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n	 Introduction
Pneumatic melt spinning provides an al-
ternative technique for obtaining non-wo-
ven mats of ultra-fine fibers with a high 
surface-to-mass ratio, which is important 
for biomedical, biotechnological and fil-
tration, applications, among others. The 
pneumatic process consists in the uniax-
ial drawing of a molten polymer stream 
by two converging air jets directed sym-
metrically on both sides of a two-slot die 
[1, 2]. The polymer stream attenuates rap-
idly just below the spinneret face, under 
intensive uniaxial deformation caused by 
a pneumatic tensile force which results 
from the transfer of momentum between 
the air jets and polymer melt along the 
spinning axis. The process is accompa-
nied by heat exchange between the jets 
and polymer stream depending on the lo-
cal temperature difference between this 
media along the spinning line. One can 
expect that the solidification of the spun 
filament which occurs by glass transi-
tion or crystallisation, and the diameter 
of the fibers obtained in the non-woven 
are affected by the initial temperature and 
velocity of the air jets, as well as by the 
distribution of the air temperature and 
velocity along the spinning axis. With the 
application of standard polymers, such as 
polypropylene, polyethylene, polyesters, 
polyamides, as well as elastomers and 
polymers of biotechnological impor-
tance, the thickness of fibers in the pneu-
matic spun non-wovens is reported to be 
in the range of 1 - 5 µm in the case of fine 
fibers obtained in the process [3 - 5].
	
It is important to determine the condi-
tions for the stationary process of pneu-
matic melt spinning necessary for obtain-
ing regular non-woven with uniform fib-

ers, as well as to learn the role of various 
processing conditions regarding the thick-
ness and structure of the fibers, which is 
important from the point of view of the 
nonwoven properties. Mathematical 
modelling and computer simulation open 
the possibility of low cost investigations 
on pneumatic melt spinning, which are 
expected to provide information on the 
character of individual processing and 
material parameters necessary for opti-
mising the process of obtaining non-wo-
ven of desirably fine fibers with favorable 
structure. The modeling akso allows to 
investigate the dynamics of the process 
along the spinning axis between the melt 
outflow from the spinneret orifice and the 
take-up point on the surface of the non-
woven, and to determine axial profiles of 
the velocity, temperature, tensile stress, 
hydrostatic pressure, molecular orienta-
tion and crystallinity of the polymer.
	
In the pneumatic process the double air 
jet constitutes a medium transferring 
momentum to the polymer stream and 
exchanging the heat energy. The distribu-
tions of the air velocity and temperature 
along the spinning line play crucial role 
in the dynamics of the process and thick-
ness of the fibers obtained. In this paper, 
being Part I of a series on pneumatic melt 
spinning, the fundamentals of the model-
ling of the air velocity, temperature and 
pressure fields in the air jet, necessary for 
discussing the dynamics of the pneumat-
ic process, are presented. A mathematical 
model of pneumatic melt spinning with 
predetermined velocity, temperature and 
pressure of the air along the spinning 
axis, together with example computa-
tions performed for isotactic polypropyl-
ene will be presented in Parts II and III of 
the series of publications. 
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In this article we present a schematic 
view of a device where such pneumatic 
melt spinning is realized. A schematic 
diagram of a dual slot air die, a cross-sec-
tion normal to the symmetry plane of the 
spinning beam, is shown in Figure 1. In 
the diagram the polymer melt is extruded 
from the spinneret orifice and elongated 
by the air jet in the z-direction along the 
centerline. Two air jets are blown sym-
metrically from the left and right slots 
inclined to the z-axis at an angle α. The 
length of the air slots in the x-direction, 
vertical to the plane (y,z) in Figure 1, 
is so large compared to its width at the 
outflow point that the air flow may be 
considered as two-dimensional in the y,z 
coordinate system. The experimental re-
sults show that the polymer melt which 
moves along the centerline z-axis is so 
narrow that its influence on the air flow 
dynamics may be neglected. Such a proc-
ess was the subject of papers by Chen et 
al. [6], Krutka et al. [7] and [14]. In these 
papers the air flow was considered as tur-
bulent and a compressible medium. The 
flow field was calculated numerically 
with the aid of the k – ε model in [6] and 
Reynolds stress model in [14]. In our pa-
per the air flow field is calculated using 
the standard k - ε model of turbulent flow, 
in which the air is treated as a compress-
ible fluid, including, as a consequence, 
the second viscosity coefficient ζ in the 
viscous stress tensor. The results of the 
computations will be used in Parts II and 
III of the publication, where the factors 
of fiber melt blowing will be calculated.

