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n Introduction
Textile engineers have known for a long 
time that the properties of fabrics have an 
essential influence on the manufacturing 
process, as well as on the appearance of 
ready-to-wear clothing. On the basis of 
established knowledge about textiles, 
they tried to predict the garment be-
haviour. Although the earliest known 
investigations were carried out in the 
second half of the nineteenth century 
(Tchebichef [1] and Lucas [2]), the level 
of knowledge remains limited. The struc-
ture of fabrics and their properties are 
very complex, because of the following 
factors: 

n  the variety of thread interlacing due to 
different weaves (plain, twill, satin),

n  the variety of raw materials used, 
which can be natural like cotton, 
wool, flax and silk, or synthetic like 
PA, PES, PP and many others,

n  the physical characteristics of the ma-
terials which compose the fabric.

Economical and industrial reasons are 
strong motivations for research into the 
models of yarn and fabrics, the objective 
of which is to understand the dynamic 
behaviour of teh latter. Nowadays, devel-
opments in computing make possible a 
virtual simulation of fabrics and threads. 
In order to characterise the properties of 
fabrics, it is first necessary to consider 
their structure. In this case, a fabric’s 
geometry should be established with 
great precision on the basis that it is a 
result of the interlacing of warp and weft 
yarns. Consequently, a fabric modelling 
requires the modelling of the yarn. 

The aim of our study was to elaborate a 
new model of the stretching behaviour of 
yarn by a new mathematical description 
of the stress-strain curve. The new model 
elaborated is compared with other mod-
els hitherto used in textile science.

n Theoretical
Proposed model
On the basis of many practical tests car-
ried out on various samples, we were 
able to estimate a general shape of the 
yarn stress-strain curve T(N)=ζε(%), 
which is presented in Figure 1. This 
curve is divided into three distinct parts, 
which were described below.

The first zone
The first zone of the curve corresponds 
to the moment when the tensile tests of 
the yarn begin. The yarn is a fibre as-
sembly. The fibre arrangement in the 
yarn is partially ordered, although during 
the phase of yarn design, the process of 
spinning tries to preserve a regular tor-
sion, which makes it possible to maintain 
its homogeneity. During the tensile tests, 
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List of symbols
T  - stretching force,  
ε  - elongation, 
E  - Young’s modulus, 
ζ, a, d, c, A, B, C, D, E, a1, b1, c1, d1, e1, 
f1  - parameters of the models,
T*, T**, ε*, ε** - distinct points for 

3 zones of the stress-strain 
curve,

r  - velocity of the elongation 
increase, 

t  - time, 
η  - Newton’s modulus, 
Tr = T0  - fibre’s pre-tension,
b  - coefficient of nonlinearity,
P -  friction effect,
M  - inertia effect. Figure 1. Model of the stress-strain curve. 
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the fibres are subjected to longitudinal 
acting stress. The resulting strain causes 
an alignment of the fibres, which gener-
ates the interaction of fibres as well as 
the phenomenon of slippage. This zone 
corresponds to the ‘pre-tensioning’ of fi-
bres; the fibres are oriented according to 
the axis of deformation. Thus the fibrous 
structure tends towards a new space 
orientation (the principle of minimum 
energy), before the deformation of yarn 
starts from the point ε*.

The second zone 
This zone explains the elastic character 
of the yarn (the zone with linear deforma-
tion); the relationship between stress and 
deformation is proportional within this 
area. The proportionality factor is rep-
resented by Young’s modulus. The value 
of this modulus is constant until a certain 
maximum limit, beyond which the defor-
mation is no longer elastic (the plastic 
zone). The process of passing from the 
elastic zone to the plastic deformation 
zone is identified by the point ε**

The third zone
The last zone of the stress-strain curve 
reveals nonlinear phenomena, which 
are explained by the damage of fibres. 
During this phase, there is a progressive 
destruction of fibres, starting from the 
most strained ones.

