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Abstract
The inverse problem of textile material design (IPTMD) aims to determine textile materi-
als with optimum thermal conductivities for the thickness designed in terms of the thermal 
comfort requirements of the wearer. In this paper, an IPTMD is presented on the basis of the 
physical nature of steady heat and moisture transfer in a human body-clothing-environment 
system. A globally convergent algorithm, the modified particle collision algorithm (MPCA), 
is proposed and its validity is verified. The MPCA is applied to solve the IPTMD for sin-
gle-layer textile materials at low temperature. Numerical simulation results of the IPTMD 
proved the suitability of the IPTMD and effectiveness of the MPCA in solving complex 
global optimisation problems. The encouraging results indicate that the modelling method 
above and optimisation algorithm can be used for further applications.

Key words: inverse problem, textile design, hybrid stochastic algorithm, optimisation meth-
od.

effective in solving global optimisation 
problems [17, 18].

In this paper, an inverse problem of tex-
tile material design (IPTMD) is present-
ed and a modified PCA (MPCA) is pro-
posed to solve the IPTMD. The validity 
of the MPCA is verified and numerical 
results of the IPTMD are provided and 
discussed.

n	 Theory
Consider a human body-textile-environ-
ment system where the human body is 
the source of heat and moisture flux. It 
is assumed that the system is in a steady 
state during the process of heat and mass 
transfer, the textile material is uniform 
in its geometrical structure and material 
properties and the structure keeps stable 
despite variations in environmental con-
ditions. The pore structure in the textile 
material is composed of parallel cylindri-
cal pipes aligned in the direction of heat 
and mass transfer. Based upon these as-
sumptions, the heat and moisture transfer 
in the objective system can be modelled 
by the coupled ordinary differential equa-
tions described below, associated with 
initial and boundary conditions [14, 19].
According to mass conservation, the mass 
flux of water vapour mv in kg·m-2·s-1  
in parallel cylindrical pore textile materi-
als can be expressed by Equation 1a:
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where, x in m is the distance from the in-
ner surface of the textile material, k1 a pa-
rameter related to the molecular weight 
of water and the gas constant, T in K the 
temperature, pv in Pa the water vapour 

al [9] and Dantas et al [10] proposed in-
verse problems to estimate thermophysi-
cal and boundary condition parameters in 
Luikov’s theory by means of temperature 
and moisture measurements. Xu et al 
[11 - 14] proposed inverse problems of 
textile design to determine, in terms of 
thermal comfort requirements, the thick-
ness or thermal conductivity of textile 
materials from knowledge of the bound-
ary conditions of the temperature, RH 
and moisture flux. The inverse problems 
were solved by the regularisation method 
together with numerical optimisation 
methods. However, the optimisation 
methods adopted so far in Xu’s studies 
have been local optimisation methods, 
i.e. the Hooke-Jeeves’s algorithm (HJA), 
the golden-section search algorithm and 
Cai’s direct search algorithm, which 
were found to be sensitive to initial val-
ues and might diverge with improperly 
selected ones [11]. Furthermore due to 
the complexity inherent in the physics 
of heat and moisture transfer in fibrous 
assemblies, the uniqueness of numerical 
solutions of inverse problems has not yet 
been manifested theoretically. Therefore 
it is essential to introduce globally con-
vergent optimisation methods when deal-
ing with such inverse problems.

Among global optimisation methods, 
stochastic methods have been successful-
ly applied to solve complex optimisation 
problems [15, 16]. Simulated annealing 
and modified versions are conventional 
methods of this kind, yielding global 
optima, yet are sensitive to the initial 
temperature and annealing schedule. To 
overcome such drawbacks, hybrid sto-
chastic algorithms inspired by the phys-
ics of nuclear particle collision reactions 
(PCA) were put forward and proved to be 

n	 Introduction
Under low temperature, clothing acts as 
a resistance to heat and moisture trans-
fer between the human body and the 
environment, by which means it retards 
heat dissipation and protects the human 
body against cold. However, it also ob-
structs the transport of redundant heat or 
perspiration generated, for instance, by 
physical activity. The accumulation may 
result in a remarkable change in tempera-
ture and/or relative humidity (RH) in the 
microclimate and affect the sensation of 
comfort accordingly. Generally with re-
spect to cold-weather clothing, the pro-
tective performance and physiological 
comfort are two main concerns of both 
the wearer and designer [1 - 3].