n	 k - ε model of the turbulent 
flow

A mathematical model of turbulent flow, 
known in the literature as the k - ε model, 
will be used to determine the velocity, 
temperature, and pressure fields of dou-
ble air jets, which are necessary to define 
the dynamic conditions of pneumatic 
melt spinning, with k being the turbulent 
kinetic energy of the air and ε its dissipa-
tion rate [8 - 10]. The model consists of 
a system of six partial differential equa-
tions for the mass continuity, momentum 
conservation in the (y,z) plane, energy 
conservation, turbulent kinetic energy 
and the turbulent dissipation rate. Consti-
tutive fluid equations are also needed for 
the model presented. 

The mass continuity and momentum con-
servation equations in their general form 
read as such

               (1)

       (2)

where ρ is the local air density, Ui - com-
ponents of the air velocity vector, P - the 
air pressure, tij  -  viscous stress tensor 
components, τij - Reynolds stress tensor 
components, and Fi - components of the 
buoyant force vector. They all are mean 
values of the turbulent quantities. We use 
Einstein’s summation convention in the 
formulae.

The air in the model is treated as a com-
pressible fluid. Hence, according to the 
theory of viscous and compressible New-
tonian fluid [10], the viscous stress tensor 

tij is controlled by two viscosity coeffi-
cients, µ and ς
		   

  (3)

It is widely accepted in the literature 
that the second viscosity coefficient is  
z = -2m/3 and then the viscous stress ten-
sor assumes the form

  (4)

For incompressible fluid the last term in 
the above expression vanishes.

Reynolds stress tensor is expressed by 
the relation [8, 10]

                                 
(5)

where ui are components of the fluctuating 
air velocity vector; ⋅  denotes the aver-
age of the fluctuating velocity. The tur-
bulent kinematic viscosity coefficient νT 
is determined from the relation [6, 9, 11]

               (6)

where Cm is a constant, k - the turbulent 
kinetic energy, and ε - the dissipation rate 
of the turbulent energy. 

The buoyant force Fi in Equation  (2), 
which acts in a vertical z–direction, may 
be expressed as

             (7)

where r∞ is the air density in ambient 
conditions, and g – the gravity accelera-
tion.

where ν = µ/ρ is the kinematic viscosity.

(10)

(11)

(12)

Equations 10, 11, and 12.

Figure 1. Dual slot die geometry of the 
spinning beam in the (y,z) plane. The width 
of the slot die at the air outflow - 0.5 mm, 
the incline angle of the die slots to the z 
axis - 28.25o at the air output, diameter of 
the orifice in the spinneret - 0.35 mm, the 
distance between the air die slots at the 
spinneret level- 0.5 mm, the recession of the 
spinneret in the spinning beam – 0.3 mm. 
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From the law of thermal expansion, we 
get the following relation

             
(8)

where T is the absolute air temperature,  
T∞ is the ambient air temperature, and 
β =1/T∞ - the coefficient of the thermal 
volume expansion. Equations (7) and (8) 
lead to the following formula for the z-
component of the buoyant force vector

                (9)

Thus momentum conservation equation 
(2) together with relations (4), (5) and (9) 
assume the form of the Cartesian coordi-
nate system presented by Equations (10 
and 11).

The energy conservation equation for the 
k  -  ε turbulent flow model is presented 
by Equation (12), where λ is the thermal 
conductivity coefficient, and λT – the 
thermal conductivity coefficient in the 
turbulent flow, which may be expressed 
by the Equation (13)

                (13)

where Cp is the specific heat at constant 
pressure, σT   - the turbulent Prandtl 
number, E - the total energy of the flow-
ing air per unit mass, which is the sum of 
the internal energy, Ew = CvT, and kinetic 
energy of the two-dimensional flow in 
the (y, z) plane, Ek = V2/2 = (Uy2 + Uz2)/2. 
Hence, the total energy per unit mass of 
the air is

               (14)

where Cv is the specific heat at constant 
volume.

