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n Introduction 
In recent years, fabric manufacturing 
processes have become more and more 
rapid and automated; the consumer mar-
ket has also become increasingly sophisti-
cated. Elongation and recovery properties 
are very important for fabrics including 
elastane. In order to obtain good-quality 
products with high-efficiency production 
lines, clothing companies have estab-
lished advanced laboratories to measure 
fabric properties by controlling produc-
tion processes and fabric quality. There-
fore, these laboratories have devoted their 
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efforts to measuring and determining the 
different properties of their fabrics. For 
this purpose, many test methods are being 
developed and applied in the laboratories. 
Every test method has some test param-
eters which are determined according to 
the test aim and structure of fabric. In 
this case, every test must be repeated for 
each different test parameter values. This 
wastes time. However, with some statisti-
cal methods and models, the test results 
can be predicted with high accuracy be-
fore applying an actual test. For example, 
Witkowska & Frydrych (2004) studied 
a tear strength test for different kinds of 
protective fabric. They investigated the 
effect of different tear strength techniques 
on the results, and calculated the correla-
tion coefficient between the results and 
test methods [1]. In another study about 
this subject, Lizak (2002) tried to find out 
the effect of gauge length (one of the test 
parameters) on yarn strength by using sta-
tistical methods [2].

Artificial neural networks (ANN) and 
regression models have been used in 
many engineering fields to predict mate-
rial properties. Within the textile industry 
alone, numerous applications have been 
reported. For example, Kuo, Hsiao & 
Wu (2004) considered the extruder screw 
speed, gear pump, gear speed, and winder 
winding speed of a melt-spinning system 
as inputs, and the tensile strength and 
yarn count of as-spun fibres as outputs. 
They indicated their ANN model could 
predict the tensile strength and yarn count 
of as-spun fibres to provide a very good 

and reliable reference for as-spun fibre 
processing [3]. Strumillo et al. (2004) 
describes the design of a yarn spinning 
model based on the use of artificial neural 
networks, as well as measurements aimed 
at collecting the data necessary for this 
model. Feed-forward neural networks 
were used for modelling. In the study, the 
percentage content of flax and of the line-
ar density of yarn was used as inputs, and 
some yarn quality parameters were used 
as outputs [4]. Majumdar & Majumdar 
(2004) used an ANN to predict the break-
ing elongation of ring spun cotton yarns 
and compared their predictions with sta-
tistical and mathematical models. They 
used cotton fibre properties and yarn 
count as inputs to these models. They 
found that prediction performance was 
the best for the ANN model, followed by 
the statistical and mathematical models 
[5]. Lewandowski & Stanczyk (2005) 
used an ANN technique for identification 
and classification of spliced wool combed 
yarn joints. They used the Adaline type 
of ANN. In the first part of the study, an 
ANN model was developed; in the other 
part, the network was tested [6, 7]. 

In recent years, ANN has been widely 
used to predict fabric properties. Ertugrul 
& Ucar (2000), Gong & Chen (1999), 
Kuo et al. (2003a), Kuo & Lee (2003b), 
Tilocca et al. (2002) have successfully 
used ANN models to predict various 
fabric properties. All these researchers 
have obtained high prediction accuracy 
of the ANN models, even for unseen data 
sets. Gong & Chen (1999) investigated 
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the use of artificial neural networks to 
predicte fabric performance in garment 
manufacture and the appearance of the 
made-up garment [8 - 12]. 

In this paper, we attempt to predict elon-
gation and recovery test results of woven 
stretch fabric for warp and weft direction 
using different test points with regression 
and ANN models, and to compare the 
prediction results with each other. 

n The artificial neural network 
and regression model

The artificial neural network and 
back-propagation algorithm
The most commonly used type of ANN 
is the multi-layered feed-forward back-
propagation trained neural network [18]. 
Networks of this type are very general; 
they can approximate accurately com-
plex mappings and possess the statistical 
property of consistency (learnability) for 
unknown regression functions.

A feed-forward network has a layered 
structure. Each layer consists of units 
which receive their input from a layer 
directly below, and send their output 
to units in a layer directly above the 
unit. There are no connections within 
the layer itself. In most applications, 
a feed-forward network with a single 
layer of hidden units is used with a sig-
moid activation function for the units 
[19]. Therefore, we used a feed-forward 
network with a single layer of hidden 
units. In our work, jaw separation (mm), 
rate of extension (test speed-mm/min), 
and maximum load (N) were chosen as 
inputs to the neural networks. The output 
layer had two nodes; the output nodes 
produced warp & weft elongation and 
recovery values.

