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Abstract
In this paper, the stretching-stress relaxation properties of polyester/viscose and regener-
ated bamboo fiber/cotton blended yarns are studied. Based on the Boltzmann superposition 
principle, the stretching-stress relaxation process of the yarns is analysed using the stan-
dard linear solid model. Theoretical equations of the stretching-stress relaxation process 
are deduced. Stretching-stress relaxation experiments were made under two different condi-
tions, that is, the yarns were stretched to a definite strain at different rates of straining and 
to different strains at the same strain-rate. Regressive equations of stress relaxation and 
correlation coefficients of the yarns are calculated. Theoretical expectations display very 
good agreement with the experimental observations, indicating that the standard linear 
solid model can be used to describe the stress relaxation properties of yarns under lower 
strain conditions. It can also be found from the experimental and theoretical results that 
the higher  the strain-rate and larger the maximum strain, the lower  the relaxation time.
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spun yarns and compared it with air-jet 
spun yarn and ring spun yarn using a 
modified generalised Maxwell model 
developed by Asma El Oudiani [15]. The 
model is composed of a two paralleled 
Voigt element and Maxwell element in 
series with a Hook spring. H. Liu et al. 
[22] employed a generalised Maxwell 
model to describe the viscoelastic char-
acteristic function of individual fibres 
subject to a given step function of ten-
sile strain. The relaxation modulus of a 
single spun yarn is modeled in terms of 
the relaxation modulus of constituent fi-
bres of the yarn. Demidov [24] proposed 
a version of the mathematical model of 
the nonlinear-hereditary viscoelasticity 
of polymer materials which is used to 
predict strain processes of various com-
plexity, from simple relaxation and sim-
ple creep processes to complicated strain 
recovery processes and reverse relaxa-
tion processes with alternating loading 
and unloading. The models can be used 
not only to describe the macroscopic me-
chanical performance but also to analyse 
the mechanical properties quantitatively 
[25, 26]. Now they are widely used in the 
study of the mechanical properties of tex-
tile materials.

Relaxation is the reduction of stress with 
time under a given extension. According 
to the definition, a step response strain is 
needed to be served to the specimen to 
measure the relaxation. However, it al-
ways takes a period of time for a tensile 
tester to stretch a yarn to a given exten-
sion. Therefore it is necessary to con-
sider the effect of the stretching process 
on the relaxation. Hence a standard lin-
ear solid model has been used to analyse 
the relaxation behaviour of yarns in the 

of viscoelastic textile yarn is an impor-
tant physical property as it determines 
the residual stress of the yarn and has 
a major influence on its processing and 
end-use performance, such as residual 
torque or the snarl of yarns [3] as well as 
the wrinkle recovery of fabrics [4, 5] and 
garments. It is also one of the causes of 
set marks in weaving [6 - 8]. Therefore 
a study of the stress relaxation behaviour 
of textile yarns is of practical interest.

 As one of the typical exhibitions of vis-
coelasticity, the relaxation behaviors of 
textile fibres [9 - 16], yarns [17 - 22] and 
fabrics [23] have been widely investi-
gated. Among the studies of the relaxa-
tion behavior of textile materials, most 
of the research reports were based on a 
mechanical model consisting of a series 
of elements, such as Hook springs,

Newton dashpots, unidirectional friction 
elements, and inertional elements. Vang-
heluwe’s model [17] consists of a Max-
well’s model (a Hooke spring connected 
in series with a Newton dashpot) in par-
allel with a nonlinear spring which takes 
into account the nonlinearity caused in 
the relaxation and inverse relaxation of 
yarns after dynamic loading. Based on 
the principle of Boltgation superposi-
tion, L. Chen et al. [18] investigated the 
stress relaxation of bamboo pulp yarns 
with different structures using a four-
element model which includes two par-
alleled Maxwell models. To analyse the 
stress relaxation behaviour of knitted 
fabrics, M. Matsuo et al. [23] adopted 
a four-element model with two springs 
and two dashpots. The theoretical pre-
diction was in good agreement with the 
experimental results. Zou [21] analysed 
the stress relaxation property of Vortex 

The mechanical properties of yarns 
are time dependent because of the 
viscoelastic nature of fibre ma-

terials. The strain produced by a given 
applied stress, or the stress resulting 
from a given strain in the yarns, depend 
on how long the stress or the strain has 
been present and on the earlier mechani-
cal history of the yarns. When a yarn 
is held stretched, the stress in it gradu-
ally decays, which may drop to a limit-
ing value or may disappear completely. 
This phenomenon is known as relaxation 
[1, 2]. The stress relaxation behaviour 
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Table 1. Mechanical property of  blended yarns.