With relations (13) and (14), the energy 
conservation Equation (12) assumes the 
form (Equation 15).

In momentum conservation Equations 
(10) and (11), as well as in the energy 
conservation Equation (15), we deal with 
the turbulent viscosity coefficient νT  and 
turbulent kinetic energy k. In the k  -  ε 
model of turbulence, the viscosity coef-
ficient νT   is determined by relation (6); 
after which we deal with the following 
two variables: the kinetic energy of tur-
bulent motion

iiuuk
2
1

=                  (16)

and the dissipation rate of the turbulent 
kinetic energy

           (17)

The kinetic energy k and dissipation rate 
ε are calculated from additional equations 
in the model. The turbulence kinetic en-
ergy equation [10] is given by (18) where 
p denotes the fluctuating air pressure, fi 
- components of the fluctuating buoyant 
force. 

The terms of the above equation have the 
following meaning: on the left hand side 
we have the energy of convection, and 
on the right side we have the following 
(one after the other): the turbulent energy 
production, the kinetic energy dissipa-
tion, the molecular diffusion with the tur-
bulent transport of the turbulence kinetic 
energy, the pressure work, pressure dila-
tation, and the transport by the buoyant 
force fluctuation. 

We have unknown quantities on the right 
hand side of Equation (18) which are cor-
relations of the fluctuating parameters. To 
complete the system of equations, these 
quantities should be expressed by the 
known variables. For this reason we take 

into account the argumentation given in 
[10] and [11], where the authors sug-
gest the approximation shown in Equa-
tion  (19) for the terms where sK is the 
Prandtl number of the turbulent kinetic 
energy. 

According to Wilcox [10], there is lack of 
information concerning diffusion by the 
pressure fluctuation, and the terms
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are usually neglected in mathematical 
modelling of the turbulent flow. 
	
The last term in Equation (18), which 
presents energy transport by the buoyant 
force fluctuations, will be modelled using 
the following relation applied by Chen at 
al. [6] presented by Equation (20).

      (20)

Taking into account Equations (19), (20) 
and neglecting the work pressure and 
pressure dilatation terms, Equation (18) 
reduces to Equation (21). 

where νeff = ν  + νT  and λeff = λ  + λT. 

(15)

(18)

(21)

(22)

(19)

Equations 15, 18, 19, 21, and 22.
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Using the Cartesian coordinate system, 
we get Equation (22) where PK is the 
turbulent energy production described by 
Equation (23), see page 20.

The expression for the kinetic energy 
dissipation rate, presented in [8], taking 
into account the influence of the buoyant 
force fluctuation, reads (24).

The left-hand side of the equation rep-
resents the convection of the dissipation 
rate. The consecutive terms on the right-
hand side represent molecular, turbulent, 
and pressure diffusion, respectively, and 
the next three terms – extension of the 
spinning lines by the mean motion fol-
lowed by the terms responsible for the 
turbulence generation by the spinning 
line deformation, destruction of the tur-
bulence, and variation of the dissipation 
by the buoyancy force fluctuation. Tak-
ing into account an estimation of the 
terms in Equation (24), presented in [8], 
we neglect the term responsible for the 
effects of molecular diffusion, as well as 
three terms corresponding to the exten-
sion of the spinning lines by the mean 
motion. The sum of the turbulent and 
pressure diffusion terms is expressed by 
Equation (25) while the sum of the terms 
responsible for the turbulence generation 
by the spinning line deformation, and the 
destruction of turbulence may be pre-
sented as Equation (26) where se is the 
Prandtl number of the dissipation rate. 
The last term in Equation (24), which 
takes into account the influence of the 
buoyancy force fluctuation, may be pre-
sented as [6]

		
  (27)

Hence, Equation  (24) reduces to Equa-
tion (28).

Using the Cartesian coordinate system, 
we get Equation (29).
 