Training is an important feature of neural 
networks. The objective of the training 
process is to minimise the squared er-
ror between the network output and the 
desired output. This is done by adjusting 
the connection weights across the net-
work. The error is computed by making 
a forward calculation through the hidden 
and output layers of the network. For 
weight adjustment, the network errors 
are propagated backward through the 
network by different learning algorithms. 
In our networks we used a back-propaga-
tion learning algorithm as learning, since 
the back-propagation (BP) algorithm is 
among the most popular learning algo-

rithms for learning in a multi-layered 
feed-forward neural network [20].

The BP algorithm is processed in two 
distinct phases, the feed-forward phase 
and the error back-propagation. In the 
feed-forward phase, an input signal is 
propagated from the input layer to the 
output layer. The process starts with the 
random values for weights (w). The cal-
culated output, ok is then compared to the 
target output, tk and the backward phase 
begins with the computation of least 
mean squares’ (LMS) weight adjustment 
by minimising the error function, E:

        (1)

The usual BP algorithm updates the 
weights by using the gradient descent 
rule as: 

              (2)

where η is the learning rate that controls 
the learning time of the network [21]. 
The forward and backward passes are 
iteratively repeated until the overall 
network error is less than a pre-defined 
threshold value, or when the maximum 
number of allowed iterations is reached. 

Regression model
In general, the response variable y may 
be related to k regressor variables. The 
following model                                  

(3)
y = β0 + β1 x1 + β2 x2 + ... + βk xk + ε 

is called a multiple linear regression mod-
el with k regressor variables. This model 
describes a hyperplane in k-dimensional 
space of the regressor variables xj. The 
least-square method is typically used to 
estimate the regression coefficients (βj) 
in a multiple linear regression model. 
The least-square method chooses the βs 
in Equation (4), so that the sum of the 
squares of the errors εi, are minimised.

The least-square function is 

                       (4)

The function L is to be minimised with 
respect to

β0, β1,….., βk. 

The least-square estimators, say 

b0, b1,..., bk, 

must satisfy [22].

                 (5)

n Experimental design
Fabric structural properties
The fabric used for experimental study 
(Table 1) consists of blended fibres such 
as polyester/viscose/elastane (DuPont 
Lycra®). This fabric has elastane fibre in 
both warp and weft directions. 

Two performance criteria of the fabric 
were investigated in this study, elonga-
tion and recovery. Elongation can be 
explained as the changing the form of 
material temporarily with the effects of 
out forces (pull, etc.). This deformation 
recovers when the effect of out forces 
disappear. Recovery can be explained as 
the ratio between the original dimension 
(length towards the effect) and the per-
manent deformation amount of material 
with the effect of the force applied to it 
over a definite time [18].

Elongation and recovery in percent:

                          (7)

were: δ is the total elongation of the mem-
ber (temporarily or permanently), and L 
is the original length of the member [19].

Experimental method and data 
collection 
In the study, the elongation and recovery 
properties of stretch woven fabric are 
measured on the latest Titan Universal 

Table 1. Some structural properties of test specimen.

Parameters Specimen

Yarn properties
Warp Ne 20 (Tex 29,53) + 78 dtex Elastane (core-spun)
Weft Ne 20 (Tex 29,53) + 78 dtex Elastane (core-spun)

Raw material 48% Polyester / 48% Viscose / 4% Elastane (DuPont Lycra® )
Warp direction density, ends/cm 33 
Weft direction density, picks/cm 25
Weight, g/m2 238.12
Weave Twill 1/2 (S)
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Test Equipment with different rates of ex-
tension (ROE), jaw separation (JS-gauge 
length) and maximum load (ML) with a 
jaw method based on BS 4952 [20]. The 
application of BS 4952, standard measure-
ment of fabric elongation and recovery is 
executed on a JL of 100 mm and an ROE 
of 500 mm/min. The Titan test equipment 
allows users to measure different perform-
ance criteria of woven or knitted fabric 
and yarn, such as strength properties (ten-
sile and tearing strength etc.). During the 
experimental application in jaw methods, 
the fabric specimen is placed between the 
bottom stable jaw of the machine and its 
upper active jaw. Then, the experiment 
is started according to the test parameter 
loaded into the test machine’s memory 
at the beginning. All tests are carried out 
under standard laboratory conditions (hu-
midity 65%, temperature 20 °C), and the 
samples were conditioned at these envi-
ronmental parameters for 24 hours. 

