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Abstract
The fluctuation process of warp movement is analysed by the nonlinear vibration method. 
Based on Newton’s Law, a differential equation of warp axial/cross direction movement is 
established. This paper separates the time variable from the space variable by the vari-
able-separating method, then it gives a numerical solution of the motion equation by the 
fourth-order Runge-Kutta method. Also this paper discusses  influencing factors and vari-
able trends for warp vibration. Finally a method for the control of vibration is introduced.
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(3)

The warp strain  generated by transverse 
elongation is shown in Equation 4:

                

(4)

Yarn is a type of viscoelastic material. 
Different materials of yarn have different 
constitutive relations. For the purpose of 
this computation, a simple Kelvin model 
is proposed to analyse the warp’s vibra-
tion equation [9]. The stress-strain rela-
tionship of the warp is:

         (5)

Where: 
E is the warp’s stiffness coefficient, 
E’ the young’s modulus of elasticity,
η the viscosity damping coefficient.

	 Mathematic model of warp 
vibration

Warp can be divided into four areas 
based on its position during the weaving 
process, as shown in Figure 2.

Area I: The segment between the beam 
and back rest, in which warp motion 
belongs to an axial movement with two 
ends fixed, with transverse vibration tak-
ing place.

Area II: The segment is between the 
back rest and drop wires. The warp mo-
tion is the same as in Area I.

Area III: The segment between the drop 
wires and heald frame, in which the shed 

1.	 Flexural rigidity, torsional stiffness 
and shear stiffness are not taken into 
account.

2.	 The Cross-section which is vertical to 
the warp axes before deformation will 
still be vertical to the warp axes after 
deformation.

3.	 The deformation constitutive relation 
of the warp to obey Hooke’s law and 
the force at each point is equal.

In Figure 1, the mass of the warp frag-
ment is dm = ρAdy. F, G, F’, and G’ rep-
resent two non-deformed endpoints and 
two deformed endpoints, respectively. 

The displacement of point F is:

jtyvityuF ),(),( +=∆          (1)

The displacement of point G is:

     (2)

From Figure 1, we can obtain:

jdyGGFF ⋅+∆=∆+∆ ''  dy . j

where ''GF∆ is the position vector, whose 
point G’ is relative to point F’.

The small unit length deformed is given 
by Equation 3:

n	 Introduction
The spindle speed of a shuttle-less loom 
is much higher than that of a shuttle 
loom. The warp seesaws with high fre-
quency and is subject to impact loads 
(such as drawing tension, friction, air-
resistance, inertia force and so on) during 
loom running. Theoretical analysis and 
experimental results show that the warp 
has tiny vibration when it is moving in 
the axis,  affecting warp tension and dis-
tortion [1 - 3]. The vibration will cause  
friction between warps,  tear the starch 
film, reduce the warp’s breaking strength 
and even break the warp. Although many 
researchers have investigated nonlinear 
vibration, few  have studied warp vibra-
tion [4, 5]. The tiny vibration is nonlin-
ear, and its amplitude and frequency were 
difficult to measure and calculate. This 
paper takes warp vibration in the weav-
ing process as the research subject. The 
assumption is that the cross sections of 
yarns are round [6]. Based on Newton’s 
Law and the nonlinear method, the ef-
fects of yarn parameters on transverse 
vibration were discussed.

n	 Basic warp model
Warp vibration may be divided into in-
plane vibration and out-plane vibration 
[7]. Warp will undergo out-plane vibra-
tion when the excitation frequency is 
changed discontinuously or the response 
amplitude is greater than the critical val-
ue. Research shows that the amplitude 
and frequency of out-plane vibration are 
the subsets of in-plane vibration [8].

To simplify research and reflect the es-
sence of the problem, only in-plane vi-
bration is  discussed. The basic assump-
tions are as follows:

Figure 1. Model of a short fragment of 
warp.
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is formed by alternating heald frames. 
Warp motion belongs to an axial move-
ment with one end fixed. The warps not 
only withstand the axial force but also  
the periodic radial force.

Area IV: The segment is between the 
heald frame and fell of cloth. The warp 
motion is the same as in Area III.

The warp is fully drawn during the shed-
ding process. The warp motion in the 
shed is actually treated as a two part su-
perposition: firstly the warp moves up 
and down by a shedding operation in a 
steady motion; secondly the warp makes 
a tiny vibration based on its steady mo-
tion. The tiny vibration  can also be di-
vided into two categories: the longitudi-
nal vibration along the warp axis and the 
transverse vibration perpendicular there-
to. This paper mainly analyses the tiny 
vibration. This vibration analysis may 
refer to  string vibration. A common way 

In general, the trigonometric function is 
expanded by a second-order Taylor’s al-

gorithm, where θθ ≈sin , 2

2
11cos θθ −≈ . 