Approach 
The analysis of the stress-strain curves 
allows a model of the curve to be estab-
lished. In order to take a systematic ap-
proach to the problem, we observed the 
stress-strain curve like a signal in time, 
i.e. the stress was compared with the 
dynamic response of a system; the de-
formation corresponds to the time. In the 
first phase, we analysed the models estab-
lished by other researchers. We studied 
(for each model) the sensitivity of each  
single parameter, i.e. the degree at which 
a selected single parameter influences the 
shape of the curve, while other parameters 
remain constant.  This approach allows 
us to estimate the influence of each pa-
rameter in time and checks, if our initial 
hypothesis of dividing a time space into 
three distinct zones is feasible. We must 
emphasise that this division of our model 
introduces a discontinuity in the boundary 
points of each zone. This study leads us to 
different sub-models acting in each zone 
of our model. To facilitate the comparison 
of each model with our model, a simula-
tion program was written using MATLAB 

software. The aim of the development is 
to show the meaning of each variable, i.e., 
its influence on the shape curve.

The shape of the curve is described by 
the Equations (1–3) where: T expresses 
the tension, ε presents the strain, and the 
coefficients ζ, a, d, c are the parameters 
of the model. 

Sensitivity of the proposed model 
Our model combines the various dy-
namic components present in the other 
models. Only a study on the sensitivity 
of parameters of each model enables to 
show them [8]. In order to show the influ-
ence of each parameter on the models, it 
was necessary to change their values in 
a particular area (+ 5% of initial value) 
and simultaneously to maintain the other 
parameters unchanged, as illustrated in 

Figure 2. We will thus demonstrate that 
the parameters of our model contribute 
to a good representation of the curve by 
acting similarly to the parameters of the 
other models further discussed.

The particular parameters have the foll-
owing meaning:
n The parameter ζ is a variable, which 

influences the slope of the curve in the 
three zones identically. It ensures that 
the function continuity is maintained 
in the discontinuity points of the sub-
models, as the tangents at the interface 
boundary points must be the same,

n The role of parameters T* and T** is 
to avoid the break at points of discon-
tinuity,

n The parameters a, d, c only perform 
in the third part of the curve. This part 
has a nonlinear character, and is man-

Equations 1-3. 

Figure 2. Curves of sensitivity of the model proposed.
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aged in the following way, as shown 
in Figure 2. More exactly, the param-
eter d as a time constant influences the 
behaviour of the signal, balances the 
final level of the curve and is equal to 
the variable factor of intensification. 
Parameter a tends to give a non-zero 
slope of the signal, whereas parameter 
c amortizes this effect, especially at 
the end of the signal.

n Models of traction (tensile 
models of the stress-strain 
curve) 

The folloving models are discussed as 
comparison for the model proposed by 
the authors:  the Vangheluwe’s model, the 
Żurek’s model, the Vangheluwe’s model 
modified by Manich, the Żurek’s model 
modified by Manich , and the Legrand’s 
model.

Vangheluwe’s model
Vangheluwe’s model [3, 4] is presented 
in Figure 3. 

This model is a combination of various 
models. It consists of Hooke's model 
characterised by E (elastic model) con-
nected in series with a visco-elastic mod-
el characterised by η - Maxwell's model, 
and in parallel with set T1 = bε2 in order 
to take into account the nonlinearity 
caused by the stretching forces. 

The equation for this model is:
T(ε) = Tr + ηr[1-exp(-Eε/η)] + bε2   (4)
where Tr means pre-tension of fibres,

By the following designations:
ηr = A                       (5)

-E/η = -B                      (6)

b = C                        (7)
Tr = T0                      (8)

and introducing the parameters A, B, C, 
and T0 in equation (4), the final equation 
is as follows:

T(ε) = T0 + Α[1-exp(-Bε)] + Cε2   (4)

Sensitivity of the Vangheluwe’s model
The sensitivicties of the parameters used 
in equations  characterising this model are 
presented in Figure 4. In Vangheluwe's 
equation, an expression which is very 
close to Maxwell's model supplemented 
by a nonlinear spring is introduced. This 
factor describes the initial state of the 
pre-tensioning of fibres in the yarn. From 
the analysis of curve sensitivity, we could 
draw the following conclusions:
n the effect of variable A is similar to the 

intensification factor of the system,
n the effect of the variable B is equiva-

lent to the time constant of the sys-
tem,

n the effect of the variable C is strongly 
related to the nonlinear phenomenon 
described by the expression Cε2. The 
variable C acts in the final part of the 
curve, and reacts in a contradictory 
way with the variable A. It gives a 
new dynamic to the system.

