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n Introduction
Diffusion is an important phenomenon 
in practical textile engineering. Typical 
examples are moisture transport through 
textiles, sweat diffusion through the 
clothing layers, gas diffusion through 
protective clothing on the workplace, etc. 
The problem of diffusion is characterised 
by the equation of substance balance, and 
particularly by the diffusion coefficient 
within the fabric. The main difficulty is to 
describe diffusion within a material. The 
general and classical works here include 
Crank [1], Tomeczek [2], and Li [3]. The 
classical diffusion equation is applied to 
each diffusing species. Physically speak-
ing, some researches characterise the dif-
fusion of ionic species using a diffusion 
coefficient tensor, cf. Tyrrell & Harris 
[4], or introducing the agglomerated 
diffusion coefficient, cf. Rubinstein [5]. 
Diffusion parameters in textile structures 
have been introduced using different de-
scriptions, as for instance in Ekstein [6]. 
Kulish & Lage [7] discussed diffusion 
within a porous medium with randomly 
distributed heat sinks described by the 
differential diffusion equation, which is 
a typical structure of the new interac-
tive clothing. The structure consists of 
a solid porous matrix with pores filled 
with capsules containing a phase-chang-
ing material. The analysed forms of the 
boundary and the initial conditions are 
determined for many particular prob-
lems, each characterised by a set of 
governing equations; see for example 
Kącki [8]. Fan & Longtin [9] present a 

non-contact laser-based thermoreflective 
technique to measure the changes in con-
centration on a surface, which can help to 
determine the boundary conditions of the 
fabric. The technique can be used over a 
wide range of time scales, ranging from 
micro-seconds to minutes. For another 
interesting method of description, the 
reader is referred to Li [10], where the 
moisture exchange between fibre and 
air is discussed. The drying of fabrics is 
divided into two processes, the evapora-
tion-condensation process and the mois-
ture sorption & desorption. In addition, 
the boundary conditions and the physical 
properties of fibres and fabric are given. 
The moisture transport was considered 
by Więźlak et al. [11] to formulate a 
microclimate under a clothing pack. A 
textile membrane inserted into a cylinder 
is treated as a system of the fibres and 
surrounding air.

Compact and inhomogeneous textiles 
should at first be homogenised. In fact, 
the mean values of the diffusion coef-
ficient within the textile structure are 
determined. This paper will introduce 
the classical rule of mixture as well as 
a hydrostatic analogy, both according to 
Golanski, Terada & Kikuchi [12]. Any 
textile structure is a composite material 
containing fibres with the surrounding 
filling. The diffusion coefficient can be 
formulated introducing the volume frac-
tion of the fibres, cf. Tomeczek [2].
 
The presented form of the formal de-
scription is similar to that shown for the 
thermal problems. Fuller treatments can 
be found in Dems et al. [13], Dems & 
Rousselet [14], Dems & Korycki [15], 
and Korycki [16,17]. The first-order 
sensitivities of an arbitrary behavioural 
functional are formulated as a function 

of the transformation velocity field and 
solutions of primary, direct and adjoint 
diffusion problems. The main goal of 
the presented paper is to introduce the 
first-order sensitivity expressions to the 
problems of design and identification 
which are associated with diffusion 
within textile structures. Thus, the above 
structures can be designed and identified 
more effectively and rapidly, using the 
procedures proposed. This class of prob-
lems has not yet been introduced in the 
studied literature. Of course, the physical 
interpretation and the detailed analysis of 
diffusion problem is different, and imme-
diately follows the form of the obtained 
expressions. 
 
The problems considered can be dis-
cussed and solved using different numer-
ical methods, cf. Roche & Sokołowski 
[18]. They gave more information about 
the numerical methods applied in the 
practice of identification and optimi-
sation. Haji-Sheikh & Massena [19] 
present a generalised method for the 
integral solution of the diffusion equa-
tion in regions with irregular boundaries. 
The solution for the diffusion equation 
was decomposed into two parts, one with 
homogeneous and the other with inho-
mogeneous boundary conditions.

