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n Introduction
The tensile behaviour of parallel fibre 
bundles has always been an interesting 
topic for textile researchers. It is well 
known that the tensile properties of a 
fibre bundle are greatly influenced by 
the tensile properties of the constituent 
fibres which form the bundle. Therefore, 
a complete understanding of the mecha-
nism of translation of stress-strain curves 
of the constituent fibres into the tensile 
properties of the bundle is of great impor-
tance. In this regard, perhaps the simplest 
theoretical model assumes that all of the 
constituent fibres of a fibre bundle follow 
the same stress-strain curve and have the 
same breaking stress and breaking strain. 
Modelling the tensile behaviour of such 
a bundle is a trivial task. The tensile 
properties of a multi-component fibre 
bundle, where all the components relate 
to the same fibre material, were first 
formulated by Sinitsin [1]; subsequently, 
those formulas were found to be in good 
agreement with the actual results of spun 
yarns produced from the mixing of dif-
ferent varieties of Egyptian cotton fibres 
of different lengths and fineness [2]. A 
more complicated case concerns a blend-
ed fibre bundle consisting of multiple 
components, where one component has a 
different stress-strain behaviour than that 
of the other, but all the constituent fibres 
within a particular component have the 
same breaking stress and breaking strain. 
This case was first studied by Hamburger 
[3] on a two-component blended yarn. 
Later on, this study was extended to a 
three-component blended yarn by Żurek 
[4]. However, the experimental investi-
gation carried out by Kemp & Owen [5] 
showed that Hamburger’s theory was at 
variance with the facts. Of course, a real 
fibre bundle consists of fibres possess-
ing different stress-strain behaviours, a 
fact which was not considered in Ham-
burger’s theory. Taking this fact into 
consideration, a new theory on the tensile 
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behaviour of parallel fibre bundles has 
been developed, and is presented in this 
paper with many examples. 

n Theory and examples
We deem a fibre bundle to consist of a 
large number of straight and mutually 
parallel fibres, and each of these fibres is 
gripped by both jaws of a tensile tester 
during the tensile testing of the bundle. 
The tensile behaviour of this bundle will 
be discussed in the following sections 
under some assumptions.

Assumption of random character of 
fibre breaking points
The breaking points (P,a) of the fibres, 
shown schematically by the symbol ‘•’ 
in Figure 1, are random; their distribu-
tion is characterised by the joint prob-
ability density function u(P,a),  where 
P ∈ 〈Pmin,Pmax〉 is the fibre breaking 
force and a 〈amin,amax〉  is the fibre 
breaking strain. The average breaking 
point of fibres, shown by the symbol ‘o’ 
in Figure 1, is characterised by average 
fibre breaking force   and average fibre 
breaking strain  as follows:

      (1)

       (2)

The marginal probability density func-
tion of the fibre breaking strain g(a) is 
given by 

           (3)

and the corresponding distribution func-
tion G(a) is 

             (4)
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Substituting Equation (3) for (2), the av-
erage fibre breaking strain takes another 
form, as follows:

                  (5)

From the theory of probability, we know 
that

u(P,a)dPda = ψ(P|a)dPg(a)da,
or                                                         (6)

ψ(P|a) = u(P,a)/g(a)

where ψ(P|a) is the conditional probabil-
ity density function of the fibre breaking 
force P at a given fibre breaking strain 
a. Using Equation (6), the conditional 
average fibre breaking force at a given 
fibre breaking strain P(a) is obtained as 
follows:

(7)

This is shown by symbol ‘∆’ in Figure 1.