In the model presented we have eight un-
known quantities: Uy , Uz – the velocity 
of the components in the y and z direc-
tions, ρ - the density, P – the pressure, T 
- the temperature, νT – the turbulent kine-
matic viscosity coefficient, k – the turbu-
lent kinetic energy, and ε - the dissipation 
rate of the turbulent kinetic energy. These 
quantities will be calculated from the six 

equations and two relations presented 
above. The set of equations constitutes 
continuity equation (3), which in Carte-
sian coordinates assumes the form of 

      (30)

momentum Equations (10) and (11), the 
energy conservation Equation (15), the 
turbulent kinetic energy Equation (22) 
and the kinetic energy dissipation rate 
Equation (29). The two relations define 
the turbulent kinematic viscosity coeffi-
cient (6) and the equation of state of the 
perfect gas. The complex system of par-
tial differential equations will be solved 
numerically with the aid of the computer 
program FLUENT [12] using the finite 
difference method.

n	 The computation conditions
Now we present geometrical and physi-
cal conditions of the melt blowing proc-
ess, which is the subject of the compu-
tations. The geometry of a dual slot die 
for blowing air is shown in Figure 1. The 
polymer in the pneumatic melt spinning 

is extruded from a spinneret cylindrical 
orifice of 0.35 mm in diameter and blown 
in the z-direction by the symmetrical dual 
air jet. The polymer extrusion orifice is 
recessed by 0.3 mm from the spinning 
beam face. The width of the spinneret 
at the polymer outflow is D = 0.5 mm, 
which is also the distance between the air 
slots at the air outflow. The air is blown 
on both sides from the slots, which are 
inclined symmetrically at an angle of  
α  = 28.25° to the z-axis. The lowest 
width of the air slots is at the outflow- 
b = 0.5 mm. The length of the air slots in 
the x-direction is of the order of one meter, 
and it is so large compared to the t with b 
of the slots that the air flow may be treat-
ed as two-dimensional in the plane (y, z). 

Computations will be performed for the 
following initial values of the parameters 
of the air field at the outflow from the slots:
n	 initial air velocity: Uj0  =  30, 50, 75, 

100, 200 and 300 m/s,
n	 initial air temperature: Tj0 = 573 K,
n	 initial air pressure:  

Pj0 = 1.015×105 N/m2.

Equations 23, 24, 25, 26, 28, and 29.

(25)

(26)

(28)

(29)

(24)

(23)
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At the initial parameters: air density 
ρ = 0.6172 kg/m3 and the dynamic vis-
cosity coefficient µ = 2.97×10−5 N⋅s/m2,  
the kinematic viscosity coefficient is  
ν =µ/ρ = 4.812×10−5 m2/s. 

From the Reynolds number, Re = Uj0b/r,  
we can estimate the character of the 
air flow for chosen values of the initial 
air velocity. For Uj0  =  30 m/s we have 
Re = 312, for Uj0 = 75 m/s - Re = 780, and 
for Uj0 = 300 m/s - Re = 3120. Reynolds 
numbers of 312 and 780 are not high, but 
according to the author [13], free jets with 
a Reynolds number between 300 and 800 
are turbulent. For this reason we model 
the discussed air flow as turbulent. For 
higher Reynolds numbers the turbulent 
character of air flow is obvious.

Now we shall determine the air flow 
Mach number, Ma = Uj0/a, where the 
sound velocity a = (kRTj0)1/2, and R 
is the gas constant. For the air flow 
field, the ratio of the specific heats is  
κ  = Cp/Cv  =  1.4 and the sound veloc-
ity a  ≅  480 m/s. For the air velocity 
Uj0 = 30 m/s, the Mach number is rather 
small - Ma = 0.0625, but for Uj0 = 100 m/s 
it is 0.208, and for Uj0  =  300 m/s we 
get 0.625. Hence, the air in this process 
should be considered as compressible 
fluid.

n	 The boundary conditions
The boundary conditions for the set of 
equations of the turbulent air flow field 
at the spinneret face, z = 0, 0 ≤ y ≤ D/2,  
and at the slot die face, z = 0.3 mm,  
y > D/2 + b cos a, read

Uy = Uz = k = e = 0,

 ∞==
∂
∂

==== PP
z
TkUU zy ,0,0ε              

(30)

where P∞ is the ambient atmospheric 
pressure.