Substitute them into Equation 7 and 
eliminate higher order terms, the vibra-
tion equations which only contain an un-
known displacement are as presented in 
Equation 8.

The warp boundary conditions are:
0),(,0),0( == tLutu          (9)

where L is the warp’s dynamic length 
from the beam to back rest.

taneous value of tension is expressed as 

[10]:

  (6)

Let the damping coefficient of the warp’s 
unit volume be c. Assuming the linear 
damping force is proportional to the ab-
solute velocity V of any point in the warp, 
the damping force of a small warp frag-
ment is  and .

According to Newton’s law of motion 
the dynamic equations of warp can be 
formulated as the set of Equations 7.

Figure 2. Schematic diagram of warp movement.

Figure 3. Force schematic of small warp  
fragments.

warp

beam

back rest
drop wire

heald frame

fell of cloth

cloth roll

I II III IV

is to transform it into two ends fixed with 
boundary conditions and to solve these 
partial differential equations, which con-
verts the displacement form with one end 
fixed into an inner tension change with 
two ends fixed. Thus through the change 
from displacement to tension, the string 
vibration analysis with one end moved 
may translate into a string inner tension 
change with two ends fixed. Therefore 
the warp vibration analysis in the shed-
ding area translates into a moving string 
with both ends fixed, being similar to the 
warp vibration in Area I, and II. Here the 
warp in Area I is analysed, for example.

In Figure 3, the warp’s initial tension is 
T0. The warp’s length will change while 
it is moving. Hence the inner tension of 
the warp will also change. The instan-

(7)

(8)

(10)

(12)

  where

Equations 7, 8, 10 and 12.
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item will disappear [11]. Equation 14 is 
rewritten as Equation 15:
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In practice, the tension fluctuation ratio 
a << 1. Hence the basic problem of warp 
vibration will be attributed to the gen-
eralized Mathieu equation of nonlinear 
vibration in Equation 15, which can be 
solved by the perturbation method. Cy-
clical fluctuation parameters appear in 
the stiffness item. Let m = c2,
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Substitute them into Equation 15:

0)2cos2( 3
131

*
11 =++++ qCqtqq εδµ 

(16)
where e < 1.

Unlike forced vibration, the linear damp-
ing force in parametrically excited vibra-
tion cannot suppress the amplitude, only 
decrease the steady region. Here the uni-
formly valid solution of Equation 16 is 
solved by the L-P method. The solution 
of the Mathieu equation may be steady or 
unsteady [12], but the point in the bound-
ary curves δ(ε) is stable. Assuming the 
solution is

( ) ( ) ( ) +++= tqtqtqq 2
2

10 εε

+++= 2
2

10 δεεδδδ 	
the result is given directly by the pertur-
bation method [13].

When d0 = 0, the boundary equation is:

       10 =δ                     (17)

When d0 = 1, the boundary equation is:

       222

8
11 εµεδ −−±=            (18)

When d0 = 4, the boundary equation is:       
242 4

16
1

6
14 µεεδ −±+=          (19)

In Figure 4, the area above the curve is 
an unsteady area, where the transverse 
vibration amplitude of the warp tends to 
rise, whereas the area below the curve is 
a steady area, where the transverse vibra-
tion amplitude of the warp tends to fall; 
and the area on the curve is the transi-
tion zone, where the transverse vibration 
amplitude of the warp is nearly constant. 
Figure 4 shows that linear damping can 
reduce the unsteady area. In practice, only 
the biggest unsteady area is considered. 
Here, with δ = 1, the dynamical prop-
erty of the warp is forecast as Figure 4.

At a particular point δ=1, when damping 
does not affect the warp, with even the 
tension fluctuation of the warp being tiny, 
the parameter resonance of the warp will 
also happen; when damping affects the 
warp, if e (e = 2ap2/w2) is less than that 
of the corresponding value on the tran-
sition curve δ = 1, the warp’s dynamic 
characteristic will be in a steady area, 
with its amplitude of transverse vibration 
tending to fall.

When the damping coefficient m > 0, the 
unsteady area reduces relative to m = 0. 
The larger the damping, the less the en-
ergy loss. Hence the kinetic energy that is 
transferred to the warp decreases, and the 
warp tension fluctuation decreases.

 In an unsteady area, because  damping 
exists, the excitation parameter e requires 
an increase. Damping may reduce the 
dynamic unsteady area, although it can-
not restrain the response of the paramet-
ric resonance from growing infinitely. In 
general, the effect of damping restraining 
amplitude is ignored with an increase in 
the incentive amplitude, with non-linear 
factors of the warp  playing a more and 
more important role.