n Primary problem formulation
The boundary shape of the structure is 
described using a vector of design pa-
rameters b, whereas the state variable 
is now the component concentration C 
during the diffusion. Let us introduce 
the transient diffusion problem within a 
diffusive anisotropic domain Ω stated by 
the equation of substance balance and the 
set of boundary and initial conditions. It 
is assumed that the solution containing 
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the diffusive component is immovable, 
and according to [2, 8] (cf. Figure 1) the 
state equations are presented as Equa-
tions 1 where C denotes the component 
concentration, t is the time of the pri-
mary structure,  is the time derivative 
of the component concentration, ∇ is the 
gradient operator, q is the vector of the 
diffusion flux density, q* is the vector 
of the initial diffusion flux density,  
denotes the chemical reaction rate of the 
component during diffusion, i.e. the dif-
fusion generation source, D is the diffu-
sion coefficient, qn = n·q is the diffusion 
flux density normal to the boundary, n is 
the normal unit vector directed outwards 
on the external boundary Γ, β denotes 
the convective diffusion coefficient and 
C∞ is the surrounding component con-
centration. 
 
Let us next modify the shape of the do-
main Ω together with the surrounding 
external boundary Γ. Due to an infini-
tesimal transformation process, the shape 
variation has the form of Equation (2) 
where φ(x, b, t) denotes a given function 
of the defined parameters, vp(x, b, t) is a 
transformation velocity field associated 
with the parameter bp; p = 1...P, treated 
as a time-like parameter. 
 
Let us introduce an arbitrary behavioural 
functional associated with the unsteady 
diffusion problem, in the form of 
Equation (3) where Ψ and γ are continu-
ous and differentiable functions of their 
arguments. According to [20], the mate-
rial derivative of the above functional F 
with respect to the design parameter bp is 
defined as being the first-order sensitivity 
Fp in the basic form of (4).

The unknown sensitivities of the state 
fields appearing in Equation (4) can be 
derived using the direct approach to 
sensitivity analysis, or can be eliminated 
from Equation (4) using the adjoint state 
fields, alternatively obtained as the result 
of the solution of the adjoint diffusion 
problem. 
 
The problem of component diffusion 
remains a difficult problem to deal with, 
primarily because of the physical inter-
pretation of the existing phenomena. As 
might be expected, most of the govern-
ing equations for the diffusion problem 
can be determined using the same as-
sumptions, description and methods as 
introduced previously for the question of 
heat transfer. 

3.  Direct approach 
to sensitivity analysis

It is easily seen that the direct approach 
is most convenient for obtaining sen-
sitivities with respect to a few of the 
design variables (Figure 2). The ad-
ditional structure has the same shape 
and diffusion properties as the primary 
body, and is characterised by the equa-
tion of substance balance, the boundary 

and the initial conditions. The necessary 
equations are obtained by differentiation 
of equations for primary structure with 
respect to the design parameters and pre-
sented as Equation (5).

Thus, the first-order sensitivity expression 
is similar to the equation obtained for the 
thermal problems. The external boundary 
of the additional structure is composed 
of three portions Γ=Γ1∪Γ2∪Γ3 , and the 

Figure 1. Primary diffusion problem.

(1)

(2)

(3)

(4)

Equations: 1, 2, 3, and 4.

Figure 2.  Additional diffusion problem.

Equations: 5.

(5)
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first-order sensitivity of the functional F 
are adapted as presented by Equation (6). 

Thus, the total derivatives  on Γ1 
and  on Γ2 are known in advance. 
The first-order sensitivity expression 
is a sum of integrals of time as well as 
within the structural domain Ω, on the 
whole external boundary Γ, on parts of 
the external boundary Γ1, Γ2, Γ3, and 
along the curve Σ between two adjacent 
parts of the piecewise smooth boundary 
Γ. The diffusive state fields of the addi-
tional structure are now Cp, qp and , 
i.e. all the local sensitivities of the state 
fields for the primary body. These param-
eters can be determined from additional 
diffusion problems associated with the 
design parameter bp which are given by 
Equation (5). The direct method requires 
the solution (P+1) problems for the exist-
ing P design parameters. 

4.  Adjoint approach 
to sensitivity analysis

In order to determine the first-order sen-
sitivity vector Fp one must calculate the 
primary and the adjoint diffusion problem 
for the one objective functional, i.e. only 
two diffusive problems, cf. Figure 3. If 
the number of functionals is equal to N, 
then N+1 diffusive problems should be 
considered. Both the adjoint and the pri-
mary structure have the same shape and 
diffusion properties, but the adjoint body 
is subject to boundary conditions and do-
main diffusion sources depending on the 
considered objective functional. The dif-
fusion equation and the conditions for the 
adjoint structure state the transient adjoint 
problem Equation (7) where Ca denotes 
the component concentration for adjoint 
structure, τ is the time of the adjoint 
structure, is the time derivative of the 
component concentration, denotes the 
vector of the diffusion flux density, is 
the vector of the initial diffusion flux den-
sity,  denotes the diffusion generation 
source of the adjoint structure, and  is 
the surrounding component concentration. 
The state variable of the adjoint problem 
is the component concentration Ca. 
 