Assumption of similarity in force 
S - strain ε relation of fibres
The fibres have a similar force-strain 
relation S = S(ε), such that at or before a 
fibre breaks (ε ≤ a), its tensile behaviour 
follows the relation S(ε) = kS(ε), where 
S(ε), as we call it, is an average function 
characterising the average force-strain 
relation of fibres, and k is a fibre param-

Figure 1. Distribution of fibre breaking 
points.
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eter. Here we introduce the convention 
that the average function passes through 
the average breaking point of fibres, as 
shown in Figure 2. Hence the following 
expression is obvious:

P = S(a)                       (8)
Thus the following relation holds at the 
breaking point of each fibre:

P = S(a) = kS(a), or k = P/S(a)    (9)

So the force-strain relation of a general 
fibre can be expressed as follows:

      S = S(ε) = kS(ε) = [P/S(a)]S(ε), 
when ε ≤ a                 

(10a)

S = 0, when ε > a             (10b)

The average force per fibre in the fibre 
bundle S* is given by

   (11)

On the basis of the above two assump-
tions, S* takes the following forms.

Case 1 (no fibre is broken): substituting 
S from Equation (10a) into (11) and then 
utilising (7), we obtain 

     (12a)

                 when ε < amin

Case 2 (fibres with a < ε are broken): in 
analogy to the derivation of Equation 
(12a), we obtain 

    (12b)
when ε ∈ (amin, amax)

Case 3 (all fibres are broken): then S = 0, 
hence obviously 

S* = 0, when ε > amax       (12c)

It is also possible to derive an expression 
for the breaking force of the fibre bundle 
related to one fibre. This is the maximum 
of the average force per fibre in the fibre 
bundle. In this context, we consider the 
most common type of force-strain be-
haviour of a fibre bundle, as shown in 
Figure 3, with the breaking force of the 
bundle related to one fibre P* and the 
breaking strain of the bundle related to 
one fibre α* ∈ 〈amin, amax〉. Utilising the 
condition of breakage (dS*/dε)e=a* = 0 of 
the fibre bundle on Equation (12b) and 
then rearranging it, we obtain:

   (13a)

Using the symbol corresponding to the 
breakage of the bundle, that is ε = a*, in 
Equation (12b), we obtain: 

   (13b)

The roots of Equations (13a) and (13b) 
are the values of a* and P*, respectively. 

Assumption of symmetry in breaking 
forces of fibres
We assume that the conditional aver-
age fibre breaking force at a given fibre 
breaking strain P(a) is equal to the corre-
sponding value obtained from the average 
function S(a). Symbolically, P(a) = S(a). 
We call this an assumption of symmetry 
in the breaking forces of fibres. This is 
schematically shown in Figure 4. Under 
this assumption, Equations (12a) - (12c) 
take the following forms:

S* = S(ε), when ε < amin,   (14a)

S* = S(ε)[1 - G(ε)], 
when ε ∈ 〈amin, amax〉,       (14b)

S* = 0, when ε > amax;        (14c)

Thus, (13a) and (13b) can be expressed 
as follows:

        (15a)

P* = S(a)[1 - G(a*)].           (15b)

The roots of Equations (15a) and (15b) 
are the respective values of a* and P* 
under the assumption of symmetry in 
breaking force of fibres.

Some relative variables and their uses
We define the relative fibre breaking force 
y as a ratio of the fibre breaking force P to 
the average fibre breaking force P. Sym-
bolically, y = P/P. So, dy = dP/P. Ana-
logically, the relative fibre breaking strain 
z is defined as the ratio between the fibre 
breaking strain a and the average fibre 
breaking strain a. Symbolically, z = a/a. 
So,  dz = da/a. We also define the break-
ing force utilisation coefficient ηP as a 
ratio between the breaking force of the 
fibre bundle related to one fibre P* and 
the average fibre breaking force P. Sym-
bolically, ηP = P*/P. Analogically, the 
breaking strain utilisation coefficient ηa 
is defined as a ratio between the breaking 
strain of the fibre bundle related to one 
fibre a* and the average fibre breaking 
strain a. Symbolically, ηa = a*/a. 
 
The distribution of the relative fibre 
breaking points (y, z) is given by the 
probability density function w(y, z). From 
the theory of probability, we obtain 

w(y, z)dydz = u(P, a)dPda.      (16)

Then, following the above symbolism, 
Equation (16) takes the following form:

 w(y, z) = Pa u(P, a).           (17)

Using Equations (17) and (3) and also 
the definition of y, the marginal probabil-
ity density function of the relative fibre 
breaking strain h(z) can be expressed as 

Figure 2. Fibre tensile curves and concept of 
similar force-stress relation in fibres.