 It can be observed from the definition of 
δ and ε that while the material of the warp 
remains unchanged, the influence factors 
of the stable region are the warp veloc-
ity, ratio of tension fluctuation, angular 
velocity of tension fluctuation and the 
length of the warp vibration region.

	 Nonlinear perturbation analysis 
of transverse vibration

In general, the natural frequency of lon-
gitudinal vibration is much larger than 
that of transverse vibration. Therefore 
the transverse vibration of warp should 
be  especially studied. Here substitute

2
,2

1
yu=ε  into Equation 8. Tension has a

cyclical change during loom operation, 
and T0 is replaced by T0+T1cosΩt. Accu-
rate to cubic nonlinearity term as Equa-
tion 10.

Introducing the following dimensionless 
variables:
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Substituting Equation 11 into Equa-
tion 10 and omitting *, the dimensionless 
equation of transverse vibration is pre-
sented in Equation 12. 

Considering the boundary conditions 
(Equation 9), the solutions of differential 
Equation 12 have the following form
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Here, the first mode is emphasised in 
the analysis. The differential equation 
of dimensionless transverse vibration is 
obtained by substituting u(y,t) into Equa-
tion 12 obtaining Equation 14:
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Because the warp’s initial tension is 
larger, the nonlinear effect of the second 

Figure 4. System 
stability chart with 
various values of 
damping coeffi-
cient m.
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and Figure 6.d is the amplified frequency 
figure of the three curves. These figures 
show that as the damping coefficient c2 
increases, the system amplitude obvious-
ly decreases, with the dissipation ability 
strengthened and, system frequency un-
changed.

Effect of warp velocity on dynamic 
response
Let Ev = 0, Ee = 0.1, w = 0.1p, g = 0.1,  
c2 = 0.01,  L = 1, a = 0.05, the initial con-
dition is q0 = 0.005, 00 =q , Figure 7.a  
g = 0.1, Figure 7.b g = 0.4, Figure 7.c  
g = 0.8, and Figure 7.d is the amplified 
frequency figure of the three curves. 
These figures show that as the speed g  
increases, the system frequency decreas-
es and the system amplitude remains un-
changed.

Effect of tension fluctuation on 
dynamic response
Let Ev = 0, Ee = 0.1, w = 0.1p, g = 0.1,  
c2 = 0.01,  L = 1, the initial condition is 
q0 = 0.005, 00 =q , Figure 8.a a = 0.05, 
Figure 8.b a = 0.1, Figure 8.c a = 0.4, 
and Figure 8.d is the amplified frequency 
figure of the three curves. These figures 
show that as the amplitude of tension 
fluctuation a increases the system vibra-

tion frequency increases and the system 
of amplitude remains unchanged.

Effect of elastic coefficient on dynamic 
response
Let a = 0.05, Ev = 0, w = 0.1p, g = 0.1,  
c2 = 0.01,  L = 1, the initial condition is 
q0 = 0.005, 00 =q , Figure 9.a Ee = 0.05, 
Figure 9.b Ee = 1, Figure 9.c Ee = 10, 
and Figure 9.d is the amplified frequency 
figure of the three curves. These figures 
show that as the elastic coefficient Ee 
increases, the system vibration remains 
unchanged. 

Influence of tension fluctuation speed 
on dynamic response
Let Ev = 0, Ee = 0.1,  a = 0.05, g = 0.1,  
c2 = 0.01,  L = 1, the initial condi-
tion is q0 = 0.005, 00 =q , Figure 10.a  
w = 0.1p, Figure 10.b w = 0.4p, Fig-
ure 10.c w = 0.8p, and Figure 10.d is the 
amplified frequency figure of the three 
curves. These figures show that as the 
fluctuation speed increases, the system 
vibration frequency  and system of am-
plitude basically remain unchanged.

Effect of warp length on dynamic 
response
Let Ev = 0, Ee = 0.1, w = 0.1p, a = 0.05, 
g = 0.1, c2 = 0.01, the initial condition 

Figure 5. Effect of viscosity parameter on 
dynamic response.

Figure 6. Effect of damping coefficient on 
dynamic response.

Figure 7. Effect of warp velocity on dy-
namic response.

Figure 8. Effect of tension fluctuation on 
dynamic response.

Figure 9. Effect of elastic coefficient on dy-
namic response.

Figure 10. Effect of tension fluctuation 
speed on dynamic response.