At the slot outlet, 

0 < z < 0.3 m,  
D/2 < y < D/2 + z ctg a, 

we get
Uy = Uy0 = -Uj0 cos a, 
 Uz = Uz0 = Uj0 sin a,         (31)

P = Pj0

 T = Tj0
 k = 0.06 (Uy0

2 + Uz0
2)         (32)

e = 0.06 (Uy0
3 + Uz0

3)/(b cos a)

At a large distance from the slot die- ∞→z ,  
the unknown quantities are constant
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The flow is symmetrical with respect to 
the z-axis, hence the air conditions at the 
centerline of the flow in the (y, z) plane 
are as follows
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                     (34)

At a large distance from the centerline  
(z-axis), ∞→y , we get

 Uz = k = e = 0, 

∞∞ ==
∂

∂
==== PP

y
U

TTkU y
z ,0,,0ε      (35)

The constants of the k -ε model presented 
are as follows: Cµ  =  0.09, Cε1  =  1.44, 
Cε2 = 1.92, while the physical parameters 
of the air jet read: 
n	 the specific heats at constant pressure: 

Cp = 1006.43 J/kg⋅K, and at constant 
volume: Cv = 718.88 J/kg⋅K, 

n	 the heat conductivity coefficient: 
λ = 0.0242 W/m⋅K, 

n	 the Prandtl number of turbulence: 
σT = 0.85, the Prandtl number of the 
turbulent kinetic energy: σK =  1.00, 
and the Prandtl number of the dissi-
pation rate of the turbulent kinetic en-
ergy: σε = 1.30.

n	 Results of the computations 
and discussion

Computations are performed for the fol-
lowing six values of initial air jet veloci-
ties at the slot outlet: Uj0  =  30, 50, 75, 
100, 200 and 300 m/s. The flow field 
is limited by the slots within the range  
0 ≤ z ≤ 0.3 mm (Figure 1 see page 
18), whereas below the spinning beam-  
z > 0.3 mm, the flow is unlimited.

Computations of the flow are performed 
for a limited range in all directions, so 
that it would be possible to make a net 
structure which allows for an efficient so-
lution of the set of equations. However, 
the flow field considered in the computa-
tions is large enough with respect to the 
dimensions of the slots, and the results 
represent the dynamics of the air jet ac-
tive in the pneumatic process. The ap-
proach allows to assume boundary condi-
tions at chosen limits of the field, which 
gives a satisfactory approximation of the 
real conditions. Taking into account the 

experience of the other authors [6,7], we 
accept the following dimensions of the air 
flow field: we determine the filed limit at 
a distance ymax = 60 mm and ymin = −60 
mm in the y-direction, in both directions 
from the z-axis, which is the centerline 
axis of symmetry. In the z-direction we 
accept the limit zmax  =  200 mm. With 
these limits, the boundary conditions as-
sumed above are valid. 

In the computation technique the flow 
field is covered by a computation net 
with use of the FLUENT package [12]. 
The net grids are concentrated at the dual 
slot die, especially in the proximity of the 
slots, and they enlarge by increasing the 
distance from the die in the direction of 
the field boundaries. The number of grids 
in the entire field is about 100,000. The 
system of differential equations is solved 
using the iteration method with an itera-
tion number of the order of 10,000.
	
Computations were performed for six 
initial air velocities chosen, and the re-
sults are presented in Figures 2 - 11 
(see page 22 and 23). In the Figures, we 
do not present the full field of velocity, 
temperature and pressure obtained in the 
computational domain. We limit the pres-
entation of results to the distribution of 
the flow characteristics along the jet cen-
terline which coincides with the z-axis, 
since this is also the axis of the pneumat-
ic melt spinning process. 

Distribution of the axial component 
of the air jet velocity along the z-axis,  
Va(z)  = Uz(0, z), computed for the 
lower values of the initial air velocity - 
Uj0 = 30, 50, 75 m/s and for higher values 
- Uj0 = 100, 200, 300 m/s are presented 
in Figures 2 and 3, respectively. Velocity 
plots are shown within a range shortened 
to 50 mm from the spinneret face to show 
details of the air jet that are important for 
pneumatic melt spinning taking place 
within a short distance from the spin-
neret. We see from the plots presented 
that in the vicinity of the dual slot die, 
where the spinneret is recessed from the 
spinning beam face by 0.3 mm (see Fig-
ure 1), we have negative axial air veloc-
ity, which immediately inverts its direc-
tion and then rapidly increases with dis-
tance z. The axial air jet velocity reaches 
a maximum close to the die distance and 
then softly decreases with increasing z. 
Maximum axial jet velocity occurs at a 
distance of several millimeters from the 
spinneret face, and the distance increases 
with the rising initial air velocity Uj0. For 

