction and the direction perpendicular 
to the fibre, respectively, while ν12 and 
ν21 are the major and minor Poisson’s ra-
tios, and G12 denotes the in-plane shear 
modulus.

Approximation of the mechanical prop-
erties for different types of fibrous com-
posites is widely discussed in the litera-
ture [10, 15, 16]. For the composite con-
sidered in this paper, Halpin and Tsai’s 
model, presented in  [10], is proposed. 

Using this model, the engineering con-
stants have the Equation 19 form.

Here parameter ξ is a measure of the fibre 
reinforcement of the composite depend-
ent on the cross-section of fibres and 
packing geometry [10].

n	 Numerical Example
To illustrate the problem of the optimal 
design and analysis of lightweight com-
posite disks subjected to a service load, 
a simple example (see Figure 7) is pre-
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Table 1. Properties of aluminium and components of the composite.

Material E, GPa ν γ, 103 kg/m3

Aluminium   72.0 0.33 2.80
Epoxy matrix
Graphite fibres

    3.5
230.0

0.38
0.25

1.15
1.74

Equations 17 and 19.

Figure 7. Culvert subjected to load and 
boundary conditions.
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Table  2, and the optimal layouts of fi-
bres in the half-symmetry model of the 
culvert are depicted in Figure 8, respec-
tively. The optimal layout in the case of 
the family of straight fibres decreases the 
weight of the disk by  5%, while in the 
case of the family of curvilinear fibres, 
this weight decreases by 7%, when com-
pared to the initial solution.

n	 Conclusions
The optimal design of composite struc-
tures is a very complex process. To fulfil 
the minimal weight of composite disks 
subjected to a service load, a designer 
can modify some mechanical and geo-
metrical properties of components of 
the  composite material. However, as 
shown in this paper, optimal solutions 
can be obtained when reinforcing fibres 
are optimally distributed and oriented in 
the matrix domain. Such an optimisa-
tion problem solution allows to release 
a designer from the constraints associ-
ated with the selection of constituent 
materials of a composite. The designer 
can make use of existing conventional 
materials with properties tailored to suit 
particular design requirements.

The paper is purely theoretical and pre-
sents the results of an initial investigation 
in the area of the weight minimisation of 
disks made of composite lamina. The so-
lution proposed can be treated as a start-
ing point for further analysis of various 
types of composite structures, such as 
composite disks reinforced with discon-
tinuous fibres or in laminates with differ-
ent layouts.

After practical verification of the results 
of the numerical analysis, the solution 

To find an optimal solution, the compos-
ite structure must be subjected to the op-
timisation process, as follows:
n	 the weight minimisation of the com-

posite

( ) .min→+− mmww γγγr     (21)

n	 subjected to global behavioural con-
straints:

040.4 ≤−⋅∫
TS

TdSTu T dST - 4.40 ≤ 0       (22)

The problem was discussed for two 
classes of layout of the unidirectional fi-
bres in the matrix domain, i.e. a  family 
of linear and curvilinear reinforcement. 
Thus the fibre shape parameters defining 
thist particular representation and fibre 
volume fraction were treated as design 
variables. In view of the geometry of 
the structure, the variability intervals for 
these parameters were as follows:
n	 family of linear fibres

0 < rw ≤ 0.785 and  0 ≤ θ ≤ 180°   (23)

n	 family of curvilinear fibres

0 < rw ≤ 0.785 and
(24)

	 x0 = 0		 0 ≤ y0 ≤ 0.6
	 0 < x1 < 0.52	 0 ≤ y1 ≤ 0.6
	 y2 = 0.52	 0 ≤ y2 ≤ 0.6

The results obtained after the optimisa-
tion process for these cases are given in 

sented in this Section. A thin, two-dimen-
sional culvert with such a load can exist 
anywhere in a technical space.

Let us assume that the culvert is made of 
aluminium (see Table 1), which is one of 
the more lightweight construction mate-
rials. On the basis of numerical analysis 
of this structure, it has been established 
that its mean stiffness corresponding 
to the  work performed by the external 
traction on the actual displacements 
is 4.40 in J, i.e.:

]J[40.4=⋅= ∫
TS

TdSSTIFF Tu T dST = 4.40 J     (20)

Next aluminium material is replaced with 
a composite material made of an epoxy 
matrix reinforced with graphite fibres (see 
Table 1) in order to minimise the weight 
of the culvert with imposed requirements 
in the range of its mean stiffness. A fam-
ily of straight fibres parallel to the x-axis 
for idealised square distribution in the 
cross section of a ply is considered in the 
initial solution (see Figure 8). The result 
of the analysis of this structure is given 
in Table 2. One can easy observe that the 
weight of a culvert made of the compos-
ite material is considerably reduced and 
its mean stiffness is the same. However, 
this initial solution with a classical layout 
of reinforcing fibres in the matrix domain 
can be not optimal.

Figure 8. Layout of reinforcing fibres in the culvert.

Table 2. Results of optimisation process and reference solutions

Fibre shape 
parameters

Fibre volume 
fraction

Density,  
103 kg/m3

Stiffness, 
J

Aluminium – – 2.80

4.40

Initial solution θ = 0° ρw = 0.74 1.59
Optimal solution 1 θ = 24.21° ρw = 0.62 1.52

Optimal solution 2
P0 (0; 0.16)

P1 (0.22; 0.46)
P2 (0.52; 0.31)

ρw = 0.58 1.49
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