Coupled heat and moisture transfer 
through clothing is a comprehensive pro-
cess involving a variety of mechanisms, 
which has been widely investigated 
experimentally and theoretically since 
1940’s [4 - 8]. The physics of heat flow 
by conduction, radiation and convec-
tion, water vapour flow by diffusion, and 
phase change regarding evaporation and 
condensation has been studied under di-
verse circumstances. Mathematical mod-
els have been proposed to determine the 
field of temperature and moisture as well 
as the flux of heat and mass in the objec-
tive system. The problems considered in 
these researches are direct problems of 
heat and mass transfer.

By contrast, inverse problems in the 
field of heat and mass transfer derive 
unknown parameters, such as physical/
structural parameters of an object, and/
or boundary condition parameters, from 
measurable data. For instance, Huang et 
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pressure, and ε in %, r in m and T are 
the porosity, average pore radius, and ef-
fective tortuosity of the textile material, 
respectively.

Concerning the condensation of water 
vapour on the surface of fibres, we have:

( ) ( ) 0
d

d v =+ xÃ
x

xm Γ(x) = 0         (1b)

where, Γ in kg·m-2·s-1 is the condensation 
rate of water vapour and is given by the 
modified Hertz-Knudsen equation [20]:
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where, k2 is an experiential parameter, 
and psat in Pa is the saturation water va-
pour pressure at T, expressed by the An-
toine equation [21]
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According to heat energy conservation, 
we have:
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where, κ in W·m-1·K-1 is the thermal 
conductivity of the textile material, l in 
kJ·kg-1 is the latent heat of condensation 
of water vapour.

The boundary conditions for Equation 1 
are

( ) 00 TT = , ( ) LTLT = , 
( ) v,0v 0 mm = , ( ) 0v,v 0 pp =         

(2)

where, L in m is the thickness of the tex-
tile material, T0 and TL are the tempera-
tures on the inner and outer surfaces of 
the textile material, respectively, mv,0 
the water vapour flux generated by the 
human body, and pv,0 the water vapour 
pressure near the surface of the human 
body.

The combination of Equations 1 and 2 
comprises a direct problem of heat and 
moisture transfer in textiles, from which 
the fields of temperature and water va-
pour pressure, as well as the heat flux and 
mass flux of water vapour can be derived 
when all the related parameters are pre-
defined.

By contrast, the IPTMD aims to deter-
mine a textile material with optimum 
thermal conductivity for a thickness de-
signed to meet the thermal comfort re-
quirements of the wearer. As is generally 

recognised, the ideal perception of ther-
mal comfort is achieved when the ther-
mal comfort indexes for in between the 
human skin’s surface and the inner sur-
face of the clothing meet the conditions 
of T = 32 ± 1 °C and RH = 50 ± 10%.

Given the environmental condition  
(T, RH) ∈ [Tmin, Tmax] × [RHmin, Rmax] 
(where Tmin and Tmax, RHmin and RHmax 
are, respectively, the minimum and maxi-
mum temperatures and RHs in a certain 
region during a defined period of time), 
the IPTMD can be described by Equa-
tion 1 together with boundary conditions 
[14]:

( ) 00 TT = , ( ) LTLT = , ( ) v,0v 0 mm = , 

( ) LpLp v,v =                     (3)

where, pv,L is the environmental water 
vapour pressure.

Due to the ill-posed character of the prob-
lem, a regularised function is constructed 
by formulae:
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where, NT and NRH are, respectively, the 
numbers of discretised subintervals of 
[Tmin,Tmax] and [RHmin,RHmax] used in 
the numerical calculation, RH0* the em-
pirical value of RH in a comfortable state, 
RH0

cal the RH on the inner surface of the 
textile material numerically obtained by 
solving Equations 1 and 3 with the finite 
difference method described in [14], and 
δ·κ2 the penalty term introduced to sup-
press the instability.

By solving the IPTMD, we find κ*, which 
satisfies:

J(k*) = min J(k), 0 < k < 1       (5)

n	 Numerical algorithm
Herein an MPCA is proposed to solve the 
IPTMD given by Equation 5. The MPCA 
describes a stochastic process where so-
lution states evolve out of random events 
and along a so-called Markov chain. Tak-
ing a case of constrained minimisation as 
an example:

( )xfmin

where,
( ){ }nixxxRxx iiiii ,,2,1, and SupLim,InfLim, =≤≤∈=x  

( ){ }nixxxRxx iiiii ,,2,1, and SupLim,InfLim, =≤≤∈=x
is a configuration of variables, f a func-
tion, and f: RR n → .