In order to formulate the conditions for 
adjoint structure, the identity as Equa-
tion (8) is introduced using the diffusion 
equation (see Equation 7).

Let us take the transformation of time τ 
of the adjoint problem with respect to the 
time t of the primary and the additional 

problems in the form τ = tf  – t. The final 
time t = tf determined for the primary 
and the additional problem is the starting 
time for the adjoint problem τ = 0. Under 
the above assumption, the time deriva-
tives of temperature existing in Equation 
(8) are stated as

 dTa/dτ = – dTa/dt. 

Let us next introduce Equation (8) into 
the right-hand side of Equation (6). Thus, 
the sum of specified integrals vanishes if 
the following boundary-value conditions 
are specified as Equation (9).

Applying Equation (9) in the right-hand 
side of Equation (6), the first-order sensi-

tivity vector can be specified in the form 
of Equation (10) - see page 46.

This expression is a sum of integrals of 
time as well as within the domain Ω, on 
the whole external boundary Γ, on the 
boundary portions Γ1, Γ2, Γ3, and along 
the discontinuity curve Σ. The diffusive 
state fields of the additional structure Ca, 
qa and  can be determined from Equa-
tions (7) and (9) respectively. 

 The shape optimisation 
problem and optimisation 
functionals

The shape optimisation problem can be 
introduced by minimising or maximising 

(6)

Equation: 6.

Figure 3. Adjoint diffusion problem.

Equations: 7, 8, and 9.

(7)

(8)

(9)
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the objective functional with the imposed 
constraint on the structural cost K ≤ K0, 
where K0 is the assumed structural cost. 
The structural cost for the homogeneous 
structure can be assumed to be propor-
tional to the optimised domain Ω. Let 
us next consider the Lagrange functional 
given for the inequality constraints in 
the form [13] F’ = F + χ(K - K0 + ζ2),   
where the Lagrange multiplier χ can be 
an optional real number, and ξ2 is an ad-
ditional variable. This variable denotes 
the slack variable, and Dems [13] gives 
its possible interpretation. Considering 
the stationarity of the above functional, 
the following optimality conditions can 
be obtained:

          (11)

where u is the unit material cost. The 
optimisation procedure was solved us-
ing the variational formulation of the 
Finite Element Method. This assumption 
ensures the choice of the objective func-
tionals of a clear physical interpretation. 
Some of the possible functionals are pre-
sented underneath.

It is convenient to assume that the opti-
misation functional is the diffusive flux 
density through the assumed boundary 
portion or the whole external boundary:

.    (12)

Minimising the above functional corre-
sponds to the shape design of the optimal 
diffusive isolator; in other words, the 
diffusive transport through the assumed 
boundary portion is reduced. Regarding a 
model of the diffusive emitter, the above 
functional should be maximised. 

The alternative objective functional can 
be associated with the intensity of chemi-
cal reaction within the structural domain, 
which can be denoted as follows:

.                (13)

The optimal shape of the regarded struc-
ture can be determined from the point of 
view of maximising or minimising the 
above functional.

The functional F can be a global measure 
of the local maximum concentration of 
the diffusive component within the struc-

tural domain or along its boundary. The 
structural optimisation causes the mini-
mising of the component distribution in 
the following form:

   

(14)

where C0 is the assumed level of the 
component concentration. For n → ∞, 
the functional F represents the global 
measure of the maximum local concen-
tration of the diffusive component within 
the domain.

6. The shape identification 
problem and identification 
functionals

The shape identification problem is de-
fined as minimising the introduced ob-
jective functional without constraint. The 
stationarity conditions can be denoted as 
follows . 

The most popular form of the objective 
functional is the ‘distance’ between the 
component concentration C of the identi-
fied model and the concentration Cm of 
the real existing structure, stated on the 
external boundary part Γm in the form

.     (15)

The alternative form of the objective 
functional can be introduced as the fol-
lowing measure of the component con-
centration:

.  (16)     

This homogeneous functional can be 
used during the expansion or contraction 
of the modified boundary. Minimising the 
functional reduces the ‘distance’ between 
the component concentrations C and Cm 
and minimises the maximum local value 
of the concentration. 