Specimen
Tenacity, cN·tex-1 Breaking elongation, % Initial modulus, cN·tex-1 Work of rupture, mJ
Average CV% Average CV% Average CV% Average CV%

R.B/C   9.29 3.3 10.96 7.1 134.67 2.3 121.14 9.9
P/V 18.85 13 10.02 9.8 159.19 1.9   73.33 20

stretching-relaxation process in the pre-
sent work. 

n	 Theoretical analysis
When a fibre or a yarn is stretched at a 
constant rate of straining, an internal 
stress is set up gradually. When it is 
stretched to a given strain and held at the 
same strain, the stress decreases as time 
passes. This is illustrated in Figure 1, 
from which it appears that after a rapid 
initial decay of stress, the rate of decay 
drops to zero. 

In the stretching-relaxation process, the 
change of strain and stress within the 
yarn with time is shown in Figure 2. At 
first, the yarn is stretched under a con-
stant rate of straining k, its strain then 
increases linearly with time t, that is ε1(t) 
= kt, and the stress σ1 within the yarn 
increases gradually. When the yarn is 

( ) ( )Tttebttat /)(
02

01)( −−−+−=σ  (3)

Then the relaxation stress of the yarn can 
be derived by superimposing σ1(t) and 
σ2(t) as
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n	 Experimental conditions
The test samples were 36.4 tex regener-
ated bamboo/cotton (R.B/C) 30/70 and 
14.5 tex polyester/viscose (P/V) 50/50 
blended yarns. The mechanical proper-
ties of the regenerated bamboo/cotton 
and polyester/viscose blended yarns are 
listed in Table 1. The stretching-relax-
ation tests were carried out on a 5582 
Instron Tester under different rates of 
straining and five different maximum 
strains. The five strain-rates were 5, 10, 
20, 30 and 40%/min, and the five maxi-
mum strains were 0.5, 1, 2, 3 and 4%. 
According to ISO 2062, the pre-tension 
was 0.5 cN/tex, under which the yarn 
became straight but with no elongation. 
The gauge length was 500 mm. All the 
samples were preconditioned and all ex-
periments were tested at constant ambi-
ent conditions (60 ± 5% RH, 20 ± 1 °C). 
Five specimens were tested in each case.

n	 Results and discussion
Stretching-relaxation tests were made 
under different strain-rates and different 
maximum strains using an 5582 Instron 
Tester. Stretching-relaxation curves for 
the regenerated bamboo/cotton and po-
lyester/viscose blended yarns under 
different strain-rates are illustrated in 

stretched to a given strain ε0 at time t0, 
it is constrained to remain at ε0. Then the 
relaxation begins and the stress within 
the yarn decreases as time passes. Ac-
cording to the Boltzmann superposition 
principle, the stretching-relaxation pro-
cess is equivalent to the superposition of 
two strains in which one is increasing at 
a constant rate of straining k, ε1(t) = kt, 
and the other is applied to the yarn for 
time t0 and is stretched at the same rate 
of straining k in the reverse direction,  
ε2(t) = -k (t - t0) (t ≥ t0). Similarly there 
is also stress σ2(t) corresponding to the 
strain ε2(t), that is, ε(t) = ε1(t) = kt when  
t < t0, and ε(t) = ε1(t)+ε2(t) = kt – k(t-t0) = 
= kt0 = ε0 when t ≥ t0. The corresponding 
internal stress within the yarn produced 
by ε1(t) and ε2(t) is σ1(t) and σ2(t). The 
stress of the yarn is σ(t) = σ1(t) when  
t < t0, and σ(t) is the superposition of σ1(t) 
and σ2(t) when t ≥ t0, that is σ(t) = σ1(t) + 
 + σ2(t). 

For convenience of calculation, the 
stretching-relaxation process is analysed 
using the standard linear solid model, 
which consists of a Hook’s spring in 
series with a Voight model in which a 
Hook’s spring and ideal viscous dashpot 
are in parallel, as shown in Figure 3. If 
E1 and E2 are the elastic modulus of the 
springs, η is the coefficient of viscosity 
of the dashpot, and k is the rate of strain-
ing, the stress of the yarn in the stretching 
process can be obtained as Equation 1.