	 Influence of various 
parameters on vibration  
with numerical analysis

The numerical results of nonlinear Equa-
tion 14 are solved by the fourth-order 
Runge-Kutta method, and then the ef-
fects of yarn parameters on the trans-
verse vibration of the warp are discussed. 
These parameters include yarn material 
parameters, steady-state tension and dis-
turbance tension.

Effect of the viscosity parameter on 
the dynamic response
Let c2 = 0, Ee = 0.1, w = 0.1p, g = 0.1,  
L = 1, a = 0.05, the initial condition is  
q0 = 0.005, 00 =q , Figure 5.a Ev = 0, 
Figure 5.b Ev = 1, Figure 5.c Ev = 10, 
and Figure 5.d is the amplified frequency 
figure of the three curves. These figures 
show that as the viscosity Ev increases, 
the system amplitude decreases, with the 
dissipation ability being strengthened 
and the system frequency unchanged.

Effect of damping coefficient on 
dynamic response
Let Ev = 0, Ee = 0.1, w = 0.1p, g = 0.1,  
L = 1, a = 0.05, the initial condition is  
q0 = 0.005, 00 =q , Figure 6.a c2 = 0, Fig-
ure 6.b c2 = 0.04, Figure 6.c c2 = 0.08,  
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is q0 = 0.005, 00 =q , Figure 11.a L = 1, 
Figure 11.b L = 2, Figure 11.c L = 3, and 
Figure 11.d is the amplified frequency 
figure of the three curves. These figures 
show that as the warp length L increases, 
the system vibration amplitude remains 
unchanged and the frequency decreases.

	 Effect of yarn irregularity  
on dynamic response

Yarn irregularity corresponds to the vari-
able sectional area A on the vibration 
mathematical model. Equation 12 indi-
cates that the variation of the sectional 
area may affect Ev, ω, Ee, γ & c2. Be-
cause yarn irregularity is continuous and 
impossible to avoid, the warp vibration 
gets very complex, even appearing cha-
otic. If A increases, Ev, ω, Ee, γ & c2 
will increase; on the other hand, if A de-
creases, Ev, ω, Ee, γ & c2 will decrease. 
Table 1 shows the trends of amplitude 
and frequency during yarn unevenness. It 
can be observed that the amplitude and 

frequency decrease in thick places and 
increase in thin places.

n	 Experiment
A stable test of a yarn’s axial movement 
with both ends fixed is not easily per-
formed because the fracture strength of 
single yarn is too low. Hence we designed 
an experimental apparatus to test  single 
yarn vibration with one end fixed and the 
other  moved. The moved end  caused 
a change in the yarn’s internal tension,  
similar to Area I. A schematic diagram of 
the experimental apparatus is shown in 
Figure 12. The apparatus fundamentally 
consisted of a baltimore groove, a piezo-
electric patch (PZT), an optical micro-
scope (DC500, Leica),  signal generator 
and computer.

The baltimore groove is made of silicone 
material (width: 10 mm, depth: 30 mm, 
length: 1000 mm/500 mm). The viscosity 
of silicone can fix both ends of the single 
yarn to form a beam shape structure. PZT 
is fixed on the side of the groove, and the 
signal generator drives the PZT to vibrate 
in a horizontal direction, hence the yarn 
also vibrates. The observation direction 
of DC500 is vertical  Through the com-
puter  connected to the optical micro-
scope, one can observe the amplitude var-
iation of the single yarn. This apparatus 
can only measure the yarn amplitude. For 
the shed, loom speed, and  length,  three 
experiments were designed. 

Experiment 1: both ends of the yarn are 
fixed, PZT is fixed on one side of the groove 

and only  the voltage is changed (1 V,  
5 V, 12 V), where yarn tension = 80 cN,  
PZT frequency = 10 Hz, groove length 
= 1000 mm, and the yarn is T65/JC35 
58.3 tex.

Experiment 2: only the PZT frequency 
is changed (10, 50, 200 Hz), where yarn 
tension = 80 cN, PZT voltage = 1V, 
groove length = 1000 mm, and the yarn 
is T65/JC35 58.3 tex.

Experiment 3: only the groove length 
is changed (1000 mm, 500 mm), where 
yarn tension = 80 cN, PZT voltage = 1 V,  
PZT frequency = 10 Hz, and the yarn is 
T65/JC35 58.3 tex.