The functional F can be a simple adapta-
tion of the Damage Location Assurance 
Criterion existing in mechanical prob-
lems, cf. Messina et al. [21]. The objec-
tive functional can now be expressed as 
Equation (17).

The range of correlation between the 
component concentrations of the identi-
fied model C and the real existing struc-
ture Cm is from zero (no correlation) to 
one (the full correlation). 
 
The solution of both optimality equa-
tions given by Equation (11) as well as 
stationarity conditions require knowl-
edge of the first-order sensitivities of 
the objective functional. Their derivation 
was discussed in the above sections and 
formulated using the direct approach (cf. 
Equation (6)), as well as the adjoint ap-
proach (cf. Equation 10).
 
In the next section, some applications 
of the derived expressions and objective 
functionals presented will be indicated, 
and simple numerical examples will be 
presented.

Equation: 10.

(10)

Equation: 17.

(17)
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n Numerical examples
Shape identification problem
The expressions discussed can be applied 
to the two-dimensional shape optimisa-
tion of the segment of an item of interac-
tive thermal clothing. The structure of the 
clothing is sequential, whereas the ther-
mal protection can be improved using 
empty, hermetic spaces within the fabric. 
The main idea of interactive clothing is 
to adapt to an acting external impulse, 
such as temperature changes. The im-
pulse causes a rapid change in volume by 
filling the spaces within the segments of 
the clothing with gas, air or alternatively 
using the mechanical element with shape 
memory. This kind of clothing was ana-
lysed by Szosland [22]. 

For this reason, the transient diffusion 
within the textile material is here con-
sidered. Of course, only one segment can 
be considered at a time. Let us assume 
that the medium within the hole contains 
moisture, and we must solve a two-di-
mensional shape identification problem, 
cf. Figure 4. 
 
The lower part of the external bound-
ary contacts the control surface. This 
part of the external boundary Γ1 has 
the prescribed component concentration 
changed in time according to the func-
tion C = C0 = 500 + 100 sin(Π.t/10). The 
calculations were performed for t0 = 0; 
tk = 240 s; Δt = 60 s. Additionally, on 
this portion of the external boundary, the 
component concentration of the real ex-
isting structure Cm should be measured. 
The left and right sides of the external 
disc boundary are diffusively isolated, 
i.e. the diffusion flux density normal to 
these portions Γ2 is equal to zero qn = 0. 
The upper part of the external boundary 
is the portion Γ3, with the diffusive con-
vection characterised by the convection 
coefficient β = 10-3 m. The surrounding 
component concentration of the moisture 
is assumed as equal to C∞ = 0.1CΓ3, i.e. 
10% of the component concentration 
on the above portion Γ3. The diffusion 
within the fabric can be characterised as 
moisture diffusion within a solid mate-
rial. The activated energy is assumed, 
according to Ekstein [6], to be equal to 
E = 12.14 kJ/kmol whereas the exponen-
tial coefficient equals K = 2.10-7 m2/s. 
The diffusion coefficient within the 
fabric can be described according to [2]
D = Kexp(-E/(RgT)) = 1.9904.10-7 m2/s.
On the boundary of the hole, the dif-

fusion flux density normal to the por-
tion Γ2 is prescribed, as changed 
in time according to the function 

. The calcula-
tions were performed for the same time 
parameters as on the boundary Γ1. Let us 
next assume  = 0, q* = 0. The primary 
problem can be introduced in view of 
Equations (1), as Equation (18).

Let us state the objective functional ac-
cording to Equation (15). First the direct 
approach is discussed. Using Equation 
(1), Equation (5) and Equation (15), as 
well as assuming the material derivatives  

 on Γ1; on Γ2 and C0p on (Ω∪Γ) as 
known in advance, the governing equa-
tions for additional structure have the 
form of Equation (19).

Figure 4. Shape identification of the diffusive structure.

Equations: 18 and 19.

(19)

(18)
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To determine the first-order sensitivity 
expressions, it is necessary to use Equa-
tion (6) and Equation (15).
 
Our next goal is to formulate the equa-
tions for adjoint approach to sensitivity 
analysis. Now introducing Equation (7), 
Equation (9) and Equation (15), the 
adjoint problem can be formulated as 
Equation (20).

