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The scientific research works presented in
various countries in the recent show the
growing interest in experimental investi-
gation of the behaviour of a given textile
specimen when pulled through a round
hole [1-7]. The research results have led
to the creation of several new experimen-
tal devices (the JTV-Griff-Tester and the
KTU-Griff-Tester), which were designed
for the instrumental measurement of te-
xtile hand [6,9,13]. It is assumed that the
scope of this type of textile investigations
can be expanded by measuring the mecha-
nical parameters during the process of
pulling a disc-shaped specimen through
the round hole of the stand. This method
could simplify, quicken and make cheaper
the measurement of several mechanical
parameters such as anisotropy, and repla-
ce the previously used uniaxial strip ten-
sion test.

The method of pulling through the hole is
applied in several versions. One of the
most reliable and generally applied is the
method of placing the specimen between
parallel plates and pulling it through a cen-
tral hole made in one of them. During the
experiment (Figure 1) the specimen takes
on the form of a wrinkled cone under the
bottom plate, and a wavy thin-surfaced
shape between the bottom plate and the
supporting plate.

The appearance of the wavy surface and
its contour is determined by the proper-
ties of the textile specimen. The specimen
cut from woven fabrics obtains a 'four-leaf
clover' shape, and the knitted fabric takes
on an oval form. These shapes become
better defined if the anisotropy coefficient
of the fabrics increases and if there is a

greater difference in extension rate in the
directions of the main axis of the fabrics
tested. As fabrics have the greatest mobi-
lity towards the direction axis, which
forms a 45° angle in respect to the weft
yarn direction, the stiff parts of the speci-
men (the warp and weft) make the fastest
movement towards the centre during the
experiment.The movement along the dia-
gonal axis is slowed down by friction for-
ces; thus the specimen is extended and
forms each of the four leaves of the clover
shape. The most clearly defined shape of
the four-leaf clover is formed from the
fabrics with the most mobile structure. If
the specimen is made of very dense fa-
brics or covered with polymer film, it as-
sumes the form of a wrinkled quadrangle
(parallelogram) with rounded corners.

The specimen cut from knitted fabrics has
the perpendicular axis of the highest mo-
bility in the direction of rows and the lo-
west mobility in the direction of columns.
Thus its shape during the experiment
forms the contour which changes from a
circle to an ellipse, which tends to show a
contour break towards the stiff column
direction. This depends on the anisotropy
coefficient of the fabrics Ka. The change
in shape of the experimental specimen is
especially evident when Ka>10.
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The goal of the research was to present a
method for the comparative evaluation of
the behaviour of different types of textile
fabrics during the process of pulling the
disc-shaped specimen through the round
central hole of the experimental stand bot-
tom plate. The main steps taken to achie-
ve this goal were as follows: to investiga-

te mathematical models for simulating the
behaviour under discussion, to define the
parameters and scope of applying the ma-
thematical models, to compare the measu-
rements of disc geometrical transforma-
tions to the measurements of uniaxial de-
formation of woven and knitted fabrics at
different direction angles, to show the ad-
vantages of the method presented for te-
sting and simulating the behaviour of a
given textile, and measuring and predic-
ting parameters during fabric exploitation.
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The experimental part of the research was
performed using the KTU-Griff-Tester
device with the following parameters: ra-
dius of the specimen R=56.5 mm (area of
the specimen - 100 cm2), the holes made
in the supporting plates had radiuses r of
7.5, 10, 12.5 and 15 mm. The distance h
between the supporting plate and the bot-
tom  plate can be adjusted with the preci-
sion of 0.05 mm and is chosen according
to the thickness of the fabrics δ, its pecu-
liarities of jamming in the hole of the bot-
tom plate and between the bottom  and
the supporting plate [7]. The specimen is
pulled through the hole of the bottom pla-
te using a spherical punch with the radius
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Abstract
In this article, we analyse the behaviour of woven and knitted fabrics while pulling a disc-
shaped specimen through a round hole of an experimental stand. Some mathematical simu-
lation models have been formed for this complicated process of textile deformation. The
results of comparative investigations into six types of textile specimen are presented as a set
of geometrical measurements made at different stages of the experiment. The analysis of
computational and experimental results shows the sufficient precision of Cassini oval and
shortened epicycloid curves for modelling the process. Conditions are identified for apply-
ing the method of pulling the textile specimen through the round hole for measuring the
parameters of textile anisotropy, textile hand and other mechanical properties.