Figure 3. Most common type of force-strain 
curve of a fibre bundle.

Figure 4. Concept of symmetry in bre-
aking forces of fibres.
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h(z) = a g(a).                     (18)

From the definitions of z and ηa obvi-
ously when a = a* then z = ηa. Hence 
Equation (18) can be written as 

h(ηa) = a g(a*).                     (19)

Substituting Equations (17) and (18) in 
the definition of the conditional prob-
ability density function of the relative 
fibre breaking force at a given relative 
fibre breaking strain ϕ(y|z), and then 
comparing the resultant expression with 
(6), we obtain 

ϕ(y|z) = Pψ(P|a)                  (20)

Substituting Equation (20) and using the 
definition of y in the definition of the con-
ditional average relative fibre breaking 
force at a given relative fibre breaking 
strain y(z), we obtain 

y(z) = P(a)/P.                  (21)

It is already known that when a = a* then 
z = ηa. Hence Equation (21) takes the fol-
lowing form: 

y(ηa) = P(a*)/P.                 (22)

Now we define the relative fibre strain 
t as a ratio between the fibre strain e 
and the average fibre breaking strain 
a. Symbolically, t = ε/a. So, dt = dε/a. 
Evidently, this is the relative strain of the 
fibre bundle also. Under this symbol, we 
can consider the average function S(ε) as 
shown below:

S(ε) = Pζ(t),                   (23)

where ζ(t) = 1/P S(a(ε/a)), 

where we call ζ(t) as the relative average 
function. From the definitions of t and z, 
it is obvious that when ε = a then t = z, 
Equation (23) can thus be expressed as 

S(α) = Pζ(t),                   (24)

From the definitions of t and ηa, it is also 
obvious that when ε = a* then t = ηa, and 
so Equation (23) can be expressed in an-
other form, as follows:

S(a*) = Pζ(ηa),                   (25)

 Now the following derivation is evident 
from Equation (23)

dS(ε)/dε = (P/a)(dζ(t)/dt).     (26)

It is already known that when ε = a* then  
t = ηa, and so it is valid to write Equation 
(26) as 

(dS(a*)/da*) = (P/a)(dζ(ηa)/dηa). (27)

Now we define the relative average force 
per fibre in the bundle σ as σ = S*/P. This 

takes the following forms under the three 
cases mentioned below:

Case 1 (no fibre is broken): From the def-
initions of t and z, it is obvious that when 
ε < amin then t < zmin. At first, substituting 
S* from Equation (12a) into the definition 
of σ, then utilising (23), (21), (24), (18), 
and the definition of z, we obtain 

  (28a)

Case 2 (fibres with a < ε are broken): 
From the definitions of t and z, it is ob-
vious that when ε ∈ 〈amin, amax〉 then 
t ∈ 〈zmin, zmax〉. In analogy to the deriva-
tion of Equation (28a), we obtain

   (28b)

Case 3 (all fibres are broken): Obviously, 
from the definitions of t and z, when 
ε > amax then t > zmax. Under this case, 
S* = 0, hence obviously 

σ = 0                       (28c)

Now utilising Equations (25), (21), (24), 
(18), (22), and (19) into (13a) and then uti-
lising the definitions of z and ηa, we obtain 

  (29a)

At first, substituting P* from Equation 
(13b) in the definition of ηP and then 
utilising (25), (21), (24), (18), and the 
definition of z, we obtain 

   (29b)

The roots of Equations (29a) and (29b) 
are the values of ηa and ηP respectively.
 