         
(1)

   

In Equation 1, σ1(t) is the stress pro-
duced by ε1(t), which can be simplified 
as Equation 2.
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where, T is the relaxation time of the 
yarn, and a & b are constants.
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Similarly the stress

 

σ2(t) produced by 
ε2(t) can be expressed as

Figure 2. Superposition of stress and strain 
for the stretching-relaxation process.
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Figure 4. And  stretching-relaxation cu-
rves for the blended yarns under different 
maximum strains are illustrated in Fi-
gure 5. According to Equation 4 above,  
regression equations of the stretching-
-relaxation curves were calculated based 
on the experimental results. Regression 
equations for the regenerated bamboo/
cotton and polyester/viscose blended 
yarns under different strain-rates are li-
sted in Tables 2 and 3 (see page 54). And  
regression equations for the regenerated 
bamboo/cotton and polyester/viscose 
blended yarns under different maximum 
strains are listed in Tables 4 and 5 (see 
page  54). The calculated stretching-re-
laxation curves of the regenerated bam-
boo/cotton and polyester/viscose blended 
yarns are depicted in Figures 4 - 5. It can 
be concluded that all the theoretical cal-
culations and  experimental observations 
demonstrate good agreement.

Effect of the rate of straining on the 
stretching-relaxation
Figure 4 are stretching-relaxation curves 
of regenerated bamboo/cotton and po-
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Figure 4. Relaxation curves for R.B/C (a) and P/V (b) blended yarns under different strain-rates: 5%/min, 10%/min, 20%/min, 
 30%/min, 40%/min. 

lyester/viscose blended yarns which are 
stretched to a certain strain under diffe-
rent strain-rates. All the curves exhibit 
obvious consistency. At the beginning of 
relaxation, the stress decreases rapidly as 
the relaxation time increases. Then the 
variation in stress decreases as time pas-
ses, and the relaxation stress almost does 
not change after a period of time.

It can also be noted from Figure 4 that 
the higher  the strain-rate, the larger  the 
stress within the yarn. And the reduction 
in relaxation stress is also  quicker for a 
higher rate of straining. The relaxation 
curves for different strain-rates approach 
and almost overlap as time elapses. From 
the regression equations in Tables 2 and 3,  
it can be found that the relaxation time T 
is smaller for a higher rate of straining, 
that is, the relaxation phenomenon can be 
more clearly observed under a higher rate 
of straining. 

Effect of maximum strain on stretch-
ing-relaxation
Figures 5 are stretching-relaxation 
curves of the regenerated bamboo/cot-

ton and polyester/viscose blended yarns  
stretched to different strains at the same 
rate. It can be found that the theoreti-
cal curves match the experimental data 
very well at low strain, indicating that 
the mechanical behaviour of the yarns is 
linear viscoelastic at a low strain condi-
tion. However, the deviation between the 
calculation and observation under high 
strain increases as the time progresses, 
which is because  plastic deformation oc-
curring more or less at a high strain con-
dition will reduce the relaxation stress. It 
can also be observed from the equations 
in Tables 4 and 5 that the relaxation time 
T decreases with an increase in the maxi-
mum strain ε0. It can be concluded that 
the relaxation of the yarn is more obvious 
under a larger maximum strain.

n	 Conclusions
Based on the Boltzmann superposition 
principle, the stretching-stress relaxa-
tion process of yarns is analysed using 
the standard linear solid model. Theo-
retical equations of the stretching-stress 
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Table 4. Fitted stretching-relaxation equations for R.B/C blended yarns under different 
maximum strains.

Maximum 
strain, % Fitted equation of extension Fitted relaxation equation Correlation 

coefficient

0.5
t < 1.5 t > 1.5
s = 0.4367t + 0.6007 × (1 - e-t/3.87) s = 0.4367 × 1.5 - 0.6007 × (e-t/3.87 - e-(t - 1.5)/3.87) 0.9972

1.0
t < 3 t < 3
s = 0.3627t + 0.6176 × (1 - e-t/3.77) s = 0.3627 × 3 - 0.6176 × (e-t/3.77 - e-(t - 3)/3.77) 0.9954

2.0
t < 6 t < 6
s = 0.3009t + 0.7907 × (1 - e-t/3.69) s = 0.3009 × 6 - 0.7907 × (e-t/3.69 - e-(t - 6)/3.69) 0.9920

3.0
t < 9 t < 9
s = 0.2701t + 0.9548 × (1 - e-t/3.16) s = 0.2701 × 9 - 0.9548 × (e-t/3.16 - e-(t - 9)/3.16) 0.9915

4.0
t < 12 t < 12
s = 0.2492t + 1.3625 × (1 - e-t/4.57) s = 0.2492 × 12 - 1.3625 × (e-t/4.57 - e-(t - 12)/4.57) 0.9872

Table 5. Fitted stretching-relaxation equations for P/V blended yarns under different 
maximum strains.