In order to examine elongation perform-
ance, the ROE and ML experiment 
parameters were applied with 3 levels, 
but the JS was applied with 5 levels. In 
total, 45 different experiment points were 
formed. At each point, the experiment 
was replicated five times. Therefore, 
225 experiments for elongation were 
carried out. For rate of extension 50-250-
-500 mm/min test speeds were used; for 
jaw separation 100-120-150-170-200 mm 
specimen length, and for maximum load 
125-250-500 N. However, for recovery, 
all the input parameters were accepted 
at 3 levels, i.e. rate of extension (50-250-
-500 mm/min), jaw separation (100-150-
-200 mm) and maximum load (125-250-
-500 N). In total, 27 different experiment 
points were formed. Similarly,  the expe-
riment was replicated five times at each 
point. Therefore, 135 experiments for 
elongation were carried out. 

From the experimental study results; 45 
and 27 sets of input-output data sets were 
available for elongation and recovery 

respectively. 27 and 16 data sets were 
used for the training of elongation and 
recovery models. While training, 5 and 3 
data sets were used for cross-validating 
for elongation and recovery. The remain-
ing data sets were used to evaluate the 
prediction performance of the ANN and 
regression models. While forming the 
regression model, the training and vali-
dation data sets used in the ANN were 
combined. 

Neural network parameters
In this study, we used four different 
network structures with only one hidden 
layer. The number of nodes in the hid-
den layer varied from 3, 12, 30 and 50. 
The learning rate and momentum were 
optimised at 0.1 and 0.0 respectively. 
We found that the neural network model 
with 12 nodes in the hidden layer gives 
the best prediction results in the test. 

Regression model parameters
This statistical model is used to predict 
the properties of the woven fabric. The 
model was developed with a linear mul-
tiple regression algorithm. The models 
used for prediction are as follows:

Fabric elongation-warp = 11.78 +
- (0.0370×JS) - (0.00043×ROE) + 

+ (0.0365×ML)

Fabric elongation-weft = 12.67 +
- (0.0532×JS) + (0.000584×ROE) +

+  (0.0411×ML)

Fabric recovery-warp = 1.65 +
- (0.00834×JS) - (0.00946×ROE) + 

+ (0.0312×ML)

Fabric recovery-weft = -0.23 + 
+ (0.0839×JS) - (0.00208×ROE) +

+  (0.0393×ML)

As seen from the regression models 
above, JS affected the elongation and 
recovery properties negatively, apart 
from recovery-weft. The ROE’s effect 
on these properties is negative too, apart 

from elongation-weft. However, the ML 
has a positive effect on all responses. 

n Results and discussion
The ANN and regression model are in 
accordance with the experimental data 
of three inputs and two outputs, part of 
which (for elongation and recovery) are 
listed in Table 2.

After the completion of model develop-
ment and training, the ANN and regres-
sion prediction models are verified by 
the unseen test data for elongation and 
recovery shown in Table 3.

Statistical parameters such as the correla-
tion coefficient between the actual and 
predicted elongation and the recovery 
test results of woven stretch fabric in the 
direction of warp and weft, mean square 
error and mean absolute error were used 
to assess the predictive power of the two 
models. The results are shown in Table 4 
and Table 5, for elongation and recovery 
respectively. 

Table 4 indicates that the predictive power 
of the ANN and linear regression models 
are almostidentical. The correlation coef-
ficient (R) between the actual and predict-
ed elongation test results of warp and weft 
directions are also satisfactory for both 
the ANN and regression models. The R 
values in the warp direction are 0.985 and 
0.986 for the ANN and regression models 
respectively. Also, in the weft direction 
the R values are 0.992 and 0.989 for 
ANN and regression respectively. In ad-
dition, the MAPE values for two models 
are less than 5%, so there is no significant 
difference. According to these results, 
both models could be used to predict the 
elongation values of the warp and weft 
direction of stretch fabric. 