Key words: textile hand, pulling textile disc through round hole, textile specimen geometry,
anisotropy, mathematical models.

Figure 1. Principal scheme of textile hand
evaluation in pulling process.
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of 5 mm, and the hole in the bottom plate
is processed by rounding its edges to a ra-
dius of 1 mm.

Six sample fabrics were investigated (Ta-
ble 1), two woven and four knitted, which
differed in structure, thickness and coef-
ficient of anisotropy. The behaviour of the
fabrics was investigated by two tests: pul-
ling them through the hole made in a trans-
parent bottom plate (organic glass), and
stretching stripes of the same types of fa-
brics (uniaxial tension test) which were
cut in directions differently oriented in
respect to the fabric course/warp.

The behaviour of each specimen was re-
corded with the help of a digital camera
during the 4-6 deformation stages. The
images captured were used to measure the
distance from the edge of the specimen Rz
(Figure 1) to the centre of the specimen at
intervals of 15 degrees. The specimens for
the uniaxial tension test were cut from the
identical fabrics by cutting strips (of 20
mm width) which were oriented at the
same direction angles as in the first test.
The constant tension load, similar to that
during exploitation, was used to deform
the fabric strips. The differences between
the linear deformations of the disc and the
strip-shaped specimen were used to iden-
tify the similarities and differences of the
tests.
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It is assumed that before the experiment,
the Cartesian x, y, and polar r, ϕ co-ordi-
nates will be set on the bottom plate pla-

ne. The original co-ordinate point 0 is set
in the centre of the specimen, and the ori-
ginal polar axis (0x axis) takes the weft
direction of the woven fabrics or the wale
direction of the knitted fabrics.

1. As the specimen of knitted fabric is
pulled through the hole, its contour chan-
ges from that of a circle to a wavy spatial
curve. The projection of the curve on the
bottom plate plane is similar to the ellipse
in the beginning of the experiment; then it
narrows, becomes incurved and finally
assumes the '∞' shape (Figure 2a). These
curves represent certain cases of Cassini
ovals, known in the scientific literature
[10-12]

(1)

where the relationships of the parameters
a and c are firstly

            , then

and finally a=c.
Though the reference sources present qu-
ite a lot of information regarding these
curves, our special interest lies in the po-
lar co-ordinates of the curve's inclination
points. In the I quarter, the co-ordinate ϕ1
of the inclination point W is calculated
from the equation:

(2)

The other type of curves of similar shape
are well known in the academic literature
of mathematics. One of them is called an
epicycloid, which is formed as trajectory
of the point belonging to the circle conto-
ur (radius a) while it rolls along the outer
side of the other circle (radius 2a). The
other has a similar shape and is called a
shortened epicycloid, which is formed by
the internal point of the circle (radius a,
the distance from the centre of the circle

d, d<a), while it rolls along the outer side
of the other circle (radius 2a). Thus the
epicycloid is formed when d=a.

The parametral equations for the shorte-
ned epicycloid  and the epicycloid are the
equations (3) and the equations (4) (for
expression the function in the polar co-
ordinates); when d=a, this relative can be
written as

(5)

The polar co-ordinate ϕ of the inclination
point W (I quarter) is calculated from the
equation:

(6)

When               and             the inclination
points are missing.

2. As the specimen of woven fabric is pul-
led through the hole, its contour is defor-
med from the shape of a circle to the speci-
fic curve presented in Figure 3. Its projec-
tion on the bottom plate plane can be de-
scribed using the same mathematical equ-
ations (3), where d<0, as presented by (7).