Under the assumption of symmetry in 
breaking forces of fibres, using Equations 
(21) and (24) the following expression is 
obtained: 

y(z) = ζ(z)                  (30a)

Substituting the random variable z by 
another random variable ηa in Equation 
(30a), we obtain

y(ηa) = ζ(ηa)                  (30b)

Substituting Equation (30a) into (28a)-
(28c) respectively, we obtain

σ = ζ(t), when t < zmin,   (31a)

σ = ζ(t)[1 - H(t)], 
when t ∈ 〈zmin, zmax〉,       (31b)

σ = 0, when t > zmax;        (31c)
where

  

is the dis tribution function of z. Sub-
stituting Equations (30a) and (30b) into 
(29a), we obtain the following expres-
sion:

   (32a)

Substituting Equation (30a) into (29b), 
we obtain 

ηP = ζ(ηa)[1 - H(ηa)],          (32b)

Equations (32a) and (32b) allow us to 
evaluate ηa and ηP respectively under 
the assumption of symmetry in breaking 
forces of fibres.

Note: Two ratios are shown at the left-
hand side of Equation (32a): the first one 
represents force-strain relation, and the 
second one concerns the influence of the 
distribution of the relative fibre breaking 
points.

Examples 
1) Assume the force-strain relation of 
fibres is linear. Then the average function 
must be linear also: S(ε) = (P/a)ε. Com-
paring this expression with Equation (23) 
and utilising the definition of t, we obtain 
ζ(t) = t. So dζ(t)/dt = 1. Substituting the ran-
dom variable t by another variable ηa into 
the relation ζ(t) = t, we obtain ζ(ηa) = ηa. 
So dζ(ηa)/dηa = 1.

2) Assume the fibre breaking points 
(P,a) follow a two-dimensional Gaus-
sian (normal) distribution u(P,a). From 
the theory of probability, we obtain that 
the marginal probability density function 
g(a) of fibre breaking strain must also be 
Gaussian with average a and standard 
deviation sa; and the random variable z 
also follows Gaussian distribution, but 
with average 1 and standard deviation 
va, where va = sa/a. Evidently, va has the 
meaning of the coefficient of variation 
(CV) of the fibre breaking strain. So, the 
following expressions are valid: 
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h(z) = (1/2π)exp[-(z-1)/(2va2)] and 

. 

Let us now define a standardised random 
variable u as u = (z - 1)/va. For z = ηa, 
we use the symbol ua such that ua = (ηa-
1)/va, and for z = t, we use the symbol 
ut such that ut = (τ - 1)/va. Clearly, the 
variable u has the standardised Gaussian 
probability density function: 

 

and the standardised distribution function:

. 

Comparing the probability characteris-
tics of z and u, we can write h(z) = f(u)/va 
and H(z) = F(u).

3) Assume the symmetry in the breaking 
forces of the fibres, i.e. P(a) = S(a).
 
Under the first and second assumptions, 
from the two-dimensional Gaussian 
probability density function u(P,a) of 
the fibre breaking force P and the fibre 
breaking strain a, it is possible to derive 
P/a = ρ sP/sa, where sP and sa are the 
standard deviations of fibre breaking 
force and fibre breaking strain respec-
tively, and ρ is the correlation coefficient 
between the fibre breaking force and the 
fibre breaking strain. Now the following 
relations are evident based on the above 
three assumptions. From Equation (31b), 
the average force per fibre in the bun-
dle is obtained as ρ = t[1 - F(1 - 1/va)]. 
The behaviour of this expression is 
shown in Figure 5. From Equation (32a), 
we obtain 

. 

Solving this equation, we obtain ua, 
and then the breaking strain utilisa-
tion coefficient can be obtained from 
the earlier expression ηa = uava + 1. 
From Equation (32b), the breaking 
force utilisation coefficient is ob-
tained as ηP = (uava + 1)[1 - F(ua)]. 
Evidently, σ, ηa, and ηP depend only on 
va. Suh & Koo [6] experimentally found 
that the fibre breaking strain as the most 
significant contributory factor to the bun-
dle tensile properties. The behaviours of 
ηa and ηP as a function of va are shown 
in Figure 6. Similar results have been 
found considering the lognormal and 
Weibull distributions of fibre breaking 
strain [7]. 

Blended fibre bundle
Consider a blended fibre bundle con-
sisting of M different components. The 
partial components are denoted by the 
serial number i = 1, 2, ..., m as a sub-
script. Assume each partial component 
has ni fibres, and then the total number 
of fibres in the whole bundle is . 

