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Abstract
Texture identification and matching a sample fabric within a known collection of produced 
fabrics is a time-consuming and difficult process as a human activity. In this study, a com-
putational method for textile texture identification is introduced using an image analysis 
technique. For this purpose, images of  fabrics were captured by a digital flat scanner. 
Texture features were extracted using the Edge frequency and Gray Level Co-occurrence 
Matrix (GLCM) methods. In this way, a library of texture features was collected. To match 
a new texture with  library samples, the closest texture feature based on Euclidian distance 
was identified as the fabric texture. Experimental results for 33 different textures showed 
the successful identification of textures with both methods. However, the edge frequency 
method is more feasible and acceptable due to its computational simplicity and lower 
processing time. In addition, it was shown that the edge frequency method is extremely 
insensitive to the colour and scanning direction of the fabric. 
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n	 Introduction
We recognise a texture when we see it, 
but it is very difficult to define [1]. Tex-
ture refers to properties that represent 
the surface or structure of an object; it is 
widely used and perhaps intuitively obvi-
ous, but it has no precise definition due to 
its wide variability [2].

Several authors have attempted to quali-
tatively  define texture. Pickett states 
that “texture is used to describe two di-
mensional arrays of variations. The ele-
ments and rules of spacing or arrange-
ment may be arbitrarily manipulated, 
provided a characteristic repetitiveness 
remains.” Hawkins  provided a more de-
tailed description of texture: “The notion 
of texture appears to depend upon three 
ingredients: (1) some local ‚order’ is 
repeated over a region which is large in 
comparison to the order’s size; (2) the or-
der consists in a nonrandom arrangement 
of elementary parts, and (3) the parts are 
roughly uniform entities of approximate-
ly the same dimensions everywhere with-
in the textured region.” Although these 
descriptions of texture seem perceptually 
reasonable, they do not immediately lead 
to simple quantitative textural measures 
in the sense that the description of an 
edge discontinuity leads to a quantitative 
description of the edge in terms of its lo-
cation, slope angle, and height [3].

A texture image has a number of per-
ceived qualities which play an important 
role in describing texture [1]. Several 
methods have been introduced to identify 
and quantify different features of texture 
images, some of the most important of 
which  are as follows [1, 2]:

to decrease  human intervention in ana-
lysing fabric weave types, especially in 
the context of ancient textiles [8]. In an-
other study a clustering algorithm based 
on Back-propagation Neural Network 
Fuzzy Clustering analysis was intro-
duced to recognise the type of textile 
texture [9], in which it was shown that 
this method can identify accurately plain 
weave, twill weave and satin weave tex-
tures in woven fabric, single and double 
textures in knitted fabric, and non-woven 
texture in non-woven fabric. Texture 
analysis has also been proposed to evalu-
ate  mechanical abrasion based on the 
change in  texture image properties [10]. 
It was shown that mechanical wear may 
result in a decrease in texture definition 
and a tendency toward randomness. 

The aim of the present study was to intro-
duce a suitable computational method for 
identifying textile fabrics from a library 
of samples according to their texture fea-
tures.

n	 Texture Metrics
Edge frequency method
In the edge frequency method, a gradi-
ent function is defined as the distance 
between the pixels  used for identifying  
texture features [2]. The distance-de-
pendent texture description function g(d) 
is computed for any subimage f defined 
in the neighborhood N for a variable dis-
tance d:
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1.	 Statistical Methods, such as Co-oc-
currence Matrices, Autocorrelation 
Features and edge frequency

2.	 Geometrical Methods, such as Voro-
noi Tessellation Features and Struc-
tural Methods

3.	 Model Based Methods, such as Ran-
dom Field Models and Fractals

4.	 Signal Processing Methods, such as 
Spatial Domain Filters, Fourier do-
main filtering and  Gabor and Wavelet 
models.