Figure 4. The distribution of the linear deformations during uniaxial tension, at P=1.2 N
and the dimensions of strip working area of 100×20 mm (a) and while pulling the disc-
shaped specimen through the hole of the stand’s  bottom plate, when R=56.5 mm, r=10 mm,
ρ=5 mm, h≅3δ mm (b).
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Figure 2. Cassini ovals (a) and shortened
epicycloid, where the radiuses of the circles
are 2a and a; (b) 0<d<a.
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Figure 3. The formation scheme of the
shortened epicycloid, when the radiuses of
the circles are 4a and a.
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The distance from the points of the shor-
tened epicycloids to the centre 0 is Rz=r(ϕ)

   
(8)

when d =a, the co-ordinate ϕ of the inclina-
tion point W is calculated from formula (9)

(9)

While analysing the experimental results,
the feasibility of applying other mathema-
tical models was examined as well, namely
Buto Lemniscate, Lame and Persay cu-
rves, and four-leaf flowers [12]. The Cas-
sini ovals and shortened epicycloids were
evaluated as being most suitable for fur-
ther investigations, because the results of
applying these models had the highest re-
liability, especially in the initial stages of
deformation.

 �"���"�����#	"��""	��

A small load P=1.2 N was applied to the
stripes of woven fabrics A and A3, as well
as to the knitted fabrics TO. During the
first minute, they reached different exten-
sion rates (Figure 4a). The largest exten-
sion of the woven fabrics was reached for
the stripes cut at the direction of 45°, and
the smallest extension was measured for
the stripes cut in warp (A) or weft (A3)
directions. The curves were drawn by lin-
king the extension points measured in all
sectors. The curves drawn for woven fa-
brics are similar to ovals, oriented towards
the 45° direction axis. The knitted fabrics
TO reached the maximum deformation in
the course direction and the minimum de-
formation towards the wale direction. The
investigation showed that the shape of the
linear deformation curves depends on the
stripe cutting direction axis, and it has an
inclination point, if the cutting direction
approaches the course axis (indicated for
the strips, cut at 75° in respect to the fa-
bric course direction).

While pulling the disc-shape specimen
through the hole of the bottom plate, the
linear deformation curves resemble the
curves of stripe deformation, as shown for
one sector of the circle (90°) (Figure 4a).
The displacements Rz of the disc-shaped
specimen's outer contour were measured
after pulling it through the hole of the
stand. The largest displacements were
obtained for the woven fabric warp and
weft yarns. The smallest displacement of
the specimen outer contour was in the 45°

direction, and the intermediate values of
Rz were in the 15°-30° and 60°-75°direc-
tions. The differences between the displa-
cements of the specimen's outer contour
in intermediate fabric directions are insi-
gnificant. So, the 'four-leaved clover', the
axles of which are located at 45° angles
in respect to the 0x and 0y axles, is for-
med from the woven fabric specimen
(while pulling of the disc shaped speci-
men through the central hole). The curves
of the knitted fabric TO's linear deforma-
tions for the same sector of the circle are
similar in both deformation cases, while
pulling of rounded specimen through the
hole or after the uniaxial strip tension (Fi-
gure 4). The displacements of the speci-
men outer contour are smaller after pul-
ling the specimen through the hole com-
pared to those obtained after the uniaxial
deformation. The reason for this was the
different mode of spatial deformation. The
displacements of the adjacent points of the
specimen are limited while pulling it thro-
ugh the stand hole. The shape of the sin-

gle sector of the specimen cut from the
knitted fabric TO is similar to that of the
one-quarter of incurved oval, and the depth
(size) depends on the level of the speci-
men deformation.