In Table 5, a comparison of the predic-
tion performance of both models can 
be seen. With respect to the warp direc-

Table 3. Some elongation and recovery values of fabric by ANN and regression.

No

Inputs Elongation Recovery

JS, 
mm

ROE, 
mm/min 

ML, 
N 

Actual Predicted
regression

Predicted
ANN Actual Predicted

regression
Predicted

ANN
Warp Weft Warp Weft Warp Weft Warp Weft Warp Weft Warp Weft

1 100 500 125 29.14 31.41 29.66 32.70 29.37 32.61 15.00 19.75 16.69 20.12 16.96 21.20
2 100 500 500 15.23 16.02 15.76 17.56 15.61 16.96   2.00   5.00   0.73   4.47   2.21   4.23
3 120 500 500 28.40 31.47 29.47 32.96 29.18 32.39 13.25 19.00 12.43 19.18 12.46 16.03
4 170 500 250 18.78 21.90 20.15 22.43 20.24 22.22   4.44   9.00   4.59   9.79   4.81   7.22
5 170 250 125 29.39 31.90 29.21 32.29 28.97 32.15 13.25 17.16 14.71 20.54 15.31 19.29
6 100 500 250 19.61 21.86 20.33 22.70 20.46 22.48 5.00 11.00   4.63   9.37   4.41   7.09
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Table 2. Some data used for ANN and regression model for elongation and recovery test.

No
Inputs

Actual outputs
Elongation Recovery

JS, mm ROE, mm/min ML, N Warp Weft Warp Weft
1 100   50 125 14.88 15.71 14.25 5.00
2 150 500 125 14.48 16.02 4.22 9.33
3 150 500 500 27.61 31.60 12.17 18.84
4 150   50 250 20.48 22.77 6.17 9.66
5 200   50 125 15.60 16.33 4.50 5.00
6 200 250 250 19.99 22.48 5.00 11.25

Table 5.Comparison of prediction performance of various models for recovery.

Statistical parameters
Warp direction Weft direction

ANN Regression ANN Regression
Correlation coefficient. R 0.983 0.975 0.948 0.976
Mean squared error (MSE) 1.474 1.723 5.925 1.930
Mean absolute percent error (MAPE) 12.2 20.5 18.6 7.8
Cases with more than 10% error 4 3 7 3

Table 4. Comparison of prediction performance of various models for elongation.

Statistical parameters
Warp direction Weft direction

ANN Regression ANN Regression
Correlation coefficient. R 0.985 0.986 0.992 0.989
Mean squared error (MSE) 1.234 1.065 0.564 0.896
Mean absolute percent error (MAPE) 4.0 3.8 2.7 3.4
Cases with more than 10% error 0 0 0 0

tion’s results, when the R value for the 
ANN was compared with the regression 
model, no difference was seen. But when 
the MAPE values were computed, the 
value for ANN was found to be more sat-
isfactory (the R value of ANN = 0.983, 
the R value of Reg. = 0.975, and the 
MAPE of ANN = 12.2%, the MAPE of 
Reg. = 20.5%). In contrast to the warp di-
rection’s results in the weft direction, the 
MAPE value for regression is more sat-
isfactory (the R value of ANN = 0,948, 
the R value of Reg. = 0.976 and the 
MAPE of ANN = 18.6%, the MAPE of 
Reg. = 7.8%). 

n Conclusions
In this study, we predicted the elongation 
and recovery test results of the polyester/
viscose/elastane blended bi-stretch woven 
fabric shown in Table 1 using different 
input variables (JS, ROE, and ML) with 
both ANN and linear regression models. 
On the basis of the results obtained, 
with the help of both ANN and regres-
sion analysis, we can predict the fabric’s 
properties easily and accurately. When 
predicting the elongation values of the 
fabric, either one of two models could be 
used. However, for recovery, the predic-
tion power of two models shows differ-
ence according to fabric direction such as 

warp and weft. In the warp direction, the 
performance of ANN seems to be better 
that of the regression model; in contrast, 
this is reversed in the weft direction. As 
a result, when comparing the prediction 
of elongation and recovery properties, 
it was determined that elongation prop-
erties were predicted more accurately 
using both models than that of recovery.
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