The group of ni fibres of one compo-
nent can be understood as the ith partial 
bundle, consisting of fibres of only one 
component. If we symbolise the aver-
age force per fibre of ith partial bundle 
by S*i then the total force on all fibres 
of the ith partial bundle SΣ,i is given by 
SΣ,i = niS*i. Therefore, the resultant force 
on the whole bundle SΣ is then . 

Hence the average force per fibre in 
the whole bundle S* is obtained as  

. 

Obviously, the maximum value of force 
SΣ is the breaking force of the whole bun-
dle PΣ, and the strain ε at which the rela-
tion SΣ = PΣ holds is the breaking strain 
of the whole bundle a*. 

Example
Consider a blended fibre bundle consist-
ing of two components (M = 2), where 
the fibres of each component satisfy the 
following assumptions: 
1) Fibre force-strain relations are linear. 
Then the average function must be linear 
also: Si(ε) = Pi/a)ε.
 
2) The fibre breaking strain follows a 
Gaussian distribution. Then the prob-
ability density function of fibre breaking 
strain is

and the corresponding distribution func-
tion is given by 

. 

3) The fibre breaking forces are sym-
metrical. Symbolically, Pi(a) = Si(a). 
 
Under these assumptions, the average 
force per fibre of the ith partial bundle S*i  
can be obtained from Equation (15b), as 
follows: 

.           (33)

Utilising Equation (33) and the relation  
αi = (ni/n)(Pi/ai), where αi is a character-

istic parameter of the respective compo-
nent, we obtain

S* = (n1/n)S*i + (n2/n)S*i =
= α1ε[1 - G1(ε)] + α2ε[1 - G2(ε)].  (34)

From reference [8], it is known that 
(ni/n) = qi(t/ti), where qi is the mass por-
tion of ith component such that , 

ti is the fineness of the ith component 
and t is the average fibre fineness. We 
consider another characteristic param-
eter βi of the respective component as 
βi = (qi/ti)(Pi/ai). Then we obtain 

SΣ  = nS* = 
= Τ{β1ε[1 - G1(ε)] + β2ε[1 - G2(ε)]}.(35)

 
where T = nt is the fineness of the whole 
bundle. Now applying the condition of 
stress maximisation (dSΣ/dε)ε=a∗ = 0 or 
(dS*/dε)ε=a∗ = 0 on Equation (34), we 
obtain 

(36)

The numerical solution of Equation (36) 
can give one to three roots. The ‘correct’ 
root, which corresponds to the actual 
breaking strain of the whole bundle a*, 
is determined from the equation for cal-
culation of breaking force. The breaking 
strain of the whole bundle a* and the 
breaking force of the whole bundle PΣ 
are the coordinate of one point that lies 

Figure 5. Average force per fibre in the 
bundle vs. Relative fibre strain at different 
CV of fibre breaking strain.

Figure 6. Breaking force and breaking 
strain utilisation coefficients versus CV 
of fibre breaking strain.
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on the force-strain curve expressed by 
Equation (35). Therefore, we can write

 PΣ  = Τ{β1ε[1 - G1(ε)] + β2ε[1 - G2(ε)]}
(37)

If Equation (36) has more roots, then the 
root leading to the highest value of PΣ 
found from Equation (37) is the required 
breaking strain of the whole bundle a*. 
Evidently, from Equation (37), it is pos-
sible to obtain the breaking tenacity of 
the whole bundle pΣ  = PΣ/T. 