The experimental results obtained after
pulling the rounded specimens cut from
the woven or knitted fabric through the
hole (Figures 5 and 6) were compared to
those calculated by using the mathemati-
cal models. The parameters a and c of the
(1) Cassini oval equation were calculated
using the measured parameters OX (ϕ=0°)
and OY (ϕ=90°) (Figure 2a):

           (10)

After the substitution of the obtained a2

and c2 values into equation (1), we calcu-
lated r(ϕ), when ϕ=15°; 30°; 45°; 60°; 75°
and compared them to the measured valu-
es (Table 1). The differences between the
measured and calculated parameters were
evaluated by using the equation:

Table 1. Characteristics of textile fabrics. Note: Ka=εs/εi, where εs - linear deformation of
the specimen in weft/wale direction, εi - the same in warp/course direction.

Figure 6. The projections of the specimen from the knitted fabric V in the plane of the
stand»s bottom plate at the different deformation stages; 1 (H=10 mm), 2 (H=20 mm),
3 (H=30 mm) 4 (H=40 mm).

    

 

  Stage:     1                       2                                3                      4

Figure 5. The projections of the specimen from the woven fabric A3 in the plane of the
stand’s bottom plate at the different deformation stages; stage: 2 (H=20 mm), 3 (H=30 mm)
4 (H=40 mm).

  Stage:          2                                  3                                      4
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           (11)

 and are presented in Table 4.

When                 , the polar coordinate ϕ1 of
the inclination point W of the curve (Cas-
sini oval) for the Ist one-quarter was cal-
culated from equation (2). We also used
the same measured parameters to calcu-
late the parameters a and d of the shorte-
ned epicycloid (4) equation: when ϕ=0°,
3a+d=OX, and when ϕ=90°, 3a-d=OY.

After the solution of the equation system

           (12)

and substitution of 3a and d values into
equation (4), the r(ϕ) values were deter-
mined. So later, the ∆ values were obta-

ined using equation (11) and the co-ordi-
nates of the inclination point of curve were
calculated using equation (6).

After comparison of the ∆ values obtained
for both cases, it was determined which
of the mathematical curves - the Cassini
oval or the shortened epicycloid - would
be better for simulating the shape of the
outer contour projection of the deformed
specimen.

The results presented in Tables 2 and 3
prove that after the initial stages of speci-
men deformation (3rd-4th stages) the pro-
jection of the specimen's outer contour ob-
tains a non-incurved oval shape (with the
bend point W). The later increase of de-
formation (5th-6th stages) forms the inc-

lination of the oval near the y axis, and
the distance OY between the inclination
point of inclination W and the centre 0 is
variable. After the performed calculations,
it was determined that the outer contour
of the deformed specimen obtains the sha-
pe of the non-incurved oval.

The theoretical investigations concerning
the behaviour of the specimen cut from
the woven fabrics A and A3 while being
pulled through the central hole were per-
formed using equation (8). When ϕ=0°,
5a-d=OX, and when ϕ=45°, 5a+d=OY.
The values of the a and d parameters were
calculated using the equation system

           (13)

After substituting the calculated values of
the a and d parameters into equation (8),
the values r(15°), r(30°), r(60°), r(75°)
were obtained and the differences ∆ were
calculated. The next step was to calculate
the values of the polar coordinates of the
curve's inclination point using equation
(9). All calculated parameters are presen-
ted in Table 4.

The investigations presented concerning
the behaviour of woven and knitted fabric
while pulling specimens of them through
the central hole of the stand have proved
that the method of pulling them through
the hole can more realistically simulate the
wearing conditions of textile garments
than the standard uniaxial strip tension
test. This statement can be substantiated
on the basis of the uniaxial deformation
of strip-shaped specimens cut in the dia-
gonal fabric directions. During deforma-
tion of the strip-shaped specimens cut
from textile fabric in 45±15° angles, the
same fabric yarns fixed in both clamps of
the tensile machine are missing. So, the
deformation of such strip can simulate
only the shear processes; it is dissimilar
from the fabric deformation in the weft/
wale and warp/course directions (0° and
90°). While pulling the disc shaped speci-
men through the hole of the stand, the stra-
ins in the specimen area are distributed
differently in comparison to those arising
during the uniaxial strip tension because
of the correlation of all the specimen di-
rections. Notwithstanding this, the method
of pulling through a hole is classed toge-
ther with the tests of the biaxial deforma-
tion, but some similarities exist between
the deformation of the strip-shaped spe-
cimens and the deformation of the disc-
shaped specimens. The first similarity is
the remaining directions of maximum and
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Table 3. The measured values of the displacements Rz of the specimen from the knitted fabric
TO's outer contour points at the 3rd-6th deformation stages and the coordinates of the
inclination point W of curve.