Textile samples usually consist of several 
types of textures, thuse texture analysis 
techniques can be applied for different 
purposes in the textile industry [4 - 10]. 
The central point of some of these stud-
ies will be mentioned here. Different 
texture analysis methods have been used 
for automatic defect inspection of textile 
fabrics [4, 5]. In this way, the fabrics’ de-
fects are recognised using the changes in 
texture features. The texture characteris-
tics of woven fabrics have already been 
implemented to recognise fabric struc-
tures automatically [6]. The method in-
volved stabilising a Wiener filter adapted 
to the woven fabric texture. It was shown 
that the density of some woven fabrics, 
including plain, twill and satin can be 
calculated and the structure clearly  iden-
tified [6]. Texture analysis has also been 
applied to recognise the fabric nature and 
type of main weaving texture [7]. To this 
end, the co-occurrence matrix was ap-
plied to extract the texture features and 
then the learning vector quantization 
network was adopted as a classifier. In 
another study, texture analysis was used 
for the identification of  weave types in a 
fabric [8]. It was shown that this method 
can be used as a non-destructive method 
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Function g(d) is similar to the negative 
autocorrelation function; its minimum 
corresponds to the maximum of the 
autocorrelation function, and its maxi-
mum corresponds to the autocorrelation 
minimum. In this equation, micro-edges 
can be detected using small-distance op-
erators, and macro-edges need large-size 
edge detectors. 

Gray level co-occurrence matrix
The Gray Level Co-occurrence Matrix 
(GLCM) estimates image properties re-
lated to second-order statistics based on 
the repeated occurrence of a certain gray 
level configuration in the texture [1, 2]. 
The occurrence of a gray level configu-
ration may be described by a matrix of 

)1,2(),(,
,

==−=∑ λχλ
φ

χ
typicallybaPbaContrast d

ba
      (5)

)1,2(),(,
,

==−=∑ λχλ
φ

χ
typicallybaPbaContrast d

ba

∑
≠ −

=
baba

d

ba

baP
momentdifferenceInverse

;,

, ),(
χ

λ
φ

∑
≠ −

=
baba

d

ba

baP
momentdifferenceInverse

;,

, ),(
χ

λ
φ                 (6)

In the above equation, µx and µy indicate 
means, and σx and σy are standard devia-
tions. 

n	 Experimental
To show the feasibility of the  method for 
textile texture identification suggested, a 
library of texture features was collected, 

relative frequencies Pj,d(a,b), describ-
ing how frequently two pixels with  gray 
levels a & b appear in the window sepa-
rated by  distance d in direction φ. Some 
texture features are defined based on Pj,d 
data, such as Energy, Entropy, Maximum 
frequency, Contrast, Inverse difference 
moment and Correlation [2]. As an ex-
ample, the energy is defined by the fol-
lowing equation:
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Figure 1. Scan images of the 33 knitted fabric samples.
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which contains a set of 33 knitted fabric 
samples with different types of textures. 
An image of each sample was captured 
using a HP Scanjet 7400c scanner. Fig-
ure 1 shows  images of the  fabrics ap-
plied. Then the colour images were 
converted to grey scale ones (luminance 
channel) according to the Federal Com-
munication Commission’s (FCC) colour 
space [11]:

Igray = 0.2989R + 0.5870G + 0.1140B  (3)

The texture features of each sample were 
computed by applying the edge frequen-
cy method. For this purpose, the gradient 
function in Equation 1 was computed for 
distance values (d) of 1, 2, 3, 4, 5, …, 
10. This width range of d was chosen to 
support micro and macro features in the 
different kinds of textures. 

To match a new texture with  library sam-
ples,  an image of the sample was first 
captured, and then its texture features 
were computed using Equation 1 with  
specified values of d (as was done for 
the library set). Then the closest texture 
feature was identified based on the Eu-
clidian distance between the  features of 
the  sample obtained, and each sample of 
the library was set as Equation 4. In this 
equation, TextureDiffi indicates the tex-
ture difference between the sample and 
ith sample of the library. 
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Therefore, if the library consists of n 
samples, then n texture differences are 
obtained for each one. The closest fabric 
texture with the minimum value of Eu-
clidian distance calculated (TextureDiff) 
was reported as the sample texture. It 
should be mentioned that if the Euclid-
ian distance was larger than the thresh-
old value, the algorithm response was 
that “there is no matching texture in the 
library”. 

Furthermore, the GLCM method was 
applied in which  six features were 
computed: Energy, Entropy, Maximum 
frequency, Contrast, Local Homogene-
ity and Correlation Coefficient. The cor-
relation coefficient values were close to 
zero so they could be omitted. Again for 
a specified sample, these features were 
computed and then matched to the li-
brary based on the lowest Euclidian dis-
tance. The values of φ were selected as 
0, 45, 90, 135 and d (distance between 
two gray levels) was set to 4. In this part, 

TextureDiffi is computed by Equation 5. 
According to this formula, the Euclidian 
distance between the GLCM features of 
the sample with each  ith sample of the 
library is calculated for each angle. The 
TextureDiffi is defined as the summation 
of  results obtained for each angle.