While comparing it with our model, we 
note that:
n the variable B acts in the first and 

second zone of the stress-strain curve, 
and

n the variables A and C act in the third 
zone.

It is important to note that the actions 
on the zones cited are independent. The 
factor T0 defines an initial phase of the 
test and corresponds to the setting state 
in a progressive tension of fibres in the 
yarn. Vangheluwe's model appears to be 
incomplete, because it does not distin-
guish zones 1 and 2 from the stress-strain 
curve, i.e., the zone of fibre alignment 
and the zone of elastic linear strain.

Żurek’s model
Żurek's model [7] is a relatively complete 
rheological model (Figure 5), because it 
confines the friction and inertia effects 
by the terms (P) and (M); combined to-
gether with the model of Kelvin-Voigt's 
(η, E2), and supplemented in series by an 

Figure 3. Vangheluwe’s model.

Figure 4. Curves of sensitivity of the 
Vangheluwe’s model.

Figure 5. Żurek’s model.
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elasticity (E1) assimilating the Hookean 
region.

The particular solution of the model is 
as follows:

T(ε) = Aε + B(Cε - B)exp(-a0ε)   (10)

The particular dependencies between the 
parameters A, B, C, and α0 of equation 
(10) and E1, E2, P, n, and M, as well as 
for Żurek’s model modified by Manich 
(equation 12) are expressed in [6].

Sensitivity of Żurek’s model
As before, only one variable was changed 
in order to determine its influence on the 

tensile force. Analysis of the curves in 
Figure 6 showed that:
n there is a variation of A similar to that 

of the parameter C of Vangheluwe’s 
model with more noticeable linearity,

n the variation of B is regarded as an 
action on the static state of the system 
(static intensification factor),

n the variation of the variable C ex-
presses the first realignment of the 
signal, which is visible in second 
order system, and

n the variation of “a0” is associated with 
the time constant of the system.

Comparing it with our model, the param-
eters are analysed in the same perspective 

as in Vangheluwe’s model; only the param-
eter C brings a specific dynamics at the end 
of the linear zone (between zone 2 and 3). 
This effect is noted only for certain yarns.

Manich’s models
Manich [6] explained the nonlinearities 
differently. He used a different interpre-
tation of Vangheluwe’s and Żurek’s mod-
els, in order to join the fibre phenomenon 
in the yarn. He proposed two modified 
models:

Vangheluwe’s model modified 
by Manich 
We analysed this model in a similar way. 
The difference between the basic model 
and the following modified model is ex-
pressed by the following equation:

T(ε) = T0 + A[- exp(-BεD)] + CεE   (11)

acts only on the exponent of deformation 
terms. Also, we endeavoured to study only 
the complementary variables D and E. 

The particular dependencies between 
parameters A, B, C, D, and E of equation 
(11) and physical qualities of the model 
are similar as expressed for equation (9). 

Sensitivity of Vangheluwe’s model 
modified by Manich
The curves in Figure 7 show us how 
these two terms influence the curve with 
the rest of the parameters unchanged.

The conclusions from the modifications 
are as follows:
n D plays an important role at the begin-

ning of the curve. It introduces a hori-
zontal bending at the beginning of the 
curve, which enables the time constant 
to be managed in a gentle way and an 
effect of delay to be introduced;

n E acts in the nonlinear part by giving 
a more constant dynamic at the end of 
the signal.

Figure 6. Curves of sensitivity of the Żurek’s model.

Figure 7. Curves of sensitivity of the Vangheluwe’s model modified by Manich.

Figure 8. Curves of sensitivity of the Żurek’s 
model modified by Manich.
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Comparing it with our model, we note 
that:
n the variable D creates two zones 1 

and 2, placed in one zone of the basic 
model, and

n E reflects the nonlinear effects only in 
zone 3.