Table 2. The measured values of the displacements Rz of specimen outer contour points at
the initial deformation stages. Note: The stages of the specimen deformation were numbered
in accordance with the motion of the pulling punch H (every 10 mm): 1st stage, when H=10
mm, 2nd stage - H=20 mm, 3rd stage - H=30 mm, 4th stage - H=40 mm, 5th stage - H=50
mm, 6th stage - H=60 mm.
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minimum deformations. In addition, the
polar diagrams are also similar (Figure 4):
the deformed specimen cut from knitted
fabric obtains the shape of an oval with a
bend point near the angle of 90°, and the
specimen from woven fabric obtains the
shape of the 'four-leaf clover', where the
smallest displacement of the outer speci-
men contour Rz is near the angle of 45°.
The third similarity was the close resem-
blance between the coefficient of aniso-
tropy Ka determined experimentally by the
uniaxial tension method (Table 1) and the
computed parameter d, which was obta-
ined after the test of pulling through the
hole. This is particularly relevant to knit-
ted textile materials (Table 5).

Some evident specimen transformations
were observed while pulling the disc thro-
ugh the central hole. The most conspicu-
ous specimen transformations were noted
when the specimen outer contour appro-
ached the edge of the stand hole (Rz ap-
proximates r) (Figure 1).

The analysis of the specimen images cap-
tured at different specimen deformation
stages have shown that the projections of
the woven fabric specimen's outer conto-
ur can be mathematically simulated by the
equation of the shortened epicycloid, and

those of knitted fabric by the equations of
Cassini ovals or of the shortened epicyc-
loid. The precision of the mathematical
simulation notably decreases when the
outer contour of the specimen nears the
edge of the hole, especially after a signifi-
cant increase in the coefficient of the ani-
sotropy of textile fabric's properties. The
simulation of the geometrical shapes of
the specimens cut from the knitted fabric
V (Ka=12.5) can serve as one example of
this phenomenon. In such a case, the typi-
cal scheme of the process of pulling tho-
ugh the hole is missing, when after half of
the deformation process the stiffer system
of the knitted fabric (the course axis of
fabric) enters the stand hole.

The investigations presented are important
both for solving the problem of the instru-
mental textile hand evaluation and the si-
mulation of some of the wearing proces-
ses of technical textile products (parachu-
tes, sails, filters, functional clothing etc.).

$�����"	��"

� The differences between knitted and
woven fabric geometrical transforma-
tions during the experiment of pulling
them through the hole of the test stand
were evaluated and compared.

� Simple (i.e. with a small number of
parameters) and reliable mathematical
models were presented for simulating
the behaviour of specimens of disc-sha-
ped fabrics during the process of pul-
ling them through the hole. The best
results were achieved by using models
of the Cassini oval and the shortened

epicycloid, which showed the best re-
liability in the initial stages of the expe-
riment. When the stiffest part of the
specimen approaches the hole's centre,
the precision of the model decreases.

� The experiment of pulling the disc thro-
ugh the hole preserves the evidence of
the dependence of the qualities of the
textile fabrics on the different direction
axis. This experiment is simple to per-
form, provides new information about
the behaviour of textile fabrics and can
be more widely applied in textile mate-
rial science.
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Table 4. The values of the difference ∆ (error).

Table 5. Coefficient of anisotropy Ka and the
computed d parameter.
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