( )∑ ∑ −=
j

jj
2

),(),(
f

ii fGLCMfGLCMfTextureDif                  (5)

( )∑ ∑ −=
j

jj
2

),(),(
f

ii fGLCMfGLCMfTextureDif

n	 Results and discussion
A library of the texture features of 33 
knitted fabric images was collected. Ta-
ble 1 shows the edge frequency features 
of each sample for 10 d values. Simi-
larly Table 2 indicates the GLCM feature 
measures of the 33 fabrics. The decimal 
parts of the values were negligible and 
omitted.  

The test images were different to the li-
brary images to such an extent that they 

Figure 2. (a): One of the library textures, (b) sample with a similar texture to “a” but with a 
different colour, (c) sample with similar texture to “a” but in adifferent scanning direction.

Table 1. Edge frequency feature values for each sample.

d 1 2 3 4 5 6 7 8 9 10

1 0.3626 0.4027 0.3242 0.2469 0.3834 0.3905 0.3012 0.2869 0.4027 0.3769
2 0.0998 0.1411 0.1408 0.1220 0.1081 0.1024 0.1034 0.1278 0.1271 0.1277
3 0.2372 0.3137 0.3543 0.3831 0.4053 0.4220 0.4324 0.4372 0.4379 0.4350
4 0.2464 0.3298 0.3788 0.4124 0.4386 0.4576 0.4724 0.4822 0.4874 0.4868
5 0.2448 0.3284 0.3727 0.4029 0.4239 0.4359 0.4420 0.4407 0.4334 0.4234
6 0.2226 0.2920 0.3299 0.3578 0.3772 0.3917 0.4011 0.4078 0.4133 0.4126
7 0.1150 0.1442 0.1502 0.1494 0.1486 0.1502 0.1520 0.1516 0.1503 0.1477
8 0.2886 0.3510 0.2910 0.3106 0.3988 0.3737 0.2846 0.3247 0.3478 0.2552
9 0.2616 0.3262 0.2756 0.2662 0.3238 0.3160 0.2596 0.2916 0.3105 0.2611
10 0.1504 0.1742 0.1544 0.1575 0.1582 0.1327 0.1513 0.1801 0.1603 0.1470
11 0.1545 0.1805 0.1630 0.1683 0.1736 0.1644 0.1769 0.1817 0.1754 0.1787
12 0.2311 0.2635 0.2279 0.2621 0.2702 0.2316 0.2460 0.2589 0.2518 0.2607
13 0.2560 0.2819 0.2342 0.2617 0.2576 0.2284 0.2283 0.2371 0.2561 0.2865
14 0.1577 0.2067 0.2219 0.2312 0.2222 0.2077 0.1916 0.1868 0.2007 0.2101
15 0.1999 0.2441 0.2160 0.2330 0.2347 0.2000 0.2296 0.2267 0.1693 0.2020
16 0.1609 0.2247 0.2496 0.2515 0.2504 0.2400 0.2130 0.1843 0.1889 0.2223
17 0.1478 0.2165 0.2600 0.2764 0.2745 0.2574 0.2300 0.2106 0.2188 0.2361
18 0.1500 0.2105 0.2446 0.2589 0.2552 0.2407 0.2283 0.2194 0.2135 0.2135
19 0.1213 0.1629 0.1934 0.2155 0.2291 0.2361 0.2388 0.2378 0.2340 0.2262
20 0.1366 0.1813 0.2133 0.2398 0.2610 0.2789 0.2922 0.2994 0.3003 0.2956
21 0.2146 0.2788 0.3260 0.3647 0.3950 0.4187 0.4377 0.4529 0.4638 0.4710
22 0.1912 0.2625 0.3058 0.3361 0.3584 0.3692 0.3699 0.3645 0.3574 0.3510
23 0.1551 0.2154 0.2529 0.2732 0.2765 0.2693 0.2589 0.2519 0.2503 0.2545
24 0.1168 0.1903 0.2297 0.2519 0.2620 0.2632 0.2587 0.2534 0.2522 0.2558
25 0.1721 0.2221 0.2624 0.2976 0.3298 0.3584 0.3844 0.4067 0.4259 0.4428
26 0.0694 0.0916 0.0958 0.0969 0.0887 0.0786 0.0920 0.0954 0.0912 0.0911
27 0.1845 0.2503 0.2891 0.3144 0.3281 0.3293 0.3227 0.3147 0.3087 0.3078
28 0.1407 0.1702 0.1864 0.1988 0.2088 0.2168 0.2234 0.2281 0.2308 0.2324
29 0.1744 0.2194 0.2495 0.2692 0.2808 0.2893 0.2949 0.2992 0.3033 0.3051
30 0.2127 0.2856 0.3311 0.3681 0.3967 0.4186 0.4352 0.4475 0.4578 0.4663
31 0.1456 0.1943 0.2129 0.2267 0.2372 0.2445 0.2483 0.2488 0.2471 0.2425
32 0.1535 0.2483 0.2938 0.3148 0.3185 0.3078 0.2910 0.2774 0.2737 0.2819
33 0.1614 0.2197 0.2608 0.2967 0.3291 0.3587 0.3825 0.4006 0.4140 0.4218