Let S(xi) (i=1, 2, …) represent the so-
lution states decided by configurations 

( )1 2, , ,i i i nix x x= x  and W a solution 
space made up of all the possible solu-
tion states of the problem. By assuming 
that function f(x) satisfies the transi-
tive relation: f(xa) < f(xb), f(xb) < f(xc)  
→f (xa) < f(xc) and each state S(xi+1) is 
solely dependent on the previous one 
S(xi), the optimum solution of the problem 
x* is an extreme state of W with the prop-
erty of f(x*) < f(x) for any other xi in W. 
With the MPCA, solution state Si evolves 
from the initial state S0=S(x0) to the opti-
mum one S*=S(x*) along a specific path, 
namely, a Markov chain S(x1), S(x2), …. ,  
S(x*) in W where f(x0) > f(x1) > f(x2) > 
…. > f(x*).

The flow chart of the MPCA is given in 
Figure 1 (see page 42).

In comparison to the original PCA [17, 
18], the MPCA proposed here has a sim-
pler yet effective schedule.

To verify the validity of the MPCA, it is 
applied to global optimisation test func-
tions mentioned in reference [17-19]. 
Correct results were obtained for all the 
cases. Here the results for the classical 
Rosenbrok’s function are presented for 
illustration. The Rosenbrok’s function is 
formulated as:

( ) ( ) ( )222 1001, xyxyxz -+-=

The global optimum of the function, 
( ) ( )x,yzyx min, ** =  is located at (1, 1) 
with a function value of 0 and lies in a 
long, narrow, parabolic shaped valley.

The MPCA is used to solve the problem 
of ( )yxz ,min . One hundred independent 
runs are implemented with random initial 
values in the range of [-2, 2]. The total 
number of function evaluations in global 
and local searches, the optimum solution 
(x*, y*) and optimum function value f* 

are recorded. The statistical results are 
shown in Table 1.

Table 1. Optimisation results of Rosenbrok’s function yielded by the MPCA.

Search step
No. of function evaluation

(x*, y*) f*
Average Max Min

(1e-3, 1e-3)   11044     23574 841 (1.000 ± 5e-4, 1.000 ± 1e-3) 5e-7 ± 3e-7
(1e-1, 1e-1) 222142 1081390 831 (1.000 ± 5e-4, 1.000 ± 1e-3) 5e-7 ± 3e-7

16.6536
273.15

lG(x)
RH RH

RH
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vals, respectively. Simulations are car-
ried out using the following parameters:  
k1 = 2×10-3, k2 = 1×10-5, r = 10-5 m,  
ε = 90%, τ = 1.2, λ = 2260×103 J·kg-1,  
δ=10-4, search step 10-4, and trunca-
tion error 10-6, and under the following 
boundary conditions: 
mv(0) = 3.3084×10-5 kg·m-2·s-1, 
T(0) = 305.15 K & 
RH0* = 50%. 
Thermal conductivity data used for deter-
mination of textile materials are listed in 
Table 3 [24].

Textile material determination is per-
formed in two steps:
Step 1: For a defined thickness, the opti-
mum thermal conductivity is yielded by 
the IPTMD and MPCA. 
Step 2: The textile material with the ther-
mal conductivity closest to the optimum 
value is evaluated from Table 1 and is 
suggested as the optimum to be used in 
the case under consideration.

Repeat steps 1 and 2 until the optimum 
thermal conductivities and textile materi-
als are determined for a series of thick-
nesses.

Results for Case 1: Under the environ-
mental condition of T1 ∈ [-15 °C, 0 °C], 
RH1 ∈ [40%, 70%], the optimum thermal 
conductivity for a textile material with 
a thickness of 8.10 mm is found to be 
0.02395. In Table 1, down has a thermal 
conductivity of 0.024, which is the value 
closest to 0.02395, hence down is sug-
gested as the optimum textile material in 
this case. Similarly for a textile material 
with a thickness of 9.90 mm, PET is the 
material suggested. For case 1, the opti-
mum thermal conductivities and textile 
materials are determined for a thickness 
range of [8.10, 9.90], the results of which 
are listed in Table 4. 

Results for Case 2: Similar to case 
1, under environmental condition  
T2 ∈ [0 °C, 15°C] & RH2 ∈ [40%, 70%], 
the optimum thermal conductivities and 
textile materials are determined for a 
thickness range of [5.85, 7.00]. In this 
case, down and PET are suggested to be 
used for textile materials with a thickness 
of 5.85 mm and 7.00 mm, the results of 
which are listed in Table 5.