Table 2 shows that the experimental re-
sults (sampling time interval - 100 ms, 
the number of sampling - 1024). The am-
plitude changes in the experiments are in 
reasonable accordance with the numeri-
cal computing.

n	 Warp vibration control
It is required to avoid the unsteady area. 
In the steady area, the warp should  be 
made to produce low-frequency vibra-
tion to reduce the friction times between  
warps. According to Equation 14, when 
approx. g = 1 the warp speed is approxi-
mately equal to the warp wave velocity, 
with an unsteady area  appearing. This is 
the same conclusion as Swope [13]. But, 
in fact, the warp wave velocity is greater 
than warp speed. Thus the amplitude will 
not grow indefinitely and the warp will 
only vibrate in a steady area. In accord-
ance with Equation 15, there are three 
ways to reduce the frequency of the warp 
vibration:
1)	 Increase the warp’s linear velocity.
2)	 Increase the warp length of shed.
3)	Reduce the tension fluctuation ampli-

tude.

Table 1. Trend of amplitude and frequency for a cross sectional area; NOTE: ↑ - increase; 
↓ - decrease; ○ - invariant.

Item
Cross sectional area ↑ Cross sectional area↓

amplitude frequency amplitude frequency
Ev ↓ ○ ↑ ○
ω ○ ○ ○ ○
Ee ○ ○ ○ ○
γ ○ ↓ ○ ↑

c2 ↓ ○ ↑ ○

Table 2. Experiment data.

No. of Experiment Item Maximum amplitude, mm Average amplitude, mm

1 voltage, V
  1 2.30 1.61
  5 3.31 2.73
12 4.94 3.23

2 frequency, Hz
  10 2.30 1.61
  50 2.32 1.58
200 2.32 1.60

3 length, mm
1000 2.30 1.58
  500 2.31 1.61

Figure 11. Effect of warp length on dynam-
ic response.

Figure 12. Experimental apparatus of 
warp vibration.

Computer Microscope

DC500, Lecia

Yarn
Signal generator Vibration orientation

PZT
Baltimore groove
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For the adjustment of the first two items,  
friction times of warp in a steady mo-
tion need to be considered, which will 
be subject to yarn quality. Therefore the 
first two items should not be considered 
as  ways of adjusting the frequency. Be-
cause these factors can influence warp 
vibration frequency, the first two items 
should be considered in determining 
loom parameters. For the third item, it 
should be considered in the loom’s let-off 
system design, and it is worth to popular-
ize in particular application. The tension 
fluctuation might be influenced by the 
following factors when the loom rotates 
in a cycle: take-up speed, let-off speed, 
shed motion curve and beat-up curve. 
The beat-up and shed are the major fac-
tors in tension variation  per period. Thus 
the two ways which adjust warp tension 
rapidly and reduce the warp tension peak 
can decrease the vibration of the warp. 
The methods that reduce the warp’s ten-
sion fluctuation may be used in the fol-
lowing two ways:
1)	Adding a let-off lever, which can re-

duce the tension variation peak within 
one revolution through back rest ac-
tive moments.

2)	Adopting an electronic let-off system 
with high speed response. The let-up 
speed is adjusted two times in one rev-
olution, with high speed in the opening 
shed and low speed in the closing shed. 
Thus the tension will remain stable.

n	 Conclusions
Based on the dynamic model of the warp 
moving process, through nonlinear per-
turbation analysis and numerical analy-
sis, we get the following conclusions:
1)	 In the warp  transverse vibration might 

take place,  belonging to nonlinear pa-
rameter vibration. 

2)	The vibration will diffuse in the un-
steady area, but an unsteady area can-
not appear in the actual condition.

3)	 In certain warp material, the vibration 
frequency in the steady area is con-
nected to the  absolute warp speed, 
warp length and tension fluctuation 
amplitude. 

4)	Quick adjustment of warp tension is  
necessary to reduce warp vibration. 
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Foresight Conference: ‘Modern Technologies for the Textile Industry 
– A Chance for Poland’, organised under the motto 

 „We will weave the future of textiles”

18 June, 2013 Warsaw, Ministry of Economy, Under the Dome (“Sala pod Kopułą”) - Conference Hall

The aim of the Foresight Conference is a presentation of a strategic research programme and assumptions of an 
innovative policy for the development of a modern textile industry together with a broad promotion of companies and 
scientific institutions whose activity is connected with this branch of economy. The organizers of the conference will 
also promote the Lodz region, as the cradle of the Polish textile industry which is highly promising for the intense future 
development of this sector of economy.

      For more information please contact: 

n	 Project Coordinator:				            n	 Project Secretary:
	 Danuta Ciechańska, Ph.D. Eng.				    Maria Wiśniewska-Wrona. M.Sc.
	 e -mail: dciechan@ibwch.lodz.pl;				    e-mail:biurofs3@ibwch.lodz.pl,
	 Phone : +48 42 637 67 44 				    Phone: +48 42 63 80 348.  