a) b) c)
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were scanned from another part of those 
33 fabrics. 

The experimental results show the suc-
cessful identification of textures using the 
edge frequency method with the  param-
eters proposed. In addition, the GLCM 
method performed well. However, it is so 
time consuming and more computation-
ally complicated than the edge frequency 
method.

Moreover, it was shown that the method 
proposed based on the edge frequency 
is insensitive to the sample colour and 
scanning direction (rotating the sam-
ple) of fabric, which is an important and 
ideal advantage.  For instance, the fabric 
shown with (a) in Figure 1 might have 
a different colour from (b) or scanned in 
a perpendicular direction as in (c). The 
method applied can successfully identify 
texture (a) for both image (b) and (c).

It addition, although the GLCM method 
is almost insensitive to the scanning di-
rection and colour of  fabrics, it is not as 
effective as the edge frequency method. 
For instance, for the first fabric in the 
third rows of Figure 1, when both the 
colour and direction were changed, 
GLCM did not give the correct answer. 
However,  the edge frequency method 
gave good results.

Consequently, it seems that the edge 
frequency method is a feasible and ac-
ceptable method for identifying fabric 
textures,  performing better than some 
well-known methods, such as GLCM, 
especially considering the length of the 
process time and some other factors men-
tioned like insensitivity to fabric colour 
and scanning direction. 

n	 Conclusions
In this study, a computational method for 
textile texture identification was intro-
duced using the Edge frequency method, 
in which a gradient for all pixels of the 
texture is computed, and the texture fea-
tures are defined as average values of 
the gradient at a specified distance. The 
method proposed was evaluated for  fab-
ric images of 33 knitted samples. The 
experimental results showed the success-
ful identification of textures. In addition, 
as an ideal and desirable advantage, the 
method proposed is insensitive to the 
color and scanning direction (rotating the 
sample) of the fabric. 

Table 2. GLCM feature values for each sample.

0 degree 45 degree

Energy Entropy Contrast Local 
Hom.

Max 
Freq. Energy Entropy Contrast Local 

Hom.
Max 
Freq.