The first-order sensitivity expression can 
be stated in view of Equation (10) and 
Equation (15). 

It is assumed that the length of both 
semi-axes describes the shape of the 
hole. Thus, we also have only two in-
dependent design parameters, depicted 
by the lengths b1 and b2 on Figure 4a. 
The analysis step of the identification 
procedure was performed using the Fi-
nite Element Method, and the domain 
was discretised using the 4-nodal ele-
ments net (cf. Figure 4b). The solution is 
iterative. The first step of each analysis 
was the solution of the primary problem, 
and then the additional problems or the 
adjoint problem were solved. The results 
obtained are first-order sensitivities, 
which are considered at the synthesis 
stage of the identification procedure. 
Thus, the first-order Method of Steepest 
Descent is applied in order to find the di-
rectional minimum. The initial shape and 
the shape identified in four iterations are 
shown in Figure 4c.

The problem described by Equations 
(18) to (20) is time-dependent, i.e. the 
unsteady diffusion problem must be 
solved. Physically speaking, the problem 
is a simple generalisation of the steady 
moisture transport, see for example 
Zienkiewicz [23] and Huebner [24]. 
Thus, additional time-dependent terms 
of the state variable are considered in 
the standard FEM-equation. Zienkiewicz 
[23] discussed these additional terms, the 
matrixes for different two-dimensional 
problems and the solution methods. In 
this case, the transient component con-
centration was found using recurrence 
relations, cf. Huebner [24].

Shape optimisation problem
The first-order sensitivity expressions 
can be applied alternatively to the two-
dimensional shape optimisation of the 
diffusive textile structure. The primary 
problem is the same as described by 
Equations (18). The objective functional 

is assumed to be the diffusive flux den-
sity normal to the lower part of the ex-
ternal boundary, according to Equation 
(12), cf. Figure 5. Let us compose the 
external boundary using 8 piecewise lin-
ear portions; the main curvatures of the 
boundary are now H→0. The additional 
structure is characterised by Equations 

(19), whereas the first-order sensitiv-
ity expression can be determined using 
Equation (6) and Equation (12).

The adjoint approach to sensitivity 
analysis can be stated using Equation 
(7), Equation (9) and Equation (12) in 
the form (21).

Equations: 20.

(20)

Equations: 21.

(21)

Figure 5. Shape optimisation of the diffusive structure.
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The independent shape designing pa-
rameters are now 12 coordinates of the 
selected points on the external boundary, 
which is depicted by the arrows b1 – b12 
in Figure 5b. Thus, the shape of the ex-
ternal boundary is optimised, whereas the 
boundary of the hole is stationary. In this 
case, the structural cost is assumed as a 
constant during the optimisation process.

The analysis step of the optimisation 
procedure was performed using the Fi-
nite Element Method, and the structure 
was discretised by applying the 4-nodal 
element net (cf. Figure 4b). The solu-
tion procedure is iterative, similar to 
the shape identification problem. At 
first the primary, additional and adjoint 
problems should be solved. The obtained 
sensitivities are applied into the Method 
of Steepest Descent. The initial and the 
optimal shapes of the structure are shown 
in Figure 5c. The optimal boundary is 
located very far from the hole with the 
diffusive medium. The history of optimi-
sation process is shown in Figure 5d, and 
the changes are plotted in terms of the 
iteration number.

n Conclusion 
The main objective of this paper was to 
present the application of the direct and 
adjoint approaches to sensitivity analysis 
in the transient diffusion problems within 
the textile structures. The formal descrip-
tion of the governing equations charac-
terising the diffusion is similar to that for 
heat transfer problems. Physically speak-
ing, the interpretation of the expressions 
obtained is different, and follows the dif-
fusive phenomena.
 
The first-order sensitivity vectors were 
formulated using the material derivative 
concept as well as direct and adjoint ap-
proaches to sensitivity analysis. Both ap-
proaches can be chosen alternatively, and 
the expressions obtained can be intro-
duced into the existing optimisation and 
identification methods in order to find 
the directional minimum of the objective 

functional. The presented analysis allows 
us to introduce the inequality constraints 
imposed on the structural cost, which is 
typical of engineering problems existing 
in the real world.
 
The numerical examples presented prove 
that the analysis can be an effective tool 
for determining the optimal boundary 
shapes for the optimal design problems, 
redesign procedures and identification 
problems in textile engineering.
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