In both cases, the MPCA suggested con-
vergence to the global optimum in all 
simulations and the IPTMD yields rea-
sonable results for textile materials with 
a series of thicknesses under two envi-

to the global optimum of the Rosenbrok 
function are given in reference [22].

The above shows that the MPCA is ap-
plicable as an effective tool to solve 
complex optimum problems such as the 
IPTMD for single-layer textile materials 
at low temperature.

n	 Simulations and results
In this section numerical simulations are 
carried out for two cases of environmen-
tal conditions under low temperature:
Case 1: 

(T1,RH1) ∈ [-15 °C,0°C]×[40%,70%]
Case 2: 

(T2,RH2) ∈ [0 °C,15 °C]×[40%,70%]

In simulations, the above intervals of 
Ti and RHj (i,j = 1, 2) and the thickness 
of the textile material L are discretised 
into 10, 10 and 20 isotropic subinter-

By means of the MPCA, all the simula-
tions converge to the global optimum ir-
respective of the initial values and search 
steps.

For comparison, the HJA is used to solve 
the same problem. Simulations are car-
ried out with the following parameters: 
truncation error 10-6, acceleration rate 
1.2 and deceleration rate 0.8. The ini-
tial values are chosen in the domain of  
[-2, 2]. The simulation stops when the 
search step is lower than the truncation 
error. The numerical results are listed in 
Table 2.

The results show that the convergence of 
the HJA is sensitive to the initial values 
as well as search steps. It is difficult for 
the HJA to yield a correct result for the 
global optimum. More examples which 
illustrate difficulties of the convergence 

Figure 1. Flow chart of the MPCA.

Table 2. Optimisation results of Rosenbrok’s function yielded by the HJA.

(x0, y0) (2, 2) (-2, -2) (2, -2) (-2, 2)

(x*, y*)
step=1e-3 (6.680, 43.876) (1.000, 1.000) (6.800, 41.405) (1.044, 1.091)
step=1e-1 (1.841, 3.392) (1.000, 1.000) (2.887, 8.338) (1.000, 1.000)
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ronmental conditions. This suggests that 
the IPTMD is reasonably defined and 
the MPCA is an effective tool in solving 
complex optimisation problems such as 
the IPTMD.

n	 Conclusions
An IPTMD for single-layer textile mate-
rials at low temperature is presented on 
the basis of the physical nature of steady 
heat and moisture transfer in a human 
body-clothing-environment system.

A hybrid stochastic algorithm MPCA is 
proposed to solve the IPTMD. The valid-
ity and global convergence of the algo-
rithm are verified by application to vari-
ous global optimisation test functions.

Numerical simulation results of the IPT-
MD proved the suitability of the IPTMD 
and effectiveness of the MPCA in solving 
complex global optimisation problems. 

The modelling method and optimisation 
algorithm used in this paper can be fur-
ther extended to the design of multi-layer 
textile materials. They offer a theoretical 
basis and opportunity to design clothing 
which meets comfort requirements prior 
to making actual samples.
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Table 3. Thermal conductivity for some tex-
tile materials.

Textile material κ, W·m-1·K-1

Down 0.024
PVC 0.042
PAN 0.051
Wool 0.052 ~ 0.055

Viscose 0.055 ~ 0.071
Cotton 0.071 ~ 0.073
PET 0.084

Table 4. Simulation results of the IPTMD 
by using the MPCA for Case 1, where  
T1 ∈ [-15 °C, 0 °C], RH1 ∈ [40%, 70%].

Thickness, 
mm

Optimum κ, 
W·m-1·K-1

Textile material 
suggested

8.10 0.02395 Down
9.00 0.04232 PVC
9.25 0.05039 PAN
9.35 0.05413 Wool
9.50 0.06065 Viscose
9.70 0.07101 Cotton
9.90 0.08395 PET

Table 5. Simulation results of the IPTMD 
by using the MPCA for Case 2, where  
T2 ∈ [0 °C, 15 °C], RH2 ∈ [40%, 70%].

Thickness, 
mm

Optimum κ, 
W·m-1·K-1

Textile material 
suggested

5.85 0.02442 Down
6.40 0.04225 PVC
6.55 0.04986 PAN
6.60 0.05279 wool
6.75 0.06292 viscose
6.85 0.07098 cotton
7.00 0.085 PET
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