1 77430 13001 2533536 508 52 63462 12166 5177988 300 36
2 1424728 23999 1549962 1373 820 1596024 23057 1382022 1131 712
3 44498 10544 5623722 303 30 42594 10433 5631732 282 18
4 37562 9652 5744142 268 17 35558 9373 6249420 249 16
5 42872 10294 6916032 254 21 40190 9966 6812694 255 20
6 47204 10971 5162886 327 20 47476 10862 4773672 312 30
7 1643360 24743 1313856 1525 720 1596012 24772 1286280 1465 694
8 67630 12285 5918328 344 34 64048 11515 4822758 329 35
9 69470 12943 4391982 331 28 69560 13114 4556160 334 26
10 228660 19184 1211364 610 88 229472 18966 770634 718 89
11 203768 18209 1226790 546 82 199756 18157 996084 653 76
12 122664 15469 1358802 668 74 91606 14178 2609046 395 42
13 114008 15309 1694304 483 49 95170 14135 2619108 466 54
14 205006 17937 1827882 524 98 188038 17557 1986606 549 90
15 159542 16827 1670796 614 76 144908 15891 1578924 541 74
16 129676 16432 2491614 299 45 126022 15898 2444832 361 55
17 133482 15006 2002104 546 92 110324 15042 3912120 342 52
18 181184 17353 2272104 544 96 168804 16886 2716038 435 91
19 189828 16873 1518084 587 120 166460 16289 2094534 523 95
20 89550 13683 3062556 417 41 94842 13844 2553012 472 46
21 32376 8607 5897970 283 20 34420 8772 5175900 246 19
22 61814 12389 5585598 275 24 56172 11595 4602762 308 28
23 99120 14722 3726252 296 36 97040 14430 3197754 377 40
24 110596 14818 1619028 519 60 95442 14236 2716938 383 42
25 54780 10362 2454858 510 32 46944 9516 3562812 405 30
26 863485552 337005 2559276 29479 29354 897713116 338990 2319696 30063 29938
27 71460 13138 4659948 338 40 71910 12913 4225032 289 34
28 135508 16656 1397412 582 62 122416 15847 1488528 516 50
29 64548 12153 2738538 386 38 70390 12700 2556720 411 34
30 43728 10025 5341338 313 24 38784 9206 5297904 318 23
31 118730 15287 1495026 527 54 116670 15186 2080638 459 47
32 78252 13296 2533140 416 34 74300 13149 4534200 308 29
33 56290 11463 2196324 502 34 48516 10838 3823344 303 28

90 degree 135 degree
Energy Entropy Contrast Local 

Hom.
Max 
Freq. Energy Entropy Contrast Local 

Hom.
Max 
Freq.

1 21995 4965 1208997 259 26 56476 11543 5460030 273 32
2 469619 10450 387000 919 472 1610456 23494 1277856 1398 908
3 12707 3756 2487357 153 13 44308 10745 5600970 250 19
4 10384 3259 3142611 124 11 37272 9849 6389784 278 20
5 11128 3338 2380032 168 12 38992 9632 6242490 244 18
6 12573 3687 2035665 162 14 44612 10557 4905180 301 22
7 362076 10498 727038 685 314 1504940 24553 1364490 1353 604
8 23507 4918 986850 280 27 74704 12473 4483332 391 46
9 29273 5816 787716 306 40 72862 13400 4663638 345 29
10 62562 7799 317610 400 53 228178 18622 682092 698 96
11 53568 7426 393939 335 46 183390 17305 980622 595 74
12 25089 5616 2200041 179 25 99078 15051 2982474 410 42
13 24806 5440 1808910 170 20 94516 14046 2435346 400 41
14 47587 7032 1130598 252 47 192226 17752 1888506 515 106
15 38623 6595 1214487 256 41 163614 16737 1761678 567 88
16 34131 6484 959967 254 31 129128 16087 2302200 369 50
17 27500 5635 1763703 170 32 105810 14692 3974832 324 48
18 48207 7131 1447857 251 54 171504 17406 2963106 400 82
19 46614 6711 1149660 262 58 165180 16154 2144790 539 112
20 28497 5642 760419 288 28 88884 13422 2593890 452 62
21 10766 3257 2283057 167 12 33446 8761 5060430 299 20
22 17640 4521 1420983 227 20 58570 12017 5055192 266 26
23 27520 5766 1029015 261 23 92366 14209 3232170 330 40
24 26274 5553 1551546 189 26 100034 14522 2611674 364 38
25 12130 3226 2308185 183 17 48156 9798 3875310 408 36
26 218328712 156789 1293129 14824 14761 990594490 350233 1876896 31592 31458
27 22113 5167 1393317 225 21 68170 12682 4317444 321 34
28 33850 6386 755424 270 28 124580 15983 1504296 530 50
29 19274 4642 1213236 216 24 66196 12258 2869110 382 38
30 11686 3288 2583567 151 16 39892 9344 5726034 321 24
31 30317 5966 1154799 224 26 112036 14910 2010474 467 46
32 20788 5053 2586141 147 17 74430 13485 4621572 287 29
33 13262 3762 2417526 149 15 50298 10964 3760650 325 28
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Furthermore, GLCM was applied and 
compared with the edge frequency meth-
od. Although this method performs well, 
it is more computationally complicated 
and time consuming than the edge fre-
quency method. Moreover, the sensitiv-
ity of the edge frequency method to the 
scanning direction and  colour of the 
sample is lower than for GLCM.
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