The above theory is illustrated with the 
help of two imaginary blended fibre bun-
dles (FB 1 and FB 2), where each bundle 
consists of two different components. 
The fibres of each component have the 
following characteristics, as shown in 
Table 1. (In FB 1, component 1 is like 
polyester and component 2 is like cotton.) 
Figure 7a represents the tenacity-strain 
curves of FB 1 obtained from Equation 
(35) using the expressions for βi, gi(a), 

Gi(a) as considered before and the rela-
tion g1 + g2 = 1. The curves are almost 
bimodal, except for bundles with only 
one component, i.e., g1 = 0 or g1 = 1. 
Figure 7b illustrates the tenacity-strain 
curves of FB 1 on the basis of Hamburg-
er’s theory (sa,1 → 0 and sa,2 → 0) [3]. 
The effect of variability in the breaking 
strain of fibres within a component on the 
force-strain behaviour of FB 1 can be un-
derstood by comparing these both sets of 
curves. By solving Equation (36) using the 
expressions for βi, gi(a), Gi(a)  as consid-
ered before and the relation g1 + g2 = 1, 
we obtain the thick lines in Figures 8a 
and 8b showing the effect of blend ratio 
on the breaking tenacity and breaking 
strain of FB 1, respectively. The thin 
lines in Figures 8a and 8b are obtained 
on the basis of Hamburger’s theory 
(sa,1 → 0 and sa,2 → 0) [3]. Evidently, 
the shifting of the thick and thin lines 
is significant. (It is not true that all the 
fibres of one component break at the 
same time.) In the case of FB 2, where 
the fibres of one component differ from 
the other component only in terms of 
variability in fibre breaking strain, the ef-
fect of blend ratio on the bundle breaking 
tenacity and breaking strain is shown in 
Figure 9. Evidently, the change of shape 
and the shifting of the thick and thin lines 
are significant. (The overlapping of the 
distributions of fibre breaking strain of 
the components is significant.) 

n Conclusion
This work shows that it is possible to 
model the tensile behaviour of fibre bun-
dles, where the constituent fibres possess 
different tensile behaviours. Extrapolat-
ing this fact into the model proves to be 
significant when predicting the tensile 
behaviour of the bundle; this behaviour 
is found to be different than that obtained 
from Hamburger’s theory. It is shown that 
the average force per fibre in the bundle, 
the breaking force utilisation coefficient, 
and the breaking strain utilisation coef-
ficient depend only on the coefficient 
of variation of fibre breaking strain. It 
will be very useful to produce a set of 
blended fibre bundles and yarns under 
comparable parameters (material, tech-
nology, etc.), and experimentally verify 
the above theoretical model. Working 
out supplementary empirical corrections 
to this model will lead to a practical way 
for predicting the tensile behaviour of 
blended fibre bundles and yarns. 

Table 1. Characteristics of fibres in bundles FB 1 and FB 2.

Fibre parameters
FB 1 FB 2

Component 1 Component 2 Component 1 Component 2

Average breaking tenacity pi, N/tex 0,5 0,3 0,3 0,3

Average breaking strain ai, % 30 8 16 8

Standard deviation of breaking 
strain sa,i

0,015 0,024 0,032 0,032

CV of breaking strain va,i, % 5 30 20 40

Figure 9. Comparison between the presented theory and Hamburger’s theory with a view 
to the tensile behaviours of fibre bundle FB 2; a) Breaking tenacity vs. mass portion b) 
Breaking strain vs. mass portion.

a) b)

Figure 8. Comparison between the presented theory and Hamburger’s theory with a view 
to the tensile behaviours of fibre bundle FB 1; a) Breaking tenacity vs. mass portion b) 
Breaking strain vs. mass portion.

Figure 7. Tensile curves (tenacity-strain) of the fibre bundle FB 1; a) the presented theory 
b) Hamburger’s theory.

a) b)

a) b)
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List of symbols
P Fibre breaking force
a Fibre breaking strain
u(P,a) Joint probability density function 

of fibre breaking force and fibre 
breaking strain

Pmin Minimum fibre breaking force
Pmax Maximum fibre breaking force
amin Minimum fibre breaking strain
amax Maximum fibre breaking strain
P Average fibre breaking force
a Average fibre breaking strain
g(a) Marginal probability density func-

tion of fibre breaking strain
G(a) Distribution function of fibre break-

ing strain
ψ(P|a) Conditional probability density 

function of fibre breaking force at 
a given fibre breaking strain 

P(a) Conditional average fibre break-
ing force at a given fibre breaking 
strain