e

e
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the highest initial air velocity of 300 m/s, 
the maximum is predicted at a distance 
of 10 mm. The maximum values of the 
air velocity Uz,max calculated are higher 
than the initial jet velocities Uj0. The 
air jets which flow symmetrically out of 

the dual slot die collide at the symmetry 
plane y = 0. Hence, the axial component 
of the air velocity at the centerline of the 
(y,z) plane increases above the initial air 
jet velocity. For lower initial jet veloci-
ties, the maximum value Uz,max is above 

Figure 7. Axial air pressure profiles along the centerline Pa, vs. 
the distance from the spinneret z computed for higher initial air 
velocities- Uj0=100, 200 and 300 m/s.

Figure 6. Axial air pressure profiles along the centerline Pa vs. the 
distance from the spinneret z computed for lower initial air velocities, 
Uj0=30, 50 and 75 m/s.

Figure 5.Axial temperature profiles of the air jet along the center-
line Ta vs. the distance from the spinneret z computed for higher 
initial air velocities- Uj0=100, 200 and 300 m/s.

Figure 4. Axial temperature profiles of the air jet along the center-
line- Ta vs. the distance from the spinneret- z, computed for lower 
initial air velocities- Uj0=30, 50 and 75 m/s.

Figure 3. Axial velocity profiles of the air jet along the centerline 
Va vs. the distance from the spinneret z computed for higher initial 
air velocities- Uj0=100, 200 and 300 m/s.

Figure 2. Axial velocity profiles of the air jet along the centerline 
Va vs. the distance from the spinneret z, computed for lower initial 
air velocities- Uj0=30, 50 and 75 m/s.

Uj0 by about 15%, while for a high initial 
jet velocity of Uj0  =  300  m/s, it attains 
a value of 430  m/s, about 40% higher. 
However, even the highest Uz,max value 
obtained does not exceed the sound ve-
locity, which is a = 480 m/s at the tem-
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Figure 11. Axial distribution of the kinetic energy dissipation rate 
along the centerline εa vs. the distance from the spinneret z computed 
for higher initial air velocities- Uj0=100, 200 and 300 m/s. 

Figure 10. Axial distribution of the kinetic energy dissipation rate 
along the centerline εa vs. the distance from the spinneret z computed 
for lower initial air velocities- Uj0=30, 50 and 75 m/s.

Figure 9. Axial distribution of the turbulent kinetic energy along 
the centerline ka vs. the distance from the spinneret z computed for 
higher initial air velocities, Uj0=100, 200 and 300 m/s.

Figure 8. Axial distribution of the turbulent kinetic energy along 
the centerline ka vs. the distance from the spinneret z computed for 
lower initial air velocities- Uj0=30, 50 and 75 m/s.

Received 08.11.2007       Reviewed 13.12.2007

perature of 573 K, where the assumed 
air flow remains sub-critical. The plots 
shown in Figures 2 and 3 are qualita-
tively similar to the velocity diagrams 
obtained by other authors [7, 11]. 

Figures 4 and  5 present axial distribu-
tions of the air temperature along the jet 
centerline- Ta(z) = T(0, z), and Figures 6 
and 7 illustrate the air pressure distribu-
tions- Pa(z) = P(0, z) computed for three 
lower and three higher values of initial 
air velocities. The pressure distribu-
tion is presented in the distance range  
0 ≤ z ≤ 10 mm, shortened with respect 
to the full computational range, for the 
purpose of illustration, because only in 
this range does the pressure distribution 
differ from that of the the atmospheric in 
a noticeable way. 

The kinetic energy ka and dissipation rate 
εa evidently grow with the air velocity. 
It is seen in Figures 8 and 9 that the ki-
netic energy close to the spinneret face is 

about one order higher for a velocity of 
75 m/s than for 30 m/s and for the veloc-
ity 300 m/s than for 100 m/s. The same 
may be observed for the dissipation rate 
in Figures 10 and 11. It is the reason why 
the axial temperature Ta grows with the 
air velocity, which is particularly evident 
in Figure 5. 
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