Żurek’s model modified by Manich
The modification made to Żurek’s model 
is as follows: 

T(ε) = Aε + B + (Cε - B)exp(-aεD)   (12)

The sensitivity of the model is presented 
in Figure 8:

The variation of D points out the effect 
of parameter C of the basic model, but 
in a way shifted in time, while acting 
temporavily in dependence of the tem-
porary state of parameter A. This param-
eter combines carefully the effects of the 
parameters a and C at the basis model. 
As noticed when studying Vangheluwe’s 
modified model, the parameter D also 
makes possible the existence of the two 
zones 1 and 2 of our model, but in a less 
noticeable manner at the beginning of the 
curve.

Legrand’s model
This proposes an empirical model and 
describes traction including relaxation 
phenomena [7] as a system of Equa-
tions (13) in which each equation repre-
sents the curve phases.

Legrand finds that the velocity of exten-
sion and relaxation very significantly 
influences the shape of the traction curve. 
His approach is based on a study of a 
shape of the practical real curves. 

To identify the parameters, it was neces-
sary to make different tests:
1. a tensile test to obtain (a1, b1, c1, d1, 

e1, f1),
2. a relaxation test to obtain (A, B, C, D)
3. a hysteresis test to obtain (α, β, γ).
The part of Legrand’s model for the trac-
tion phenomena taking into account the 
visco-elasticity concept is as follows:

T(ε) = a1ε + b1 +
+ c1 sin(d1(ε - e1)expf1(ε−e1)  

 (14)

Sensitivity of Legrand’s model
The curves of sensitivity of the particular 
parameters of the Legrand’s model are 
presented in Figure 9.

The parametrical analysis leads us to the 
following conclusions:

n a1 is the parameter which permits the 
management of the signal starting 
time. It adapts the slope of the con-
tinuous component;

n b1 is positioned by an offset of sinu-
soidal component to the continuous 
component;

n c1 manages the amplitude of the sinu-
soidal component;

n d1 defines the period of the sinusoidal 
factor;

n e1 represents the term of changing the 
phase of the sinusoidal component, 
and

n f1 is a damping ratio of the sinusoidal 
component.

n Summary
A new model for the yarn stress-strain 
curve was proposed. We tried to intro-
duce the textile character of it by inter-

Figure 9. Curves of sensitivity of Legrand’s model (only one mentioned parameter is 
changed).

Equations 13. 
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preting this curve as a form of various 
models. This differentiation is due to 
a change in the yarn state during the 
stretching time. This model, then, dif-
fers very clearly from the other models 
described in the literature, because those 
models represent a different approach to 
the stretching problem. Also, in order to 
compare our work with those described 
in the bibliography, it was necessary to 
study the sensitivity of the parameters of 
the various models. The analysis of the 
curves of sensitivity enables us to show 
the influence of each parameter on the 
models and define their scope. As we 
can see, the scope of many parameters of 
the models described in bibliography is 
very large and extended onto two or three 
zones. In our model, however, the pa-
rameters influence only one zone which 
is precisely established; moreover, we 
are sure that it is exactly this parameter. 
We set up a strategy of development in 
order to avoid the effects of parametric 
compensation, which is very often ob-
served, when the number of parameters 
which composed the model becomes 
large. Throughout the whole process, a 

‘stronger’ parameter can cover up a a 
‘weaker’ one. Our approach of dividing 
the model into sub-models contributes to 
the correct operation of the identification, 
because we use a method of identification 
by pieces with sub-models which have a 
small number of parameters. We believe 
that the models presented in the bibli-
ography can lead to erroneous results, 
because of the significant number of 
parameters and their curve of sensitivity. 
The continuation of the study proceeded 
onto the identification of the unknown 
parameters of the model, which will be 
presented in the second part, to be enti-
tled “Modelling the stress-strain curve of 
textile products: Part 2, Theoretical and 
simulated results”. 

Editorial note
This problem was presented at the Autex 
Conference 2003 in Gdynia, Poland.
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