Maximum 
strain, % Fitted equation of extension Fitted relaxation equation Correlation 

coefficient

0.5
t < 1.5 t > 1.5
s = 0.3677t + 0.2781 × (1 - e-t/4.71) s = 0.3677 × 1.5 - 0.6007 × (e-t/4.71 - e-(t - 1.5)/4.71) 0.9972

1.0
t < 3 t < 3
s = 0.3489t + 0.5022 × (1 - e-t/4.04) s = 0.3489 × 3 - 0.5022 × (e-t/4.04 - e-(t - 3)/4.04) 0.9954

2.0
t < 6 t < 6
s = 0.2745t + 0.7491 × (1 - e-t/3.81) s = 0.2745 × 6 - 0.7491 × (e-t/3.81 - e-(t - 6)/3.81) 0.9920

3.0
t < 9 t < 9
s = 0.2081t + 0.6313 × (1 - e-t/3.15) s = 0.2081 × 9 - 0.6313 × (e-t/3.15 - e-(t - 9)/3.15) 0.9915

4.0
t < 12 t < 12
s = 0.1961t + 0.8166 × (1 - e-t/4.60) s = 0.1961 × 12 - 0.8166 × (e-t/4.60 - e-(t - 12)/4.60) 0.9872

agreement, indicating that the standard 
linear solid model can be used to describe 
the stress relaxation properties of  yarns 
under lower strain conditions. The larger  
the strain-rate or the maximum strain, the 
smaller  the stress relaxation time for the 
stretching-relaxation process. The relax-
ation phenomenon is more obvious under 
a higher strain rate of straining and larger 
maximum strain.
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Prof. Józef Masajtis, Ph.D. Dsc. Eng. Lodz University of Technology,  
Prof. Izabella Krucińska, Ph.D. Dsc. Eng. Lodz University of Technology), 
Prof. Marek Snycerski, Ph.D. Dsc. Eng. Lodz University of Technology,  
Zbigniew Mikołajczyk, Ph.D D.Sc. Eng. Lodz University of Technology, 
Renata Kotynia, Ph.D D.Sc. Eng. Lodz University of Technology, Danuta 
Ciechańska, Ph.D. Eng. Institute of Biopolymers and Chemical Fibres,  
Jadwiga Sójka-Ledakowicz, Ph.D. Eng. prof. Textile Research Institute, 
Małgorzata Zimniewska, Ph.D. Eng. prof. Institute of Natural Fibres 
& Medicinal Plants, Elżbieta Witczak, Ph.D. Eng. Institute of Security 
Technologies MORATEX, Joanna Grzybowska-Pietras, Ph.D. Eng.  
Association of Geotextile Producers, Zdzisław Czaplicki, Ph.D. Eng. Polish 
Textile Association, Jarosław Janicki, Ph.D. Dsc. Eng. prof. University of 
Bielsko-Biała, prof. Bogdan Piasecki, Ph.D. Dsc. Eng. The Entrepreneurship 
and Economic Development Research Institute, Kazimierz Kubiak Polish 
Textile Association, Witold Sujka, Ph.D. Eng. Tricomed S.A., Jarosław 
Litwiński Stradom S.A., Jarosław Aleksander Plastica Ltd., Mirosław 
Barburski International Łódź Fair.

The InnovaTex is a new international event of the Lodz International Fair 
Ltd. directed to producers and purchasers of specialised textiles. The aim 
of the fair is to strengthen the co-operation and integration of science and 
business.

The scope of the Fair:
n	 Fibres and yarns
n	 Woven and knitted fabrics
n	 Nonwovens
n	 Achievements of research centres, specialist units and universities
n	 Technologies, machines, equipment and production accessories
n	 Scientific, technical and economical specialistic publications.

An exposition of specialised textile products will also be presented.

Information about the Conference see also page 67.
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