S Force on a fibre
ε Strain on a fibre
S(ε) Force on a fibre at a given fibre 

strain
S(ε) Average force on fibres at a given 

fibre strain
k Fibre parameter
S(a) Force on a fibre at a given fibre 

breaking strain
S(a) Average force on fibres at a given 

fibre breaking strain
S(a) Average force on fibres at a given 

average fibre breaking strain
S* Average force per fibre in a fibre 

bundle
P* Breaking force of a fibre bundle 

related to one fibre
a* Breaking strain of a fibre bundle 

related to one fibre
S(a*) Average force on fibres at a given 

breaking strain of a fibre bundle 
related to one fibre

G(ε) Distribution function of strain on 
fibres

G(a*) Distribution function of breaking 
strain of a fibre bundle related to 
one fibre

g(a*) Marginal probability density func-
tion of breaking strain of a fibre 
bundle related to one fibre

y Relative fibre breaking force
z Relative fibre breaking strain
ηP Fibre breaking force utilisation 

coefficient
ηa Fibre braking strain utilisation co-

efficient
w(y,z) Probability density function of rela-

tive fibre breaking force and rela-
tive fibre breaking strain

h(z) Marginal probability density 
function of relative fibre breaking 
strain

h(ηa) Marginal probability density func-
tion of fibre breaking strain utilisa-
tion coefficient

ϕ(y|z) Conditional probability density 
function of relative fibre breaking 
force at a given relative fibre break-
ing strain

y(z) Conditional average relative fibre 
breaking force at a given relative 
fibre breaking strain

y(ηa) Conditional average relative fibre 
breaking force at a given fibre 
breaking strain utilisation coef-
ficient

P(a*) Conditional average fibre breaking 
force at a given breaking strain of a 
fibre bundle related to one fibre

t Relative fibre strain
ζ(t) Relative average function of fibre 

strain
ζ(z) Relative average function of fibre 

breaking strain
ζ(ηa) Relative average function
σ Relative average force per fiber in a 

fiber bundle
zmin Minimum relative fiber breaking 

strain
zmax Maximum relative fiber breaking 

strain
H(t) Distribution function of relative 

fiber strain
H(z) Distribution function of relative 

fiber breaking strain
H(ηa) Distribution function of fiber 

breaking strain utilization 
coefficient

sa Standard deviation of fiber breaking 
strain

va Coefficient of variation of fiber 
breaking strain

u,ua,ut Standardized random variables
f(u) Guassian probability density 

function of u
F(u) Distribution function of u
sp Standard deviation of fiber breaking 

force
ρ Correlation coefficient between 

fiber breaking force and fiber 
breaking strain

M No. of components (partial bundles) 
present in a blended fiber bundle

i Serial number denoting partial 
bundle, i = 1, 2, ..., m

ni No. of fibers present in ith partial 
bundle

n Total no. of fibers present in a fiber 
bundle

Si* Average force per fiber of ith partial 
bundle

SΣ,i Total force on all fibers of ith partial 
bundle

SΣ Total force on a fiber bundle
PΣ Breaking force of a fiber bundle
Si(ε) Average force on fibers of ith partial 

bundle at a given fiber strain

Pi Average breaking force of fibers of  
ith partial bundle

ai Average breaking strain of fibers of  
ith partial bundle

gi(a) Marginal probability density func-
tion of breaking strain of fibers of 
ith partial bundle

sa,i Standard deviation of breaking 
strain of fibers of ith partial bundle

Gi(a) Distribution function of breaking 
strain of fibers of ith partial bundle

Pi(a) Conditional average breaking force 
of fibers of ith partial bundle at a 
given fiber breaking strain

Si(a) Average force on fibers of ith partial 
bundle at a given average fiber 
breaking strain

Gi(ε) Distribution function of strain on 
fibers of ith partial bundle

αi, βi Parameters characteristic to ith 

component
qi Mass portion of ith component 
ti Fineness of fibers of ith component 
t Average fiber fineness
T Fineness of the fiber bundle
gi(a*) Marginal probability density 

function of breaking strain of fibers 
of  partial bundle

pΣ Breaking tenacity of a fiber bundle
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